
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2026, 2026:9

https://doi.org/10.28919/cmbn/9659

ISSN: 2052-2541

OUTLIER DETECTION IN MULTIVARIATE TIME SERIES: AN APPLICATION
OF HYBRID DNN-DBSCAN TECHNIQUE

THEOPHILUS ASAMOAH1,∗, ANTHONY GICHUHI WAITITU2, BISMARK KWAO NKANSAH3,

CYPRIAN OMARI4

1Department of Mathematics, Institute for Basic Sciences, Technology and Innovation, Pan African University,

Juja, Kenya

2Department of Statistics and Actuarial Sciences, Jomo Kenyatta University of Agriculture and Technology, Juja,

Kenya

3Department of Statistics, University of Cape Coast, Cape Coast, Ghana

4Department of Statistics and Actuarial Science, Dedan Kimathi University of Technology, Nyeri, Kenya

Copyright © 2026 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In spite of on-going advances and utilization of Deep Neural Networks (DNN) and Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) techniques to enhance outlier detection in multivariate

time series (MTS) data, research is yet to explore an approach that integrates the capabilities of the two tech-

niques for complex data representation. The paper therefore combines the two techniques to obtain the hybrid

DNN-DBSCAN technique. It is demonstrated in simulated data that the resulting technique achieves improved

precision and recall of outlier detection based on a number of performance metrics. In particular, the new pro-

cedure adequately captures the complexity involved with the underlying high-dimensionality of MTS data which

poses problems for outlier detection to traditional methods.
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1. INTRODUCTION

Outlier detection in MTS data has garnered considerable interest owing to the critical need

for precise outlier detection in many applications, including banking, healthcare, and industrial

monitoring [1]. Outliers, characterized as data points that markedly diverge from expected

trends, may result from measurement inaccuracies, emerging patterns, or infrequent occur-

rences. Their detection in MTS is notably difficult because of interdependency across vari-

ables and temporal points. Inaccurate detection of outliers may result in significant adverse

effects [2]. This gap has prompted the development of techniques to improve outlier detection.

Current methods for detecting outliers in time series are mostly categorized into statistical, ma-

chine learning, and deep learning. Statistical techniques including principal component anal-

ysis, autoregressive, and moving average models, although proficient in univariate scenarios,

often exhibit diminished performance with high-dimensional data due to inadequacy in cap-

turing non-linear patterns and temporal dependency characteristics of MTS data [3]. Machine

learning techniques such as k-means and support vector machines have been used to mitigate

some of these constraints. Nonetheless, they encounter issues related to scalability and accuracy

[3].

Recently, deep learning models, those using Recurrent Neural Networks and Convolu-

tional Neural Networks have been investigated to describe temporal relationships and high-

dimensional data structures [4]. Although these models exhibit proficiency in capturing com-

plex patterns, they often encounter challenges with model interpretability, scalability, and ten-

dency to overfit, which may restrict their effectiveness in practical applications [5]. The DB-

SCAN technique, a prevalent clustering method, has shown efficacy in detecting outliers based

on density rather than relying only on Euclidean distance, making it advantageous for data ex-

hibiting variable shapes and heterogeneous densities [6]. However, the direct implementation

of the DBSCAN technique to MTS data often proves inadequate since the high-dimensional

characteristics of these data hinder precise distance-based clustering. Although this technique

effectively detects noise (outliers), it is insufficient in dealing with complex temporal connec-

tions and feature interactions independently. So, existing outlier detection techniques may either

overlook outliers or mistakenly classify normal patterns as outliers in MTS data.
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The integration of DNN modeling and DBSCAN technique could offer a viable solution

to the constraints inherent in each technique when used alone in detection of outliers. The

DNN modeling component provides a feature extraction method that can detect complex, non-

linear correlations among variables, converting high-dimensional data into a more manageable

lower-dimensional feature space for the DBSCAN technique processing [7, 8, 9]. After data

transformation through complex features extraction, DBSCAN technique detects density-based

outliers, facilitating robust detection of outliers that are less sensitive to high-dimensional noise

[10]. This hybrid technique utilizes the advantages of DNN modeling for feature extraction

and the effectiveness of the outlier detection abilities of the DBSCAN technique to provide a

solution that is both scalable and interpretable. The application of the hybrid DNN-DBSCAN

technique is important in fields characterized by high-dimensional, interrelated time series data,

where precise detection of outliers is essential for informed decision-making. Therefore, this

paper presents a novel strategy that integrates the ability of DNN modeling to describe complex

data structures with robustness of traditional DBSCAN technique to enhance outlier detection

in MTS. The paper is guided by the following objectives. To:

(a) Develop a hybrid DNN-DBSCAN technique to detect outliers in MTS data.

(b) Evaluate and compare the performance of the hybrid DNN-DBSCAN technique devel-

oped with existing outlier detection techniques.

The rest of the paper is organized as follows: Section 2 presents the procedures for incor-

porating the DNN and DBSCAN techniques to detect outliers and its performance measures.

Also, Section 3 presents the main results while Section 4 presents the conclusion of the paper.

