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Abstract: The treatment of cancer tumors varies based on cancer type, stage, location, and patient health. This 

research focuses on viral therapy, which employs viruses that target and eliminate malignant cells while sparing 

healthy ones. A stochastic model investigates suicidal viral tumor therapy, emphasizing the interaction between 

tumorous and non-tumorous cells. The study analyzes the stochastic dynamics and stability of the system's 

equilibrium points through stochastic differential equations. Key model factors affecting viral treatment outcomes are 

identified through bifurcation parameters and sensitivity analysis, validated by numerical simulation. 
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1. INTRODUCTION 

There has been a lot of interest in viruses as potential tumor-destroying agents since the late 1880s. 

Oncolytic virus history reveals that physicians have noted that some patients with cancer do 

experience remission following viral infection [1]. Therefore, the viral therapy method has 

received significant attention from researchers interested in studying cancer tumor treatments. 

The chief problem that the researchers sought to answer is how to undermine the ability of those 

viruses that cause the disease so that they convert appropriate as medicines. It turns out that 
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viruses can kill cancer patients' tumor tissues in the right circumstances. It has been discovered that 

tumor tissues sustain far more damage than normal host tissues.  

   The majority of these viruses were deemed unsafe for use in cancer treatment due to their 

pathogenicity. However, most viruses can have their pathogenicity removed without losing their 

oncolytic effectiveness thanks to adaptability and genetic engineering approaches [2]. 

A type of immunotherapy called oncolytic virotherapy uses certain viruses to target and infect 

tumor cells, causing them to proliferate and die. Viruses multiply inside infected tumor cells 

during this process, releasing more virion particles that can infect more tumor cells. Because the 

viruses utilized in this treatment can only replicate in cancer cells, healthy cells are largely 

unaffected.By infecting neighboring or distant tumor cells, the freshly released viruses from the 

lysed cells may initiate many cycles of infection. 

 Considerably work has recently been done to comprehend the molecular mechanics and 

dynamics of oncolytic virus cytotoxicity. These initiatives offered an intriguing potential 

substitute treatment strategy to aid in the recovery of cancer patients. 

However, the outcomes of virotherapy are complicatedly influenced by both the immune 

response and the virus-cancer interaction [3-7].  The majority of cancer treatments currently in 

use were created empirically [8]. 

 However, several mathematical models have recently been developed to describe the outcome of 

such interactions. [9–15]. Other models and techniques are being developed to study the dynamics 

of virotherapy [16–22].  

  This may not be the case, though, as it is obvious that local connections as well as the spatial 

component play a significant role in population expansion (see, for example, [12]). Several 

computational models of virotherapy were created with particular standard mathematical 

frameworks, like diffusion-reaction models and Lotka-Volterra models, which typically assume 

that populations are closely mixed. In general, there hasn't been any experimental evidence to 

support many of the modeling techniques used today. 

  This problem has been addressed by developing an in vitro computational model which may be 

explicit represent the relationships between viral and tumor populations [3,10]. They explored 

several important characteristics of oncolytic viruses using the computational model after 

informing the model parameters using in vitro 2D and 3D data. They demonstrated how adding a 

third dimension drastically changes the dynamics, which has substantial effects on how well 
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therapy works. Nevertheless, their research did not examine the model's mathematical and 

qualitative characteristics.   The qualitative characteristics of the model from [3,10] are 

examined in [23], in addition to the behavior of the solution and the stability of rest points. 

Significant features of the model make it intriguing from a mathematical and clinical standpoint. 

In [24], Under particular circumstances, the study's stochastic model for the growing of malignant 

cancers through targeted chemotherapy reveals a stable tumor-free equilibrium state. The paper 

provides a thorough mathematical analysis of the cancer-virus interaction by examining 

equilibrium points stability, sensitivity analysis, parameter impacts, and numerical simulations. 

The results are compared with previous research. 

  This is how the paper is structured. A comprehensive overview of random dynamical systems 

and stochastic differential equations is given in Section 2. Section 3 introduces the system of 

stochastic differential equations that describes our situation and establishes its parameters. Section 

4 shows the boundedness and positive invariance of the stochastic model. In Section 5, the 

stochastic model's long behavior is examined. Section 6 looks at the random attractors and stability 

analysis of the random dynamical system produced by the stochastic model. Section 7 displays the 

model's numerical simulations and sensitivity analysis. Finally, conclusions and remarks are 

offered in Sections 8 and 9. 

  

2. PRELIMINARIES  

  This section focuses on presenting some basic concepts related to stochastic differential 

equations and stochastic dynamic systems relevant to the research topic. 

