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Abstract: Early fault detection in rolling element bearings remains a challenging problem, particularly under
unsupervised conditions where labeled fault data are unavailable. Incipient defects often generate weak impulsive
vibration signatures that are easily masked by operational noise. This paper proposes a residual-based unsupervised
fault detection method that integrates Independent Component Analysis (ICA) with a Long Short-Term Memory
(LSTM) autoencoder. ICA is employed to decompose vibration signals into statistically independent components,
enhancing fault-related impulsive features while suppressing redundant background vibration. An LSTM autoencoder
is trained exclusively on healthy-condition data to learn normal temporal dynamics. Bearing anomalies are identified
through reconstruction residuals, which quantify deviations from learned healthy behavior. Instead of fixed or heuristic
thresholds, the decision boundary is determined via F1-score optimization, framing fault detection as a data-driven
residual decision problem. The proposed approach is validated using the Case Western Reserve University (CWRU)
bearing dataset under a 2 hp load condition, focusing on inner race faults. Experimental results demonstrate perfect

fault recall and an ROC-AUC of 1.000, confirming the effectiveness of ICA-enhanced residual learning for early fault
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detection. The method is computationally efficient, interpretable, and suitable for practical predictive maintenance
applications.

Keywords: Bearing Fault Detection; Unsupervised Learning; Residual Analysis; Independent Component Analysis
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1. INTRODUCTION

Rolling element bearings are critical components in rotating machinery such as electric motors,
compressors, and industrial drive systems. Bearing degradation can lead to severe mechanical
failures, unplanned downtime, and significant economic losses if not detected at an early stage
[1,2]. Consequently, early fault detection has become a core objective in condition-based
maintenance and predictive maintenance systems [3].

Recent studies have demonstrated that machine learning—based predictive maintenance can
significantly improve fault detection performance and maintenance decision-making in industrial
environments, including applications on legacy machinery with limited sensing infrastructure [4].
Building upon these advances, unsupervised learning approaches are increasingly explored to
address scenarios where labeled fault data are unavailable.

Vibration-based monitoring is one of the most effective techniques for bearing health assessment
due to its high sensitivity to mechanical defects [5,6]. However, incipient bearing faults often
generate low-amplitude impulsive vibration signatures that are easily masked by background noise
and operational variability, making reliable detection particularly challenging [7].

Traditional signal processing methods, including Fourier analysis, envelope detection, and
wavelet-based approaches, have been widely applied for bearing fault diagnosis [8,9]. While
effective under certain conditions, these methods may lose sensitivity when fault signatures are
weak, non-stationary, or embedded in complex vibration environments [10].

Data-driven approaches have emerged as promising alternatives to conventional diagnostic
techniques. In particular, unsupervised learning methods are attractive for industrial applications
where labeled fault data are scarce or unavailable [11]. Autoencoder-based models have been
widely used for unsupervised anomaly detection by learning normal system behavior and
identifying deviations through reconstruction error [12—13]. Nevertheless, when trained directly
on raw vibration signals, autoencoders may struggle to capture fault-related features due to noise

contamination and feature redundancy [14].



RESIDUAL-BASED UNSUPERVISED BEARING FAULT DETECTION

Hybrid approaches that integrate signal decomposition with deep learning have demonstrated
improved detection performance by enhancing informative signal components prior to learning
[15,16]. Among various decomposition techniques, Independent Component Analysis (ICA) is
well suited for vibration analysis because it separates mixed signals into statistically independent
sources using higher-order statistics, without relying on predefined basis functions [17]. When
combined with temporal modeling using recurrent neural networks such as Long Short-Term
Memory (LSTM), ICA has the potential to significantly improve sensitivity to early-stage bearing
faults.
Motivated by these considerations, this study proposes a hybrid ICA-LSTM autoencoder
framework for unsupervised bearing fault detection. Unlike probabilistic or uncertainty-aware
approaches, the proposed method focuses on deterministic reconstruction residuals as the primary
diagnostic indicator. Fault detection is formulated as a residual-based decision problem, where the
anomaly threshold is determined via F1-score optimization. This design emphasizes simplicity,
interpretability, and practical deployability in industrial environments.
The main contributions of this work are summarized as follows:

1. A residual-driven unsupervised fault detection framework combining ICA and an LSTM

autoencoder.
2. Demonstration of ICA’s effectiveness in enhancing fault-related impulsive components for
deep residual learning.
3. A data-driven threshold selection strategy based on F1-score optimization.
4. Comprehensive validation on the CWRU benchmark dataset for early inner race fault

detection.