2. METHODS

Detecting outliers by combining DNN modeling with DBSCAN technique entails extract-

ing features of the MTS data using the DNN modeling technique and clustering the feature

extracted data using DBSCAN technique as outliers or non-outliers. Starting with DNN tech-

nique, followed by DBSCAN technique, this section provides integration of the two to obtain

the hybrid DNN-DBSCAN technique.
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2.1. DNN Modeling Technique

Assuming Yt represents an MTS data given by

(1) Yt =


y11 y21 . . . yp1

y12 y22 . . . yp2
...

... . . . ...

y1T y2T . . . ypT


where each yit is an observation for the ith variable at time t, t = 1,2,3, . . . ,T , and p is number

of variables. Normalizing Equation (1) gives

(2) Xt = (Yt−1T µ
′
Y )S
−1
Y

where Xt is normalized MTS data, Yt is initial MTS data, µY is mean vector, SY is diagonalized

vector, σY of standard deviations, and finally, 1T is a vector of ones. The DNN model is com-

posed of multiple layers, where each layer performs a transformation on the input. The output

of the previous layer is the input for the next, as exemplified in Figure 1. The DNN model has:

FIGURE 1. DNN Model Architecture

input, hidden, and output layers. In the last layer, the output is compared to the true value and

error criterion is applied to compute the loss. The Huber loss is applied. The trained DNN

model is defined by its parameters: weight matrices, Wj, j−1 and bias vectors, b j, with j from 1

to the number of desired hidden layers. The parameters are adjusted iteratively to minimize the

loss, with the application of the Deterministic Finite Gradient Search. Given a MTS data, each

hidden layer applies a non-linear transformation function g to the output of the previous layer.
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The transformation takes into accounts the parameters, linking a layer to its previous layer, and

providing the activation values of neurons with

(3) h j(x(i)) = g(Wj, j−1h j−1(x(i))+b j)

where j = 2, . . . , T-1 and

(4) h1(x(i)) = g(W1,0x(i)+b1)

Hence, the DNN model architecture is of the form

(5) Z = g(Wn (g(Wn−1 (· · ·g(W1Xt +b1) · · ·)+bn−1)+bn))

where Z is feature representation of the input. The ReLU activation function is applied because

it remains the default choice in many applications. The ReLU is used due to its simplicity and

computational efficiency, alleviation of vanishing gradient problem, sparsity in neural networks,

better performance practically, biological inspiration and its variants and flexibility [11]. The

ReLU is

(6) ReLU(z) = max(0,z)

This activation function introduces non-linearity, which allows the network to learn complex

patterns. The Huber loss is applied for robust outlier detection, combining the advantages of

the squared error for small errors and absolute error for large errors, defined as

(7) Lδ (r) =


1
2r2, for |r| ≤ δ

δ (|r|− 1
2δ ), otherwise

where, r = Z− Ẑ is residuals and δ is a threshold parameter that determines the switch between

quadratic and linear behaviours. The threshold parameter helps in mitigating the impact of out-

liers, treating them with less sensitivity compared to the traditional squared losses. Particularly,

the auto-encoder technique is applied as presented in Section 2.1.1.
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2.1.1. AE Technique

The Auto-Encoder (AE) compresses and reconstructs non-linear feature representations of data,

reducing noise while preserving informative structures relevant to outlier detection [12]. Given

Equation (2), the encoder maps it to a latent vector Z defined as

(8) Ẑ = fenc(H) = g(WeH+be)

and the decoder reconstructs the input as

(9) Ĥ = fdec(Z) = g(WdZ+bd)

Unlike traditional AEs that use mean squared error, the Huber loss is adopted to enhance ro-

bustness against outliers or noisy observations, formulated as

(10) LHuber
AE =

1
N

N

∑
i=1


1
2‖Hi− Ĥi‖2

2, if ‖Hi− Ĥi‖1 ≤ δ ,

δ
(
‖Hi− Ĥi‖1− δ

2

)
, otherwise.

where δ controls the transition between the quadratic and linear regimes of the loss. The per-

window reconstruction error, serving as the outlier score, is defined as

(11) εi =


1
2‖Hi− Ĥi‖2

2, if ‖Hi− Ĥi‖1 ≤ δ ,

δ
(
‖Hi− Ĥi‖1− δ

2

)
, otherwise

Finally, Ẑ are clustered using the DBSCAN algorithm for outlier detection as presented in

Section 2.2

2.2. DBSCAN Technique

The results of Equation (8) are clustered to detect outliers using DBSCAN [6]. The DBSCAN

detects its neighbourhood Nε(ẑt) within a radius ε and further determines if it is a core point,

border point or an outlier. The DBSCAN application procedure is carried out by first determin-

ing two parameters, ε and MinPts. The ε is maximum distance between two points to consider

them as neighbours, whereas MinPts is minimum number of points required to form a cluster,

for a point to be a core, border point, or an outlier. The desired ε is determined using k-distance
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graph. This is an effective technique used in estimating the ideal ε for clustering. Thus, the

k-graph enhances the efficacy of the DBSCAN, facilitating accurate parameter selection and

superior clustering quality [13]. Finally, it helps in obtaining the best parameters to detect suf-

ficient number of outliers. In the graph, mostly, the best ε for fine-tuning to obtain desired

results is selecting a value around the elbow point. Furthermore, MinPts is determined based

on dimensionality of the data, defined as

(12) MinPts ≥ 2(p+1)