   Let {𝔉𝑡}𝑡≥0  be a filtration of a complete probability space (Ω, 𝔉, ℙ) , and 𝔓(𝑡) =

(𝔓1(𝑡),… ,𝔓𝑚(𝑡))
𝑇, 𝑡 ≥ 0 be  an 𝑚 −dimensional Brownian motion  defined on (Ω, 𝔉, ℙ). 

Let 𝔣: ℜ𝑑 × [𝑡0, 𝑇] ⟶ ℜ𝑑  and 𝔤: ℜ𝑑 × [𝑡0, 𝑇] ⟶ ℜ𝑑×𝑚 be two Boral measurable functions. 

Let 

          𝑑𝓍(𝑡) = 𝔣(𝓍(𝑡), 𝑡)𝑑𝑡 + 𝔤(𝓍(𝑡), 𝑡)𝑑𝔅(𝑡) on 𝑡0 ≤ 𝑡 ≤ 𝑇                   (1) 

be the Ito  stochastic differential equation of  𝑑 − dimensional with initial value 𝓍(𝑡0) = 𝓍0, 

where 𝓍0: Ω ⟶ ℜ𝑑 be an 𝔉𝑡0_measurable with 𝔼|𝓍0|
2 < ∞.  Equation (1) is equivalent to 

the equation: 

            𝓍(𝑡) = 𝓍0 + ∫ 𝔣(𝓍(𝑠), 𝑠)𝑑𝑠 + ∫ 𝔤(𝑥(𝑠), 𝑠)𝑑𝔅(𝑠)
𝑡

𝑡0

𝑡

𝑡0
   on 𝑡0 ≤ 𝑡 ≤ 𝑇       (2) 
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For more detail see [25]. 

Definition 2.1 [25]: The solution of the equation (1) is the stochastic process {𝓍(𝑡)}𝑡0≤𝑡≤𝑇, 

where 𝓍(𝑡) ∈ ℜ𝑑 such that 

(a) {𝓍(𝑡)} is 𝔉𝑡- adapted and continuous; 

(b) {𝔣(𝓍(𝑡), 𝑡)} ∈ ℒ1([𝑡0, 𝑇]; ℜ
𝑑) and {𝔤(𝓍(𝑡), 𝑡)}  ∈ ℒ2([𝑡0, 𝑇]; ℜ

𝑑×𝑚); 

(c) equation (2) holds for every 𝑡 ∈ [𝑡0, 𝑇] with full measure. 

Remark 2.2 [25]: From (2), we have 

    𝓍(𝑡) = 𝓍(𝑠) + ∫ 𝔣(𝑥(𝑟), 𝑟)𝑑𝑟 + ∫ 𝔤(𝓍(𝑟), 𝑟)𝑑𝔅(𝑟)
𝑡

𝑠

𝑡

𝑠
 on 𝑠 ≤ 𝑡 ≤ 𝑇, 𝑠 ∈ [𝑡0, 𝑇]      (3) 

Definition 2.3 [26]: A collection of measurable actions {θt: Ω ⟶ Ω, t ∈ ℜ} is measurable 

dynamical system (MDS)  if every member in 𝔉 is ℙ −invariant. 

Definition 2.4 [26]: Consider the function  

𝜑:ℜ × Ω ×𝒳 ⟶ 𝒳, (𝑡, 𝜔, 𝓍) ⟼ 𝜑(𝑡, 𝜔, 𝓍) , 

 with the following axioms: 

(i) for every t ∈ ℜ and ω ∈ Ω the function  𝓍 ⟼  𝜑(𝑡, 𝜔, 𝓍) ≡ 𝜑(𝑡, 𝜔)𝓍 is continuous, 

(ii) the function 𝜑(𝑡, 𝜔):= 𝜑(𝑡, 𝜔,·) satisfy: 

𝜑(0,𝜔)𝓍 = 𝓍, 𝜑(𝑡 + 𝑠, 𝜔)𝓍 = 𝜑(𝑡, θs𝜔) ∘ 𝜑(𝑠, 𝜔)𝓍. 

Then the pair (𝜃, 𝜑) is called random dynamical system (RDS). 