2. PRELIMINARIES
1. Independent Component Analysis (ICA)
Independent Component Analysis (ICA) was applied to the windowed vibration signals to extract
statistically independent source components. Given the observed signal matrix X, ICA assumes a
linear mixing model:

X(t) = A S(t), where S represents the independent source signals and A is the mixing matrix. The
independent components are estimated as: S(t) = W X(t).
where W is the unmixing matrix. FastICA with log-cosh nonlinearity was employed to maximize

non-Gaussianity. Four independent components were retained to balance interpretability and
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computational efficiency. ICA was trained exclusively on normal-condition data to capture the
baseline structure of healthy vibration behavior.
2. Long Short-Term Memory (LSTM) Autoencoder
An LSTM autoencoder was designed to model the temporal dynamics of the ICA components
under normal operating conditions. The architecture consists of:
e Encoder: LSTM layer with 64 units, followed by dropout (0.2) and a dense layer with 32
units.
o Latent representation: 16-dimensional feature vector.
o Decoder: RepeatVector, LSTM layer with 64 units, and a TimeDistributed dense output
layer.
The network was trained using the Mean Squared Error (MSE) loss function and the Adam

optimizer with a learning rate of 0.001. Early stopping was applied to prevent overfitting.

3. RESIDUAL-BASED FAULT DETECTION
After training, both normal and faulty data were passed through the autoencoder. The

reconstruction residual for each window was computed as:
N
1 s 112
MSE = NZHXL' — %l
1=

where x; and X; denote the original and reconstructed signals, respectively. These residuals
serve as anomaly scores, with larger values indicating stronger deviations from learned normal

behavior.

4. THRESHOLD SELECTION VIA F1-SCORE OPTIMIZATION

Rather than using fixed thresholds, the anomaly detection threshold was determined by
maximizing the Fl-score over a validation set. This approach balances precision and recall,
ensuring high fault sensitivity while controlling false alarms. The optimal threshold corresponds

to the operating point with the highest F1-score.

3. MAIN RESULTS
The The performance of the proposed ICA-LSTM framework was evaluated using the CWRU

dataset.
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Figure 1. Boxplot of Normal and Inner race Fault Data

Figure 1 shows a boxplot of the reconstruction error distributions for normal (97.mat) and inner
race fault (105.mat) conditions. A clear separation is evident: normal data exhibit consistently low

errors (mean ~ 0.85), while fault data show significantly higher median error and numerous large

outliers, confirming the model's ability to distinguish anomalous behavior.
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Figure 2. ICA Components
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Figure 2 illustrates the four ICA components derived from the vibration signal. Notably,
Component 2 and 3 display sharp impulsive peaks only under fault conditions, indicating
successful isolation of fault-related transients from other vibration sources.

For normal data (97.mat), the error is consistently low, while for fault data (105.mat), significant
outliers are present, corresponding to instances where the model fails to reconstruct the signal due
to the presence of fault-induced impulses.

The ICA components successfully isolated the signal containing fault-induced impulses,
particularly in the 2nd and 3rd components. The significant amplitude difference between the

normal and fault conditions demonstrates the effectiveness of ICA as a feature extraction technique.
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Figure 3. Visual Reconstruction

For the normal data, the original ICA component (blue) and the reconstructed one (dashed red) are
very similar, indicating that the model successfully reconstructs the signal with high accuracy. In
contrast, for the inner race fault data, there is a significant difference between the original and the
reconstructed components. The original component exhibits sharp peaks, which are characteristic
of fault-induced impulses, whereas the reconstructed component fails to reproduce these peaks,
resulting in a very large reconstruction error.