After determining ε and MinPts, clusters are formed and points not belonging to any of the

clusters are referred to as noise (outliers). The procedure is as follows

(1) Calculate the Euclidean distance between two points ẑi and ẑ j in a p-dimensional space

as:

(13) dist(ẑi, ẑ j) =

√√√√ p

∑
i, j=1

(ẑi− ẑ j)2

where i, j = 1, 2, 3, . . . , p but i 6= j, dist(ẑi, ẑ j) is the Euclidean distance between

points at time i and time j, ẑi is the value of the ith feature at t, ẑ j is the value of the jth

feature at t, and p is the dimensional space.

(2) A point M is core point if the number of points within the distance ε of M is at least

MinPts. M is a single component categorized as noise. To identify core points, further

define

(14) Core Point =


True, if |{ẑ ∈ D : dist(ẑi, ẑ j)≤ ε}| ≥MinPts

False, otherwise

(3) A point M is a border point if it is not a core point but it is in the neighbourhood of a

core point.

(4) Finally, in detecting outliers, the DBSCAN technique forms clusters by

(i) For each core point not assigned to a cluster, a new cluster is created, and the core

points and all points within ε are added. The cluster is expanded by adding all

reachable points within ε .

(ii) Clusters are denoted as Ck, where, k is the number of clusters formed.
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(iii) For each cluster Ck, the centroid, µk, is estimated as the mean of the feature vectors

of the points in the cluster formed.

(iv) The distance, dist(M,µk) between each point M and the centroid, µk, of its cluster

Ck is estimated.

(v) Finally, a threshold, τ , is defined to classify a point as outlier if;

(15) dist(M,µk)> τ

2.3. Hybrid DNN-DBSCAN Technique

The combination of the DNN model and DBSCAN technique leverage the strengths of both

methods. In the DNN-DBSCAN framework, the DNN model extracted robust features of the

data, encoding the data in a low-dimensional space where clusters and outliers are more eas-

ily distinguishable [14]. The encoded features are passed to the DBSCAN technique, which

clusters and isolates outliers based on density features [15]. By combining DNN modeling

technique with DBSCAN technique to detect outliers, improvement in precision and recall of

outlier detection is achieved. Some performance metrics of the hybrid technique are presented

in Section 2.4.

2.4. Performance Metrics of Hybrid DNN-DBSCAN Technique

The following accuracy measures are used: Silhouette Coefficient [16], Davies-Bouldin Index

[17], Calinski-Harabasz Index [18], Outlier Point Ratio [13], Precision, Recall and F1-Score

[19, 20, 21], qualitative validation techniques with Principal Component Analysis and heat

map, and finally, stability under parameter variation [13, 22, 23]. These are used to evaluate

quality of clustering:

2.4.1. Silhouette Coefficient

The Silhouette Coefficient (S(i)) measures the similarity of a data point to its given cluster in

relation to others [16]. The formula for S(i) for a data point i is defined as

(16) S(i) =
[

b(i)−a(i)
max(a(i),b(i))

]
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where a(i) is the average distance between i and all points in the same cluster (intra-cluster

distance or cohesion) and b(i) is the (inter-cluster separation). S(i) ranges from -1 to 1, with 1

indicating perfect clustering, 0 suggesting overlapping clusters, and negative indicating wrong

clustering.

2.4.2. Davies-Bouldin Index

The Davies-Bouldin Index (DBI) evaluates the ratio of within-cluster dispersion to the separa-

tion between clusters [17]. It is estimated as

(17) DBI =

[
1
k

(
k

∑
i=1

max
i 6= j

si + s j

di j

)]
where si is the average distance of points in cluster i from its centroid, and di j is the distance

between centroids of clusters i and j. DBI ranges from 0 to ∞ with lower values (preferably, at

most 2) indicating better clustering. Zero is ideal, representing perfectly separated and cohesive

cluster formation.

2.4.3. Calinski-Harabasz Index

The Calinski-Harabasz Index (CHI), also called the variance ratio criterion, measures ratio of

between-cluster dispersion to within-cluster dispersion [18], defined as

(18) CHI =
[(

Tr(Bk)

Tr(Wk)

)
×
(

N− k
k−1

)]
where Tr(Bk) is between-cluster scatter matrix trace, Tr(Wk) is within-cluster scatter matrix

trace, N is number of data points and k is number of clusters. Higher values above 100 indicate

better-defined clusters. A value greater than or equal to 100 indicates strong clustering perfor-

mance, between 50 and 100 suggests an acceptable or moderate clustering performance, and

a value less than or equal to 50 indicates poor clustering performance with significant cluster

overlaps.
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2.4.4. Outlier Point Ratio (DBSCAN-specific)