Definition 2.5 [26]:  The RDS (𝜃, 𝜑) is said to be affine if 𝒳 is a linear Polish space and  

                  𝜑(𝑡, 𝜔)𝑥 = Φ(𝑡, 𝜔)𝑥 + 𝜓(𝑡, 𝜔)               (4) 

where Φ(𝑡, 𝜔) is a co-cycle over θ and the function 𝜓 ∶ ℜ × Ω ⟶ 𝒳  is a measurable. The 

RDS (𝜃, 𝜑) is called linear whenever 𝜓(𝑡, 𝜔) ≡ 0 and it is written by LRDS. If (𝜃,Φ) is a 

LRDS, then 𝜑 in (4) is corresponding to 

       𝜑(𝑡 + 𝑠, 𝜔) = Φ(𝑡, 𝜃𝑠𝜔)𝜓(𝑠, 𝜔) +  𝜓(𝑡, 𝜃𝑠𝜔), 𝑡, 𝑠 ≥  0                      (5) 

Definition 2.6 [26]: Let 𝒳 ≡ (𝒳, 𝒹) be a metric space. If the function 𝜓:Ω ⟶ ℜ, given by 

𝜓(𝜔) ≔ dist𝒳(𝓍, 𝒟(ω)), is measurable for each 𝓍, then a multifunction 𝒟: Ω ⟶ 2𝒳/{∅} is a 

random set. 𝒟  is considered closed (rep. compact, bounded) if 𝐷(𝜔)  is closed (compact, 

bounded) in 𝒳 for 𝜔. 

Definition 2.7 [26]: The random set 𝒟  is called tempered if there exist 𝓇:Ω ⟶ ℜ  and 𝓎 ∈

𝒳 with 𝒟(ω) ⊂ {𝓍: 𝒹(𝓍,𝓎) ≤ 𝓇(ω)} and  

       sup𝜏∈ℜ{𝑒
−𝛼|𝜏||𝓇(θτ𝜔 )|} < ∞    for every α > 0 and ω ∈ Ω.      (6) 
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Definition 2.8 [26]: A collection of closed random sets that are closed under inclusions called the 

universe of sets. 

Definition 2.9 [26]:  A member ℬ in the universe 𝔇 is said to be absorbing for (𝜃, 𝜑), if 

there is a 𝑡0(𝜔) with 𝜑(𝑡, 𝜃−𝑡𝜔)𝒟(𝜃−𝑡𝜔) ⊂ ℬ(𝜔) for all 𝑡 ≥ 𝑡0(𝜔), for all 𝒟 ∈ 𝔇 and 𝜔 ∈

Ω. 

Definition 2.10 [26]:  An RDS (𝜃, φ) is dissipative in 𝔇 if there exist a random variable 

𝓇(ω), 𝓍0 ∈ 𝒳 and absorbing set ℬ in 𝔇 such that ℬ(𝜔) containing in the random closed 

ball ℬ𝓇(𝜔)(𝑥0). 

Definition 2.11 [26]: A random equilibrium of (𝜃, 𝜑)  is a measurable function  u: Ω ⟼ 𝒳 

with 

                         𝜑(𝑡, 𝜔)𝑢(𝜔) = 𝑢(𝜃𝑡𝜔), 𝑡 ≥  0, ω ∈ Ω. 

Definition 2.12 [26]: The Lyapunov exponent for (𝜃, 𝜑) is the smallest number 𝜆 satisfy : 

                   𝜆(𝜔, 𝑥) ∶= lim
𝑡→+∞

1

𝑡
log  ‖𝜑(𝑡,𝜔)𝑥‖ , 𝜔 ∈ Ω∗, 𝑡 > 0                  (7) 

where ℙ(Ω∗) = 1. 

Proposition 2.13 [26]: Suppose that 𝔇 is a universe with the following properties: 

(i) {0} ∈ 𝔇, 

(ii) 𝜆𝒟(𝜔) ≔ {𝓍: 𝓍𝜆−1 ∈ 𝒟(𝜔)} ∈ 𝒟 for every 𝒟(𝜔) ∈ 𝔇 and 𝜆 > 0, 

(iii) 𝔇 containing an attracting compact random set ℬ0(𝜔) of asymptotically compact affine 

RDS (𝜃, φ).  

Then 𝑢(𝜔) ≔ lim
𝑡⟶+∞

𝜓(𝑡, 𝜃−𝑡𝜔)  exists (it is an equilibrium) and 𝑢(𝜔)  is globally 

asymptotically stable (GAS), that is,  

lim
𝑡⟶+∞

sup𝓋∈𝒟(𝜃−𝑡𝜔)‖𝜑(𝑡, 𝜃−𝑡𝜔)𝑣 − 𝑢(𝜔)‖ = 0, 𝒟 ∈ 𝔇. 

Proposition 2.14.[26] If  the LRDS (𝜃, Φ) admits a negative  top Lyapunov exponent 𝜆 as 

well as for every ω ∈ Ω  there is a tempered compact set ℬ0(ω)  with  

lim
t⟶∞

sup𝑏∈ℬ0(𝜔)‖𝜓(𝑡, 𝜃−𝑡𝜔) − 𝑏‖ = 0. Then  

𝑢(ω) ≔ lim
t⟶+∞

𝜓(𝑡, 𝜃−𝑡𝜔) ∈ ℬ0(𝜔), ω ∈ Ω
∗. 