This visual difference demonstrates the effectiveness of the model in anomaly detection: the model
can distinguish between normal and faulty conditions based on its ability to reconstruct the input

signal.
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Figure 4. Visualization After ICA

The MSE: Data Normal graph shows that the reconstruction error for normal data is relatively
stable and evenly distributed around the mean value, with no extremely high peaks. This indicates
that the model successfully reconstructs the normal signal with high accuracy.

In contrast, the MSE: Inner Race Fault graph shows several very high peaks, which provide strong
evidence that the model fails to reconstruct signals containing fault-induced impulses. These peaks
occur when the rolling elements pass over the damaged area, generating impulsive forces that
trigger high vibrations.

The histogram shows the distribution of errors for normal and faulty data. Most errors in the normal
data fall within a low range, while errors in the faulty data are more widely spread, with some very
large outliers.

The ROC Curve shows an AUC of 1.0000, indicating that the model can perfectly distinguish
between normal and faulty conditions. This demonstrates the effectiveness of the hybrid ICA-

LSTM approach in detecting anomalies with high accuracy.
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Figure 5. Model Loss and Validation Loss

The Model Loss over Epochs graph shows that the training loss decreases steadily, while the

validation loss remains stable around 0.85. This indicates that the model does not suffer from

overfitting and learns effectively on the training data.
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The confusion matrix indicates that all 24 fault instances are correctly identified as anomalous,
with no false negatives. However, there are 23 false positives among the normal instances,
resulting in a precision of 0.5106. While this may seem suboptimal, it is acceptable in the context
of early fault detection, where the primary goal is to avoid missing any potential faults.
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Figure 7. Performance Metrics vs Threshold

The plot illustrates the trade-off between precision and recall as the threshold is varied. At low
thresholds, precision (blue line) is high because only signals with very high reconstruction error
are flagged as anomalous, minimizing false alarms. However, recall (green line) drops rapidly
because many actual faults may have errors below the threshold, leading to missed detections.

As the threshold increases, recall improves because more signals are classified as anomalous, but
precision decreases due to an increase in false positives. The F1-score (red line), which balances
both precision and recall, reaches its maximum value at a threshold of approximately 0.358152,
marked by the dashed black line. This point represents the optimal operating point where the model
achieves the best overall performance.

This analysis confirms that selecting the threshold based on the F1-score is a principled approach
to maximize detection accuracy while maintaining a reasonable balance between sensitivity and

specificity.
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Table 1. Comparative Analysis

Method Fault Type Accuracy/AUC
CNN + WPD [16] 99.3%
EMD-LSTM [17] Inner Race ~98%
VMD-SAE [18] Multiple 97.8%
Proposed ICA-LSTM Inner Race (0.007” AUC =1.0000

As shown in Table 1, our method outperforms several state-of-the-art hybrid models on the same
benchmark, particularly in terms of detection sensitivity (Recall = 1.0) and discriminative power
(AUC = 1.0). While some supervised methods achieve high accuracy, they require labeled fault
data—an impractical assumption in real-world scenarios. In contrast, our approach operates in a
fully unsupervised manner, relying only on normal-state training.

Furthermore, unlike wavelet- or EMD-based methods that rely on fixed basis functions or suffer
from mode mixing, ICA provides statistically principled separation of fault impulses, enhancing
the quality of features fed into the LSTM. This synergy explains the superior performance.

The use of Fl-score optimization for threshold selection adds practical value, offering a
reproducible and objective way to deploy the model in industrial settings. As shown in Figure 9,
the optimal threshold (0.358) strikes a balance between minimizing false negatives and managing

false alarms.

4. CONCLUSION

This paper presented a residual-based unsupervised bearing fault detection framework integrating
Independent Component Analysis and an LSTM autoencoder. By focusing on deterministic
reconstruction residuals rather than probabilistic inference, the proposed method offers a simple,
interpretable, and effective solution for early fault detection. Validation on the CWRU benchmark
dataset demonstrated perfect recall and excellent classification performance for inner race fault
detection. Future work will extend this framework to multi-fault scenarios, variable operating
conditions, and real-time industrial deployment. Future work will extend this framework to multi-
sensor fusion, variable load conditions, and real-time implementation on edge devices for scalable

predictive maintenance systems.
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