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Abstract: Early fault detection in rolling element bearings remains a challenging problem, particularly under 

unsupervised conditions where labeled fault data are unavailable. Incipient defects often generate weak impulsive 

vibration signatures that are easily masked by operational noise. This paper proposes a residual-based unsupervised 

fault detection method that integrates Independent Component Analysis (ICA) with a Long Short-Term Memory 

(LSTM) autoencoder. ICA is employed to decompose vibration signals into statistically independent components, 

enhancing fault-related impulsive features while suppressing redundant background vibration. An LSTM autoencoder 

is trained exclusively on healthy-condition data to learn normal temporal dynamics. Bearing anomalies are identified 

through reconstruction residuals, which quantify deviations from learned healthy behavior. Instead of fixed or heuristic 

thresholds, the decision boundary is determined via F1-score optimization, framing fault detection as a data-driven 

residual decision problem. The proposed approach is validated using the Case Western Reserve University (CWRU) 

bearing dataset under a 2 hp load condition, focusing on inner race faults. Experimental results demonstrate perfect 

fault recall and an ROC-AUC of 1.000, confirming the effectiveness of ICA-enhanced residual learning for early fault 



2 

PRIMAWATI, YANUAR, DEVIANTO, LAPISA, RIFELINO, MYORI, EFENDI, ROZI 

detection. The method is computationally efficient, interpretable, and suitable for practical predictive maintenance 

applications. 

Keywords: Bearing Fault Detection; Unsupervised Learning; Residual Analysis; Independent Component Analysis 

(ICA); LSTM Autoencoder; Vibration Monitoring. 

2020 AMS Subject Classification: 62M10. 

 

1. INTRODUCTION 

Rolling element bearings are critical components in rotating machinery such as electric motors, 

compressors, and industrial drive systems. Bearing degradation can lead to severe mechanical 

failures, unplanned downtime, and significant economic losses if not detected at an early stage 

[1,2]. Consequently, early fault detection has become a core objective in condition-based 

maintenance and predictive maintenance systems [3]. 

Recent studies have demonstrated that machine learning–based predictive maintenance can 

significantly improve fault detection performance and maintenance decision-making in industrial 

environments, including applications on legacy machinery with limited sensing infrastructure [4]. 

Building upon these advances, unsupervised learning approaches are increasingly explored to 

address scenarios where labeled fault data are unavailable.  

Vibration-based monitoring is one of the most effective techniques for bearing health assessment 

due to its high sensitivity to mechanical defects [5,6]. However, incipient bearing faults often 

generate low-amplitude impulsive vibration signatures that are easily masked by background noise 

and operational variability, making reliable detection particularly challenging [7].  

Traditional signal processing methods, including Fourier analysis, envelope detection, and 

wavelet-based approaches, have been widely applied for bearing fault diagnosis [8,9]. While 

effective under certain conditions, these methods may lose sensitivity when fault signatures are 

weak, non-stationary, or embedded in complex vibration environments [10].  

Data-driven approaches have emerged as promising alternatives to conventional diagnostic 

techniques. In particular, unsupervised learning methods are attractive for industrial applications 

where labeled fault data are scarce or unavailable [11]. Autoencoder-based models have been 

widely used for unsupervised anomaly detection by learning normal system behavior and 

identifying deviations through reconstruction error [12–13]. Nevertheless, when trained directly 

on raw vibration signals, autoencoders may struggle to capture fault-related features due to noise 

contamination and feature redundancy [14].  
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Hybrid approaches that integrate signal decomposition with deep learning have demonstrated 

improved detection performance by enhancing informative signal components prior to learning 

[15,16]. Among various decomposition techniques, Independent Component Analysis (ICA) is 

well suited for vibration analysis because it separates mixed signals into statistically independent 

sources using higher-order statistics, without relying on predefined basis functions [17]. When 

combined with temporal modeling using recurrent neural networks such as Long Short-Term 

Memory (LSTM), ICA has the potential to significantly improve sensitivity to early-stage bearing 

faults. 

Motivated by these considerations, this study proposes a hybrid ICA–LSTM autoencoder 

framework for unsupervised bearing fault detection. Unlike probabilistic or uncertainty-aware 

approaches, the proposed method focuses on deterministic reconstruction residuals as the primary 

diagnostic indicator. Fault detection is formulated as a residual-based decision problem, where the 

anomaly threshold is determined via F1-score optimization. This design emphasizes simplicity, 

interpretability, and practical deployability in industrial environments.  