Additionally, 𝑢(ω) is the  unique almost surely  equilibrium on Ω∗ and 

           lim
𝑡⟶+∞

{𝑒𝛾𝑡 sup𝑣∈𝒟(𝜃−𝑡𝜔)‖𝜑(𝑡, 𝜃−𝑡𝜔)𝑣 − 𝑢(𝜔)‖} = 0,  𝜔 ∈ Ω∗,            (8) 

where 𝒟 ⊂ 𝒳 is a tempered closed random set and 𝛾 < −𝜆. 
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Proposition 2.15 [25]: Consider the  SDE  

             𝑑𝓍 = (𝛼𝓍 + 𝛾)𝑑𝑡 + (𝛽𝓍 + 𝛿)𝑑𝔅, 𝓍(0) = 𝓍0          (9) 

where 𝔅 is a standard Brownian motion and 𝛼, 𝛽, 𝛾, and 𝛿 are real . The function  

  𝓍(𝑡, 𝜔) = ψ(t)(𝓍0 + (𝛾 − 𝛽𝛿) ∫
1

ψ(s)
𝑑𝑠 + 𝛿 ∫

1

ψ(s)
𝑑𝔅(𝑠))

1

0

1

0
           (10) 

form a solution of (9), where  

    ψ(t) = exp ((𝛼 − 1

2
𝛽2)𝑡 + 𝛽𝔅(𝑡))                         (11) 

Scalar linear SDEs with multiplicative noise are common in financial applications because they 

may be used to simulate strictly positive processes.  

Theorem 2.16 [25] The solution 𝓍(𝑡) of the nonhomogeneous linear SDE 

 𝑑𝓍(𝑡) = [𝔣1(𝑡) + 𝔣2(𝑡)𝓍(𝑡)]𝑑𝑡 + [𝔤1(𝑡) + 𝔤2(𝑡)𝓍(𝑡)]𝑑𝔅(𝑡)         (12) 

can be written 

      𝓍(𝑡) = 𝓍0(𝑡) {𝓍(𝑡) + ∫ 𝓍0
−1(𝑠)[𝔣1(𝑠) − 𝔤1(𝑠)𝔤2(𝑠)]

𝑡

0
𝑑𝑠 + ∫ 𝓍0

−1(𝑠)𝔤1(𝑠)
𝑡

0
𝑑𝔅(𝑠)} 

where 𝓍0(𝑡) = exp {∫ [𝔣2(𝑠) −
1

2
𝔤2
2(𝑠)]

𝑡

0
𝑑𝑠 + ∫ 𝔤2(𝑠)

𝑡

0
𝑑𝔅(𝑠)}. 

Proposition 2.17 [25] The function   

𝓍𝑡 =
exp{(𝑟𝐾−

1

2
𝜎2)𝑡+𝜎𝔅𝑡}

𝓍−1+𝑟 ∫ exp{(𝑟𝐾−
1

2
𝜎2)𝑠+𝜎𝔅𝑠}

𝑡
0 𝑑𝑠

; 𝑡 ≥ 0. 

form a solution of the SDE 

𝑑𝓍𝑡 = 𝑟𝓍𝑡(𝐾 − 𝓍𝑡)𝑑𝑡 + 𝜎𝓍𝑡𝑑𝔅𝑡 . 

Let 𝒞2,1( ℜ𝑑 ×ℜ+;  ℜ) be the class of all functions 𝒱:ℜ𝑑 ×ℜ+ ⟶ℜ with the property that 

they are continuously twice differentiable in 𝓍 and once in 𝑡. For 𝒱 ∈ 𝒞2,1( ℜ𝑑 ×ℜ+;  ℜ), 

define 

   𝒱𝑡 =
𝜕𝑉

𝜕𝑡
,  𝒱𝑡 = (

𝜕𝒱

𝜕𝓍1
, … ,

𝜕𝒱

𝜕𝓍𝑑
), 𝒱𝓍𝓍 = (

𝜕2𝒱

𝜕𝓍𝑖𝜕𝓍𝑗
)
𝑑×𝑑

=

(

 
 

𝜕2𝒱

𝜕𝓍1𝜕𝓍1
…

𝜕2𝒱

𝜕𝓍1𝜕𝓍𝑑

⋮ ⋱ ⋮
𝜕2𝒱

𝜕𝓍𝑑𝜕𝓍1
…

𝜕2𝒱

𝜕𝓍𝑑𝜕𝓍𝑑)

 
 

. 