This refers to the percentage of data points the DNN-DBSCAN and traditional DBSCAN tech-

niques detect as outliers in relation to the entire dataset. The conservativeness of the clustering

is measured by this DBSCAN-specific metric [6]. This ratio aids in evaluating the algorithm’s

aggressiveness in detecting outliers [13]. Values too high may indicate oversensitivity, and too

low may miss real outliers. The estimation formula is

(19) Noise Point Ratio =

(
Number of points labeled as outliers [-1]

Total number of points

)

2.4.5. Precision, Recall and F1-Score

Precision is the ratio of correctly detected outliers to all points detected as outliers [21]. It is

estimated as

(20) Precision =

(
T P

T P+FP

)
where, TP is True Positives, data points correctly detected as outliers and FN is False Positives

which are data points incorrectly flagged as outliers. Furthermore, Recall refers to the ratio

of correctly detected outliers to all actual outliers. It measures the completeness of outlier

detection [20]. It is applied in situations where missing outliers have severe consequences. It is

estimated as

(21) Recall =
(

T P
T P+FN

)
where, FN represents False Negatives which are true outliers missed by the model. The F1-

Score is the harmonic mean of precision and recall which provides a value that balances preci-

sion and recall, and particularly useful with imbalanced data (common in outlier detection). It

is preferred over accuracy when class distribution is skewed, such as containing outliers [19],

estimated as

(22) F1-Score = 2×
(

Precision×Recall
Precision+Recall

)
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2.4.6. Qualitative Validation Techiques

Performance measures such as the heat map, which shows the deviation of detected outliers

from normal patterns, and plot of clusters with Principal Component Analysis (PCA) for di-

mensionality reduction are used to shed light on the effectiveness of the hybrid technique

[13, 22, 23].

2.4.7. Stability Under Parameter Variation

This refers to the consistency of results when parameters (ε and MinPts) are varied within

reasonable bounds. It estimates the variance in performance measures across parameter com-

binations, and critical for DBSCAN as it is sensitive to parameter choices [22]. The stability

indicates the robustness of the technique [23]. This is also particularly important in unsuper-

vised settings where parameters may not be easily tuned [13], as in the current study.

3. MAIN RESULTS

The summary results and discussion are presented in this section. Observations on five vari-

ables are simulated from normal distribution. The aim is to check the ability of the hybrid

DNN-DBSCAN technique to detect outliers. There are 5 variables, (X1,X2,X3,X4,X5), with

61,440 observations generated. Each variable is assumed to be normally distributed. (multivari-

ate normal distribution). A random seed of 42 is set to ensure reproducibility. Therefore, the

generated matrix has a shape of (61440 by 5). The data is arranged into a MTS format such that

FIGURE 2. MTS Observations on 5 Variables (With and Without Outliers)
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each row in the data matrix represents a time step, each column represents a distinct variable.

Since the data are purely random from a multivariate normal distribution, white noise behaviour

is observed. The data are visualized with plots of the time series (Figure 2). Specifically, the left

panel refers to (data without outliers). In addition, 4,000 outliers are introduced into the data.

This forms about 6.5% of the data being outliers. This is because by statistical convention, 5%

outliers in the data are acceptable while above this threshold are unacceptable [24, 25]. The

outliers introduced are visualized with a plot of the time series. Specifically, the right panel

refers to (data with outliers). The aim of introducing such outliers is to check the ability of the

new hybrid DNN-DBSCAN technique to detect them, together with others (if they are available

in the data). Finally, the results are summarized and a discussion is presented. The extraction of

features of the data is carried out with the DNN model based on Equations (1) to (15), and then

the DBSCAN technique is used in detection of outliers. Thus, the hybrid technique is applied

to the results of Equation (8). Next, the performance of the hybrid and traditional techniques

are compared. However, in applying the DBSCAN technique, the first step is to determine the

parameters of the technique, namely, ε and MinPts. These are presented in Sections 3.1 and

3.2.

3.1. Determination of Radius Parameter

Figure 3 illustrates the k-distance graphs, where the left panel is constructed on the basis of the

feature extracted data, and the right panel is based on the non-feature extracted data (sorted by

distance).

FIGURE 3. k-distance graphs for ε
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These two graphs suggest the best ε values for fine-tuning to obtain the desired clustering

results in the application of both techniques [13]. Specifically, values around the elbow point

of the graphs are preferred. Following convention, a series of values ε are selected around the

elbow points (Table 1) to arrive at the optimal value. In Table 1, it is observed that the best

results for the detected outliers and performance measures are found at ε = 0.75. This is used as

the ε value for optimal clustering and outlier detection. Next is the determination of Minimum

Points, referred to as MinPts. This is presented in Section 3.2.

3.2. Determination of MinPts Parameter

From the MTS data, the number of variables (p) is 5 and by Equation (12), the MinPts is

(23) MinPts ≥ 2(p + 1) ≥ 2(5 + 1) ≥ 12

Thus, the selected MinPts must be at least 12. To ensure that the best MinPts is selected, series

of MinPts are conventionally used in conjunction with the series of ε values. Therefore, the

best value selected is MinPts = 12. Thus, using MinPts = 12 and (ε) = 0.75, outliers detected

are presented in Table 1. The detection of outliers using these two parameters are presented in

Section 3.3.