The main contributions of this work are summarized as follows: 

1. A residual-driven unsupervised fault detection framework combining ICA and an LSTM 

autoencoder. 

2. Demonstration of ICA’s effectiveness in enhancing fault-related impulsive components for 

deep residual learning. 

3. A data-driven threshold selection strategy based on F1-score optimization. 

4. Comprehensive validation on the CWRU benchmark dataset for early inner race fault 

detection. 

 

2. PRELIMINARIES 

1. Independent Component Analysis (ICA) 

Independent Component Analysis (ICA) was applied to the windowed vibration signals to extract 

statistically independent source components. Given the observed signal matrix X, ICA assumes a 

linear mixing model: 

 X(t) = A S(t), where S represents the independent source signals and A is the mixing matrix. The 

independent components are estimated as: Ŝ(t) = W X(t). 

where W is the unmixing matrix. FastICA with log-cosh nonlinearity was employed to maximize 

non-Gaussianity. Four independent components were retained to balance interpretability and 
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computational efficiency. ICA was trained exclusively on normal-condition data to capture the 

baseline structure of healthy vibration behavior. 

2. Long Short-Term Memory (LSTM) Autoencoder 

An LSTM autoencoder was designed to model the temporal dynamics of the ICA components 

under normal operating conditions. The architecture consists of: 

• Encoder: LSTM layer with 64 units, followed by dropout (0.2) and a dense layer with 32 

units. 

• Latent representation: 16-dimensional feature vector. 

• Decoder: RepeatVector, LSTM layer with 64 units, and a TimeDistributed dense output 

layer. 

The network was trained using the Mean Squared Error (MSE) loss function and the Adam 

optimizer with a learning rate of 0.001. Early stopping was applied to prevent overfitting.  

 

3. RESIDUAL-BASED FAULT DETECTION 

After training, both normal and faulty data were passed through the autoencoder. The 

reconstruction residual for each window was computed as: 

𝑀𝑆𝐸 =  
1

𝑁
∑‖𝑥𝑖 − 𝑥̂𝑖‖2

𝑁

𝑖=1

 

where 𝑥𝑖 and 𝑥̂𝑖  denote the original and reconstructed signals, respectively. These residuals 

serve as anomaly scores, with larger values indicating stronger deviations from learned normal 

behavior. 

 

4. THRESHOLD SELECTION VIA F1-SCORE OPTIMIZATION 

Rather than using fixed thresholds, the anomaly detection threshold was determined by 

maximizing the F1-score over a validation set. This approach balances precision and recall, 

ensuring high fault sensitivity while controlling false alarms. The optimal threshold corresponds 

to the operating point with the highest F1-score. 

 

3. MAIN RESULTS 

The The performance of the proposed ICA-LSTM framework was evaluated using the CWRU 

dataset. 
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Figure 1. Boxplot of Normal and Inner race Fault Data 

 

Figure 1 shows a boxplot of the reconstruction error distributions for normal (97.mat) and inner 

race fault (105.mat) conditions. A clear separation is evident: normal data exhibit consistently low 

errors (mean ≈ 0.85), while fault data show significantly higher median error and numerous large 

outliers, confirming the model's ability to distinguish anomalous behavior.  

 

 

Figure 2. ICA Components 
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Figure 2 illustrates the four ICA components derived from the vibration signal. Notably, 

Component 2 and 3 display sharp impulsive peaks only under fault conditions, indicating 

successful isolation of fault-related transients from other vibration sources.  

For normal data (97.mat), the error is consistently low, while for fault data (105.mat), significant 

outliers are present, corresponding to instances where the model fails to reconstruct the signal due 

to the presence of fault-induced impulses. 

The ICA components successfully isolated the signal containing fault-induced impulses, 

particularly in the 2nd and 3rd components. The significant amplitude difference between the 

normal and fault conditions demonstrates the effectiveness of ICA as a feature extraction technique. 

 

 

Figure 3. Visual Reconstruction 

 

For the normal data, the original ICA component (blue) and the reconstructed one (dashed red) are 

very similar, indicating that the model successfully reconstructs the signal with high accuracy. In 

contrast, for the inner race fault data, there is a significant difference between the original and the 

reconstructed components. The original component exhibits sharp peaks, which are characteristic 

of fault-induced impulses, whereas the reconstructed component fails to reproduce these peaks, 

resulting in a very large reconstruction error. 