Let 𝒱 ∈ 𝒞2,1( 𝑆ℎ × ℜ
+;  ℜ+), where 0 < ℎ ≤ ∞.  Define   

ℒ ≔
𝜕

𝜕𝑡
+ ∑ 𝔣𝑖(𝓍, 𝑡)

𝑑
𝑖=1

𝜕

𝜕𝑥𝑖
+
1

2
∑ [𝔤(𝑥, 𝑡)𝔤𝑇(𝑥, 𝑡)]𝑖𝑗
𝑑
𝑖,𝑗=1

𝜕2

𝜕𝓍𝑖𝜕𝓍𝑗
,  

as the differential operator related with (2). If ℒ acts on a function 𝒱 ∈ 𝐶2,1( 𝑆ℎ × ℜ
+; ℜ), then 

ℒ𝒱 = 𝒱𝑡(𝓍, 𝑡) + 𝒱𝓍(𝓍, 𝑡)𝑓(𝓍, 𝑡) +
1

2
𝑡𝑟𝑎𝑐𝑒[𝔤𝑇(𝓍, 𝑡)𝑉𝓍𝓍(𝓍, 𝑡)𝔤(𝓍, 𝑡)]. 
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Definition 2.18[25](i) The trivial solution of equation (2) is said to be stochastically stable if for 

every 𝜀 ∈ (0,1) and 𝑟 > 0, there exists a 𝛿 ≡ 𝛿(𝜀, 𝑟, 𝑡0) > 0 with  

ℙ{|𝓍(𝑡; 𝑡0, 𝑥0)| < 𝑟 ∶ 𝑡 > 𝑡0} > 1 − 𝜀 

when |𝓍0| < 𝛿. Else, called a stochastically unstable. 

(ii) When the trivial solution is stochastically stable as well as for any 𝜀 ∈ (0,1), there is a 𝛿0 =

𝛿0(𝜀, 𝑡0) > 0 with 

ℙ {𝜔: lim
𝑡⟶∞

𝓍(𝑡; 𝑡0, 𝑥0) = 0} ≥ 1 − 𝜀  

when |𝓍0| < 𝛿0, then it called stochastically asymptotically stable (SAS).  

Theorem 2.19 [25] If there is  𝒱(𝓍, 𝑡) ∈ 𝒞(𝒮ℎ × [𝑡,∞);ℜ
+) , with 𝒱(𝓍, 𝑡) > 0  and 

ℒ𝒱(𝓍, 𝑡) ≤ 0  

for all (𝓍, 𝑡) ∈ 𝒮ℎ × [𝑡,∞), then the trivial solution of (2) is stochastic stable. 

Lemma 2.20  [27, 28]. If 𝓍: [0,∞) × Ω⟶ ℜ𝑛 is a stochastic process fulfill  

             𝔼|𝓍(𝑡) − 𝓍(𝑠)|𝛼1 ≤ 𝑐|𝑡 − 𝑠|1+𝛼2, 0 ≤ 𝑠, 𝑡 < ∞,                     (13) 

where 𝛼1, 𝛼2, c > 0 and there is  a continuous modification 𝓍(𝑡) of 𝓍(𝑡) so  that, ∀𝜐 ∈

(0, 𝛼2/𝛼1), ∃ 𝜓:Ω ⟶ ℜ+/{0} which is measurable with 

         ℙ {𝜔: sup0<|𝑡−𝑠|<𝜓(𝜔),0≤𝑠,𝑡<∞
|𝓏̃(𝑡,𝜔)−𝓏(𝑡,𝜔)|

|𝑡−𝑠|𝑣
≤

2

1−2−𝑣
} = 1.               (14) 

Definition 2.21 [29]. The solution 𝓍(𝑡) of model (1) is called stochastically ultimately bounded 

(SUB), if, for every 𝜀 ∈ (0, 1), there exists 𝛿 = 𝛿(𝜀) > 0, so that for every  𝓍0 ∈ ℜ+
3 , we have 

           lim
𝑡⟶∞

supℙ{|𝓍(𝑡)| > 𝛿} < 𝜀.                                 (15) 

Definition 2.22 [29]. The solution 𝓍(𝑡) of (1) has stochastic permanent property, if there is a 

couple of real numbers 𝜑 = 𝜑(𝜈) > 0 and 𝜒 = 𝜒(𝜈) >  0, 𝜈 ∈ (0,1) so that for any  𝓍0 ∈

ℜ+
3 , we have   

     lim
𝑡⟶∞

inf ℙ{|𝓍(𝑡)| ≥ 𝜑} ≥ 1 − 𝑣, lim
𝑡⟶∞

infℙ{|𝓍(𝑡)| ≤ 𝜒} ≥ 1 − 𝑣.              (16) 

 

3. MODEL FORMULATION 

 This section focus to study the deterministic and stochastic model for our main problem. 