3.3. Outliers Detection

As stated earlier, series of ε and MinPts values are tried to ensure the best parameter values

are selected and used for optimal clustering and efficient detection of outliers. The same set of

parameters are used in the application of the two techniques, namely, hybrid DNN-DBSCAN

and traditional DBSCAN techniques. Figure 4 shows the indices at which outliers are detected

across all the 5 variables. In particular, Figure 4 shows the superposition of the indices at which

outliers are detected across the 5 variables, as well as for individual variables. Furthermore,

Figure 4 indicates the indices at which outliers are detected for all variables superimposed

on the same panel (top left corner). Furthermore, the other five images give the indices at

which outliers are detected in all the other variables. These outliers are detected by the hybrid

technique.
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FIGURE 4. Indices of Detected Outliers (Hybrid Technique)

Similarly, Figure 5 shows the superposition of the indices at which outliers are detected across

the five variables, as well as for individual variables. Specifically, Figure 5 indicates the indices

at which outliers are detected for all variables superimposed on the same panel (top left corner).

Furthermore, the other 5 images give the indices at which outliers are detected in all other

variables. These outliers are detected from the application of the traditional technique. The

number of outliers detected when the hybrid technique is applied is seen to be slightly higher

than those detected using the DBSCAN technique (4037 versus 3977). The hybrid technique

behaves well in terms of the metrics that describe the goodness of fit of the clusters and detected

outliers. This is attributed to the effectiveness of the combination of the DNN model for feature

extraction and DBSCAN technique for clustering. Thus, the hybrid technique has contributed

much more in detecting influential outliers relative to the DBSCAN technique. Therefore, the

specific performance of the two techniques in terms of ability to perfectly cluster and detect
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FIGURE 5. Indices of Detected Outliers (DBSCAN Technique)

outliers, and particular one performing much better relatively, is presented in Section 3.4, Tables

1 and 2, and Figures 6 and 7.

3.4. Performance of Hybrid DNN-DBSCAN Technique

The performance of the hybrid DNN-DBSCAN technique is evaluated in relation to one of its

variants, the traditional DBSCAN technique. The cluster evaluation and performance metrics

in (16) to (22), together with other measures such as the heat map, plot of the clusters with PCA

for dimensionality reduction, are used. These results are in Table 1 and Figures 6 and 7. Table

1 provides information on the number of outliers detected and performance measures for both

techniques. On all 5 variables, the number of outliers detected and performance of the cluster-

ing techniques are presented. For example, using the same selected parameters (ε =0.75 and

MinPts=12), as suggested by the hybrid technique detected 4025 outliers while the DBSCAN
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TABLE 1. Performance Comparison of DNN-DBSCAN and DBSCAN Techniques

Hybrid DNN-DBSCAN Technique Parameters DBSCAN Technique

Outliers S(i) DBI CHI ε MinPts Outliers S(i) DBI CHI

27872 −0.44 1.66 228.62 12 14756 −0.10 43.05 2.94
29189 −0.43 1.62 260.53 13 15408 0.03 56.80 3.58
30429 −0.43 1.63 312.17 0.25 14 16032 0.02 57.60 4.41
31677 −0.44 1.63 259.30 15 16699 0.34 81.92 4.83

4840 0.81 0.88 69952.18 12 4140 0.75 55.03 17.50
4892 0.81 0.89 68687.59 13 4146 0.75 54.66 17.73
4931 0.81 0.89 67753.06 0.50 14 4159 0.75 54.89 17.55
4987 0.81 0.90 66469.06 15 4163 0.74 54.76 17.63

4025 0.85 0.75 95000.90 12* 3977 0.75 55.11 17.73
4027 0.85 0.75 94958.56 13 3977 0.75 55.11 17.73
4031 0.85 0.75 94821.67 0.75* 14 3977 0.75 55.11 17.73
4037 0.85 0.75 94650.89 15 3977 0.75 55.11 17.73

3970 0.85 0.74 98345.57 12 3960 0.75 55.76 17.34
3970 0.85 0.74 98345.57 12 3960 0.75 55.76 17.34
3970 0.85 0.74 98345.57 1.00 12 3960 0.75 55.76 17.34
3970 0.85 0.74 98345.57 12 3960 0.75 55.76 17.34

3970 0.85 0.74 98345.57 12 3933 0.76 56.35 17.00
3970 0.85 0.74 98345.57 13 3933 0.76 56.35 17.00
3970 0.85 0.74 98345.57 1.25 14 3933 0.76 56.35 17.00
3970 0.85 0.74 98345.57 15 3933 0.76 56.35 17.00

3958 0.85 0.74 98787.46 12 3885 0.76 55.39 17.62
3958 0.85 0.74 98787.46 13 3885 0.76 55.39 17.62
3958 0.85 0.74 98787.46 1.50 14 3885 0.76 55.39 17.62
3958 0.85 0.74 98787.46 15 3885 0.76 55.39 17.62