This visual difference demonstrates the effectiveness of the model in anomaly detection: the model 

can distinguish between normal and faulty conditions based on its ability to reconstruct the input 

signal. 
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Figure 4. Visualization After ICA 

 

The MSE: Data Normal graph shows that the reconstruction error for normal data is relatively 

stable and evenly distributed around the mean value, with no extremely high peaks. This indicates 

that the model successfully reconstructs the normal signal with high accuracy. 

In contrast, the MSE: Inner Race Fault graph shows several very high peaks, which provide strong 

evidence that the model fails to reconstruct signals containing fault-induced impulses. These peaks 

occur when the rolling elements pass over the damaged area, generating impulsive forces that 

trigger high vibrations. 

The histogram shows the distribution of errors for normal and faulty data. Most errors in the normal 

data fall within a low range, while errors in the faulty data are more widely spread, with some very 

large outliers. 

The ROC Curve shows an AUC of 1.0000, indicating that the model can perfectly distinguish 

between normal and faulty conditions. This demonstrates the effectiveness of the hybrid ICA-

LSTM approach in detecting anomalies with high accuracy. 
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Figure 5. Model Loss and Validation Loss 

 

The Model Loss over Epochs graph shows that the training loss decreases steadily, while the 

validation loss remains stable around 0.85. This indicates that the model does not suffer from 

overfitting and learns effectively on the training data. 

 

 

Figure 6. Confusion Matrix 
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The confusion matrix indicates that all 24 fault instances are correctly identified as anomalous, 

with no false negatives. However, there are 23 false positives among the normal instances, 

resulting in a precision of 0.5106. While this may seem suboptimal, it is acceptable in the context 

of early fault detection, where the primary goal is to avoid missing any potential faults. 

 

Figure 7. Performance Metrics vs Threshold 

 

The plot illustrates the trade-off between precision and recall as the threshold is varied. At low 

thresholds, precision (blue line) is high because only signals with very high reconstruction error 

are flagged as anomalous, minimizing false alarms. However, recall (green line) drops rapidly 

because many actual faults may have errors below the threshold, leading to missed detections. 

As the threshold increases, recall improves because more signals are classified as anomalous, but 

precision decreases due to an increase in false positives. The F1-score (red line), which balances 

both precision and recall, reaches its maximum value at a threshold of approximately 0.358152, 

marked by the dashed black line. This point represents the optimal operating point where the model 

achieves the best overall performance. 

This analysis confirms that selecting the threshold based on the F1-score is a principled approach 

to maximize detection accuracy while maintaining a reasonable balance between sensitivity and 

specificity. 
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Table 1. Comparative Analysis 

Method Fault Type Accuracy/AUC 

CNN + WPD [16]  99.3% 

EMD-LSTM [17] Inner Race ~98% 

VMD-SAE [18] Multiple 97.8% 

Proposed ICA-LSTM Inner Race (0.007” AUC = 1.0000 

 

As shown in Table 1, our method outperforms several state-of-the-art hybrid models on the same 

benchmark, particularly in terms of detection sensitivity (Recall = 1.0) and discriminative power 

(AUC = 1.0). While some supervised methods achieve high accuracy, they require labeled fault 

data—an impractical assumption in real-world scenarios. In contrast, our approach operates in a 

fully unsupervised manner, relying only on normal-state training.  

Furthermore, unlike wavelet- or EMD-based methods that rely on fixed basis functions or suffer 

from mode mixing, ICA provides statistically principled separation of fault impulses, enhancing 

the quality of features fed into the LSTM. This synergy explains the superior performance.  

The use of F1-score optimization for threshold selection adds practical value, offering a 

reproducible and objective way to deploy the model in industrial settings. As shown in Figure 9, 

the optimal threshold (0.358) strikes a balance between minimizing false negatives and managing 

false alarms. 

 

4. CONCLUSION 

This paper presented a residual-based unsupervised bearing fault detection framework integrating 

Independent Component Analysis and an LSTM autoencoder. By focusing on deterministic 

reconstruction residuals rather than probabilistic inference, the proposed method offers a simple, 

interpretable, and effective solution for early fault detection. Validation on the CWRU benchmark 

dataset demonstrated perfect recall and excellent classification performance for inner race fault 

detection. Future work will extend this framework to multi-fault scenarios, variable operating 

conditions, and real-time industrial deployment. Future work will extend this framework to multi-

sensor fusion, variable load conditions, and real-time implementation on edge devices for scalable 

predictive maintenance systems. 
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