3.1 DETERMINISTIC MODEL 

 A classic three-species Lotka-Volterra system is the model under investigation; these systems 

have been essential for modeling interspecies competition, this has a considerable impact on 
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research of different competition models in biology, ecology, and medicine. Take [2,8,30] as an 

example. Our model depicts three distinct cell types: normal cells (𝓍), infected cancer cells (𝓏), 

and cancer cells (𝓎). Based on predator-prey interactions, this mean-field model explains how 

viral infection of tumor cells and tumor growth are related. 

        Table1: Parameters Description, ref. [10] 

Parameter Description Value  Unit 

𝑟 Proliferation of normal cells 0.5 1/ℎ cell 

𝑎 Death rate of normal population 0.2 1/ℎ cell 

𝑠 Proliferation of the uninfected cells 1.0 𝑚𝑚3 ℎ/ cell 

𝑏 Death rate of uninfected population 0.1 1/ℎ cell 

𝑐 Proliferation of the infected cells 1.2 𝑚𝑚3 ℎ/ cell 

𝑑 Death rate of the infected cells 0.1 1/ℎ cell 

𝜎1  0.1 Estimate   

𝜎2  0.7 Estimate 

𝜎3  0.2 Estimate 

 

Although the important contact is mostly between infected and uninfected cells, the three model 

parts can describe the fundamental dynamics of such a communication. The following situation is 

used to formulate the model: One method for simulating virotherapy  under discussion is to use a 

network with nodes that are both empty and populated by the three different types of cells. Since 

the virus is only meant to attack cancer cells and spreads from cell to cell, infected cells can only 

attack and take over a node that is occupied by a cancer cell. In contrast, A neighboring empty 

node must be occupied by the newly created cell when a normal or cancerous cell multiplies. 

([31,32]). Since the virus primarily targets cancer cells and travels from cell to cell, Only a node 

that is occupied by a cancer cell can be attacked and taken over by infected cells. . On the other 

hand, whether a cancerous or normal cell proliferates, it needs to take up a neighboring empty node 

([31,32]). The viruses arrive at different times, but they all follow the Poisson process, which has 

exponential distributions for the time to the next event. The three different cell kinds' growth and 

death rates can be changed, according to the model. It is also possible to specify the parameters of 

virus infection [3,10]. 

All of the parameters in the model mentioned above are nonnegative, as well as it is controlled by 

the differential equation system below: 
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{
 
 

 
 
𝑑𝓍

𝑑𝑡
=  𝑟𝓍(1 −  𝓍 − − 𝑧)  −  𝑎𝓍

𝑑𝓎

𝑑𝑡
 = 𝑠𝓎(1 −  𝓍 −  𝓎 − 𝓏)  −  𝑏𝓎 −  𝑐𝓎𝓏

𝑑𝓏

𝑑𝑡
 =  𝑐𝓎𝓏 − 𝛿𝓏

                  (17) 

and the initial conditions are:  𝓍(0) =  𝓍0 > 0   ، 𝓎(0) = 𝓎0 > 0 ،and  𝓏(0) = 𝓏0 > 0: 

where 𝑎, 𝑏, and 𝑑 stand for the corresponding population's death rates, and 𝑟 for proliferation. 

The model is based on mass action kinetics and was fitted to data from in vitro studies [3,10]. 

  Now, using the boundedness of the model equation (17), we offer specific constraints to bound 

the system's solutions. 

Theorem 3.1[23] With nonnegative initial conditions in the invariance region,  

∆≔ {(𝓍,𝓎, 𝓏) ∈ ℜ+
3 : 𝓍 ≤ 1,𝓎 + 𝓏 ≤ 1}. 

every solution to system (17) is bounded and nonnegative. 

Theorem 3.2 With positive initial conditions, every solution of system (17) in ℝ+
3  is uniformly 

bounded. 