3915 0.85 0.74 98505.22 12 0 0 0 0
3915 0.85 0.74 98505.22 13 0 0 0 0
3915 0.85 0.74 98505.22 1.75 14 0 0 0 0
3915 0.85 0.74 98505.22 15 0 0 0 0

3928 0.85 0.74 100036.29 12 0 0 0 0
3928 0.85 0.74 100036.29 13 0 0 0 0
3928 0.85 0.74 100036.29 2.00 14 0 0 0 0
3928 0.85 0.74 100036.29 15 0 0 0 0

Note: Best performing configurations are in asterisks (∗)
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technique detected 3977 outliers. This is attributable to the efficiency of the hybrid technique

in terms of the ability to detect outliers. The number of outliers detected and performance

metrics improved significantly to the required range of acceptance (Sections 2.4.1 to 2.4.7), as

recommended by [16, 17, 18]. This is attributed to the effectiveness and efficiency of the hybrid

technique in detecting influential outliers. Likewise, the effectiveness of the hybrid technique

lies in the fact that in Table 1, even after MinPts = 12 and ε = 1.50, it continues to detect outliers

even though the numbers decrease to some extent. However, the traditional technique does not

detect any further outliers at these same parameter values and beyond. Specifically, the hybrid

technique is effective because of its better clustering metrics in relation to the traditional tech-

nique. That is, S(i) = 0.85 against 0.75, indicating that the hybrid technique clusters are more

distinct, DBI = 0.75 against 55.11, implying the hybrid technique has much better separation,

and CHI = 96702.64 against 17.73, indicating that the hybrid technique finds much stronger

clusters relative to the traditional technique.

Furthermore, in terms of stability with respect to outlier detection [13, 23], the outlier counts

of the hybrid technique stabilize at epsilon greater than or equal to 0.75. That of the traditional

technique however, varies more with MinPts. Finally, the hybrid technique maintains high

performance across MinPts while the traditional technique degrades quickly with small values

of ε . The stability of the number of outliers detected and performance metrics indicate the

robustness of the hybrid technique [23]. This is particularly important in unsupervised settings

where parameters may not be easily tuned [13], as in the case of the current study, where the

unsupervised learning technique is used in extracted feature of the data before clustering to

detect outliers through the DBSCAN technique. Therefore, it is clear that the optimal outlier

detection would be obtained at ε values not exceeding 1.50. It is observed that up to this value

of ε = 0.75, the optimal detection is obtained at MinPts = 12, since they are associated with

the best performance metrics. Thus, the optimal detection is obtained at the pair of parameter

values of ε = 0.75 and MinPts = 12 based on the hybrid technique.

Moreover, the proportion of points detected as outliers by the hybrid, and DBSCAN tech-

niques relative to the total data are estimated using Equation (19). For the hybrid technique,

6.57% of the entire data points are detected as outliers while that for the traditional technique
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is 6.47%. These proportions fall within the acceptable range for outliers to have significant

effects on parameter estimations in any modeling [24, 25]. This shows an improvement in per-

formance of the metrics. Although the proportions appear the same, the performance metrics

stated otherwise, with the hybrid technique showing much more improvement.

Further, Table 2 presents the performance metrics comparing the DNN-DBSCAN hybrid

technique with the traditional DBSCAN technique for outlier detection. The precision (real

detected outliers), recall (ability to find actual outliers) and F1-Score (balancing precision and

recall) of the techniques are presented using Equations (20) to (22). The hybrid technique

achieves high Precision and shows much better performance on all metrics. The higher Recall

TABLE 2. Precisions, Recalls and F1-Scores

Performance Metrics Hybrid DNN-DBSCAN Technique DBSCAN Technique

True Positives 4025.00 3977.00

False Negatives 0.00 23.00

False Positives 25.00 0.00

Precision (%) 99.38 100.00

Recall (%) 100.00 99.43

F1-Score (%) 99.39 99.71

indicates that it misses none of the outliers introduced. The F1-Score reflects a better balance

between precision and recall. The hybrid technique is deemed effective because it has caught

all possible outliers (100% Recall). This is because the primary aim is to ensure no outlier is

missed, making the hybrid technique the better choice.

Additionally, the degree of deviation of the detected outliers from normal patterns is pre-

sented in Figure 6. The heat Map shows the variables and observations that significantly deviate

from expected patterns. The outlier indices axis corresponds to the specific data points classi-

fied as outliers, whereas the variable axis denotes the 5 variables. According to the scale, the

blue colour indicates negative deviations from normal patterns while the red represents positive

deviations. The degree of divergence from normal pattern is indicated by colour intensity. Vari-

ables, X1, X3, and X4 show significant deviations, suggesting potential systemic outliers in these
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FIGURE 6. Heat Map (Hybrid Technique)

variables. Also, X2 and X5 demonstrate reduced variances compared to the others. Observations

concentrate on specific index ranges, indicating that some periods or events are prone to unusual

patterns across all or particular variables. The results indicate that the combination of DNN and

DBSCAN techniques is effective and efficient in detecting outliers. Figure 6 further highlights

the contributions of specific variables to the overall variation, showing the concentration on

variables or time intervals prone to anomalies. This visualization enables further analysis or

corrective actions.