Proof. Set 

                                     𝓌 = 𝓍 + 𝓎 + 𝓏.                    (18) 

So,  

𝑑𝓌

𝑑𝑡
=

𝑑𝓍

𝑑𝑡
+
𝑑𝓎

𝑑𝑡
+
𝑑𝓏

𝑑𝑡
  

= [𝑟𝓍(1 − 𝓍 ) − 𝑟𝓍( 𝓎 + 𝑧)–  𝑎𝓍] + [𝑠 𝓎 (1 −  𝓎 ) − 𝑠 𝓎( 𝓍 +  𝓏) − ( 𝑏𝓎 +  𝑐 𝓎𝓏)] +

( 𝑐 𝓎 − 𝛿)𝓏  

≤ 𝑟𝓍(1 − 𝓍 ) − 𝑟𝓍( 𝓎 + 𝓏) + 𝑠 𝓎 (1 − 𝓎 ) − 𝑠 𝓎( 𝓍 + 𝓏) − 𝜂(𝓍 +  𝓎 + 𝓏),  

where 𝜂 = min{𝑎, 𝑏, 𝛿}. So,  
𝑑𝓌

𝑑𝑡
+ 𝜂𝓌 ≤ 𝑟𝓍 (1 − 𝓍) + 𝑠 𝓎 (1 −  𝓎) ≤ 𝑟 + 𝑠. Assume that 

𝜆 = 𝑟 + 𝑠 >  0, this implies 
𝑑𝓌

𝑑𝑡
+ 𝜂𝓌 ≤ 𝜆. Hence  

       0 ≤ 𝓌(𝓍,𝓎, 𝓏) ≤
𝜆

𝜂
(1 − 𝑒−𝜂𝑡) +𝓌(𝓍(0), 𝓎(0), 𝓏(0))𝑒−𝜂𝑡,              (19) 

and letting 𝑡 ⟶ +∞, from (15) yield   

                                   0 ≤ 𝓌(𝑥, 𝑦, 𝑧) <
𝜆

𝜂
.                                (20) 

Consequently, the solution space of model (11) belongs to  

                  𝒟 = {(𝓍,𝓎, 𝓏) ∈ ℜ+
3 :𝓌 =

𝜆

𝜂
+ 𝜀, for every 𝜀 > 0}.                 (21) 

Henceforth, the proof is completed. 
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3.2 STOCHASTIC MODEL  

   As in [33], the stochastic model that agrees to (17) can be expressed as follows: It may happen 

that  the  effector cells’ natural death rate (𝑑1), intrinsic growth rate of tumor cells (𝑟1) , 

maximum carrying capacity of tumor cells  (1/𝑏1), normal cells’ growth rate (𝑟2)  and decay 

rate of targeted chemo-drug  (𝑑2) are not totally identified nonetheless conditional on some 

random ecological effects, so that  

𝑟(𝑡) ⟼ 𝑟(𝑡) + 𝜎1𝔅̇1,  𝑠(𝑡) ⟼ 𝑠(𝑡) + 𝜎2𝔅̇2 , and 𝛿(𝑡) ⟼ 𝛿(𝑡) − 𝜎3𝔅̇3, 

where the probability distribution of the noise terms 𝜎𝑖𝔅̇𝑖 is unknown, but 𝔅𝑖(𝑡) denotes the 

typical independent Brownian motions and 𝜎𝑖 > 0, 𝑖 = 1,2,3. It is supposed that the functions 

𝑟(𝑡), 𝑠(𝑡), and 𝛿(𝑡) are constants and nonrandom. Consequently, system (17) becomes into 

        {

𝑑𝓍 = [𝑟𝓍 (1 −  𝓍 −  𝓎 −  𝓏)  −  𝑎𝓍]𝑑𝑡 + 𝜎1𝓍𝑑𝔅1
𝑑𝓎 = [𝑠 𝓎 (1 −  𝓍 −   𝓎 −  𝓏)  −  𝑏 𝓎 −  𝑐 𝓎𝓏]𝑑𝑡 + 𝜎2 𝓎 𝑑𝔅2
𝑑𝓏 = [𝑐 𝓎𝓏 − 𝛿𝓏]𝑑𝑡 + 𝜎3𝓏𝑑𝔅3

          (22) 

or in the matrix form  

                       𝑑𝑋 = 𝔣(𝑋, 𝑡)𝑑𝑡 + 𝔤(𝑋, 𝑡)𝑑𝔅,                         (23) 

where  

𝑋 = (

𝓍
 𝓎
𝓏
), 𝔣(𝑋, 𝑡) = (

𝑟𝓍 (1 −  𝓍 −  𝓎 −  𝓏)  −  𝑎𝓍
𝑠 𝓎 (1 −  𝓍 −   𝓎 −  𝓏)  −  𝑏 𝓎 −  𝑐 𝓎𝓏

𝑐 𝓎𝓏 − 𝛿𝓏
), 𝑔(𝑋, 𝑡) = (

𝜎1𝓍 0 0
0 𝜎2 𝓎 0
0 0 𝜎3𝓏

), 

and 𝔅 = (
𝔅1
𝔅2
𝔅3

). Also, all  𝓍(0) =  𝑥0   ،  𝓎(0) =  𝓎0 ،and  𝓏(0) = 𝓏0 are positive. 