Finally, plots of the PCA-formed clusters for dimensionality reduction is shown in Figure 7.

The hybrid technique distinctly defines outliers, primarily situated outside the main triangular

data cluster. The data distribution has a clear triangular configuration, with dense area accu-

rately designated as clusters. The traditional technique also detects some outliers, but appears

less defined in terms of the clusters detected by the technique [23]. However, the more circu-

lar and homogeneous clusters (right hand side and bottom panels) suggest that the traditional

DBSCAN technique might have encountered difficulties in capturing the high-dimensionality

or complex nature of the non-feature extracted data. It is observed that differentiation between

clusters and outliers appear to be challenging for the traditional DBSCAN technique, leading to

the neglect of influential outliers. The hybrid technique, thus, markedly improves data represen-

tation and the accuracy of influential outlier detection (clear triangular configuration). Hence,

the hybrid technique is much more effective in detecting outliers compared to the traditional



20 ASAMOAH, WAITITU, NKANSAH, OMARI

FIGURE 7. Cluster Plot With Outliers (Both Techniques Compared)

DBSCAN technique. This highlights the need for integrating advanced feature extraction with

clustering techniques to enhance accuracy and interpretability. These results are congruent with

the findings in literature [3, 26, 8, 27, 10, 13, 23].

4. CONCLUSIONS

The paper has integrated the DNN and traditional DBSCAN techniques to achieve a high

performance in detecting outliers. This is accomplished by making optimal use of the qualities

of each of the techniques. Precisely, the DNN modeling technique (Autoencoders) extracted

robust features from the data and encoded it into a space with few dimensions. The fact that

the DNN model technique makes it possible to differentiate between clusters and outliers to a

large extent is a key advantage. Also, the hybrid technique clusters the encoded features and

consequently detect outliers that may be present in the data. Both the accuracy and the recall

of outlier detection process has been been improved as a consequence of the combination of

the two techniques. Consequently, domains such as predictive maintenance, fraud detection,

and environmental monitoring may significantly benefit from the hybrid DNN-DBSCAN tech-

nique. The hybrid technique could be verified on a variety of MTS data across different domains

(financial markets, healthcare, and climate) to ascertain its generalisability and robustness. Ad-

ditionally, exploration could be made on various topologies of the deep neural networks (such

as depth, neuron count, and activation functions) to determine the optimal configurations for

feature selection based on the hybrid technique.
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Neuhold (Eds.), Future Data and Security Engineering, Springer, Cham, 2016: pp. 141–152. https://doi.org/

10.1007/978-3-319-48057-2 9.

[5] D.T. Kieu, A. Kepic, Integration of Borehole Data in Geophysical Inversion Using Fuzzy Clustering, ASEG

Ext. Abstr. 2018 (2018), 1–6. https://doi.org/10.1071/aseg2018abp083.

[6] M. Ester, H.P. Kriegel, J. Sander, X. Xu, A Density-Based Algorithm for Discovering Clusters in Large Spa-

tial Databases With Noise, in: Proceedings of the Second International Conference on Knowledge Discovery

and Data Mining, AAAI Press, pp. 226–231, 1996.

[7] W. Xu, Y. Zhang, X. Tang, Parallelizing DNN Training on GPUs: Challenges and Opportunities, in:

Companion Proceedings of the Web Conference 2021, ACM, New York, NY, USA, 2021, pp. 174-178.

https://doi.org/10.1145/3442442.3452055.

[8] Z. Jiao, P. Hu, H. Xu, Q. Wang, Machine Learning and Deep Learning in Chemical Health and Safety: A

Systematic Review of Techniques and Applications, ACS Chem. Health Saf. 27 (2020), 316–334. https:

//doi.org/10.1021/acs.chas.0c00075.

[9] J. Brownlee, Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs

in Python, Machine Learning Mastery, 2018.

https://doi.org/10.1016/j.electacta.2023.142661
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.eswa.2021.116212
https://doi.org/10.1007/978-3-319-48057-2_9
https://doi.org/10.1007/978-3-319-48057-2_9
https://doi.org/10.1071/aseg2018abp083
https://doi.org/10.1145/3442442.3452055
https://doi.org/10.1021/acs.chas.0c00075
https://doi.org/10.1021/acs.chas.0c00075


22 ASAMOAH, WAITITU, NKANSAH, OMARI

[10] F. Cheng, J. Zhang, Z. Li, M. Tang, Double Distribution Support Vector Machine, Pattern Recognit. Lett. 88

(2017), 20–25. https://doi.org/10.1016/j.patrec.2017.01.010.

[11] V. Nair, G.E. Hinton, Rectified Linear Units Improve Restricted Boltzmann Machines, in: Proceedings of the

27th International Conference on Machine Learning, Omnipress, pp. 807–814, 2010.

[12] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, Cambridge, MA, 2016.

[13] E. Schubert, J. Sander, M. Ester, H.P. Kriegel, X. Xu, DBSCAN Revisited, Revisited: Why and How You

Should (Still) Use DBSCAN, ACM Trans. Database Syst. 42 (2017), 1–21. https://doi.org/10.1145/3068335.

[14] S. Siddiqui, M. Arifeen, A. Hopgood, A. Good, A. Gegov, et al., Deep Learning Models for the Diagnosis

and Screening of COVID-19: A Systematic Review, SN Comput. Sci. 3 (2022), 397. https://doi.org/10.1007/

s42979-022-01326-3.

[15] S. Chaudhary, A. Jatain, Performance Evaluation of Clustering Techniques in Test Case Prioritization, in:

2020 International Conference on Computational Performance Evaluation (ComPE), IEEE, 2020, pp. 699-

703. https://doi.org/10.1109/compe49325.2020.9200083.

[16] P.J. Rousseeuw, Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis, J.

Comput. Appl. Math. 20 (1987), 53–65. https://doi.org/10.1016/0377-0427(87)90125-7.

[17] D.L. Davies, D.W. Bouldin, A Cluster Separation Measure, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1

(1979), 224–227. https://doi.org/10.1109/tpami.1979.4766909.

[18] T. Calinski, J. Harabasz, A Dendrite Method for Cluster Analysis, Commun. Stat. - Simul. Comput. 3 (1974),

1–27. https://doi.org/10.1080/03610917408548446.

[19] D.M.W. Powers, Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and

Correlation, arXiv:2010.16061 (2020). https://doi.org/10.48550/ARXIV.2010.16061.

[20] C.C. Aggarwal, Outlier Analysis, Springer, (2017).

[21] J. Davis, M. Goadrich, The Relationship Between Precision-Recall and ROC Curves, in: Proceedings of the

23rd international conference on Machine learning - ICML ’06, ACM Press, New York, New York, USA,

2006, pp. 233-240. https://doi.org/10.1145/1143844.1143874.

[22] R.J.G.B. Campello, D. Moulavi, A. Zimek, J. Sander, Hierarchical Density Estimates for Data Clustering,

Visualization, and Outlier Detection, ACM Trans. Knowl. Discov. Data 10 (2015), 1–51. https://doi.org/10.1

145/2733381.

[23] C. Hennig, Cluster-Wise Assessment of Cluster Stability, Comput. Stat. Data Anal. 52 (2007), 258–271.

https://doi.org/10.1016/j.csda.2006.11.025.

[24] F.R. Hampel, The Influence Curve and Its Role in Robust Estimation, J. Am. Stat. Assoc. 69 (1974), 383–393.

https://doi.org/10.1080/01621459.1974.10482962.

[25] J.W. Tukey, A Survey of Sampling From Contaminated Distributions, in: I. Olkin, et al. (Eds.), Contributions

to Probability and Statistics, Stanford University Press, pp. 448–485, 1960.

https://doi.org/10.1016/j.patrec.2017.01.010
https://doi.org/10.1145/3068335
https://doi.org/10.1007/s42979-022-01326-3
https://doi.org/10.1007/s42979-022-01326-3
https://doi.org/10.1109/compe49325.2020.9200083
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1109/tpami.1979.4766909
https://doi.org/10.1080/03610917408548446
https://doi.org/10.48550/ARXIV.2010.16061
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/2733381
https://doi.org/10.1145/2733381
https://doi.org/10.1016/j.csda.2006.11.025
https://doi.org/10.1080/01621459.1974.10482962


OUTLIER DETECTION IN MULTIVARIATE TIME SERIES 23

[26] X. Lu, J. Wang, Y. Yan, L. Zhou, W. Ma, Estimating Hourly PM2.5 Concentrations Using Himawari-8 AOD

and a Dbscan-Modified Deep Learning Model Over the YRDUA, China, Atmospheric Pollut. Res. 12 (2021),

183–192. https://doi.org/10.1016/j.apr.2020.10.020.

[27] H. Liu, Y. Liu, Z. Qin, R. Zhang, Z. Zhang, et al., A Novel DBSCAN Clustering Algorithm via Edge

Computing-Based Deep Neural Network Model for Targeted Poverty Alleviation Big Data, Wirel. Commun.

Mob. Comput. 2021 (2021), 5536579. https://doi.org/10.1155/2021/5536579.

https://doi.org/10.1016/j.apr.2020.10.020
https://doi.org/10.1155/2021/5536579

	1. Introduction
	2. Methods
	2.1. DNN Modeling Technique
	2.2. DBSCAN Technique
	2.3. Hybrid DNN-DBSCAN Technique
	2.4. Performance Metrics of Hybrid DNN-DBSCAN Technique

	3. Main Results
	3.1. Determination of Radius Parameter
	3.2. Determination of MinPts Parameter
	3.3. Outliers Detection
	3.4. Performance of Hybrid DNN-DBSCAN Technique

	4. Conclusions
	Acknowledgements
	Conflict of Interests
	References