3.3 MEDICAL INTERPRETATION OF THE MATHETICAL MODEL FOR NORMAL, 

CANCEROUS, AND INFECTED CELLS 

This mathematical model describes the temporal dynamics of three kinds of cells in the body: 

normal cells (𝓍), cancerous cells ( 𝓎), and infected cancerous cells (𝓏). Random effects have been 

included to represent environmental, therapeutic, or genetic mutation factors. 

The first equation: natural cells (𝓍) 

- 𝑟𝓍(1 − 𝓍): Logistic growth of natural cells. 

- −𝑟𝓍( 𝓎 + 𝓏): Decrease in normal cells due to competition with cancerous and infected cells. 

- −𝑎𝓍: Natural loss of cells. 

- 𝜎₁𝓍𝑑𝔅₁: The effect of random environmental or therapeutic factors on normal cells. 
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The second equation: cancer cells ( 𝓎) 

- 𝑠 𝓎(1 −  𝓎): Autologous growth of cancer cells. 

- −𝑠 𝓎(𝓍 +  𝓏): Negative effect of interaction with normal and infected cells. 

- −𝑏 𝓎: Natural loss or due to the immune system. 

- −𝑐 𝓎𝓏: The transfer of some cancer cells to the affected type. 

- 𝜎₂ 𝓎𝑑𝔅₂: The influence of randomness on the growth or deterioration of cancer cells. 

The third equation: infected cancer cells (𝓏) 

- 𝑐 𝓎𝓏: The increase in the number of infected cells due to the interaction of cancer with the 

infection. 

- −𝛿𝓏: Loss of infected cells due to treatment or natural deterioration. 

- 𝜎₃𝓏 𝑑𝔅₃: A direct random effect on the affected cells. 

THE GENERAL INTERPRETATION OF THE MODEL  

The model represents a dynamic communication between different types of cells in the body, 

taking into account competition, interaction, and transformation from one type to another, in 

addition to unexpected fluctuations that affect the system. This model helps in understanding 

tumor development and treatment response, and can be used to simulate future therapeutic 

strategies. 

 

4. POSITIVE INVARIANCE AND BOUNDEDNESS OF THE STOCHASTIC  

In this section we will show whether the solutions of the model (22) are biologically acceptable 

or not for all the values of the parameters adopted in the model. So, we use the principle of 

stochastic comparison to ensure that the solutions are positive and constrained [11]. 

Theorem 4.1. The solutions of (22) are bounded and nonnegative in ∆= {(𝓍,𝓎, 𝓏) ∈ ℜ3: 𝑥 ≤

𝜆1, 𝑦 ≤ 𝜆2, 𝑣}, 

where 𝜆1 ≔
(𝑟−

1

2
𝜎1
2)

𝑟
, 𝜆2 ≔

(𝑠−
1

2
𝜎2
2)

𝑠
, and 𝜆3 ≔

𝑐(𝑠−
1

2
𝜎2
2)

𝑠
.  

Proof. First, we have   

𝑑𝓍 = [𝑟𝓍(1 − 𝓍) − 𝑟𝓍(  𝓎 + 𝓏)–  𝑎𝓍]𝑑𝑡 + [𝜎1𝓍 (1 − 𝓍 ) − 𝜎1𝓍(  𝓎 + 𝓏)]𝑑𝔅1  

  ≤ 𝑟𝓍(1 − 𝓍)𝑑𝑡 + 𝜎1𝓍 𝑑𝑊1. 

Now, consider 𝑑𝓍̅ = 𝑟𝓍̅ (1 − 𝓍̅ )𝑑𝑡 + 𝜎1𝓍̅ 𝑑𝑊1. 
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Then 𝓍̅(𝑡) =
exp{(𝑟−

1

2
𝜎1
2)𝑡+𝜎1𝔅1(𝑡)}

(𝑥̅(0))−1+𝑟 ∫ exp{(𝑟−
1

2
𝜎1
2)𝜏+𝜎1𝔅1(𝜏)}

𝑡
0 𝑑𝜏

. 

Since 𝑑𝓍 ≤ 𝑑𝓍̅. Then  lim
𝑡⟶∞

sup 𝓍(𝑡) ≤ lim
𝑡⟶∞

sup 𝓍̅(𝑡).But lim
𝑡⟶∞

sup 𝓍̅(𝑡) ≤
(𝑟−

1

2
𝜎1
2)

𝑟
 , so  

lim
𝑡⟶∞

sup𝓍(𝑡) ≤
(𝑟−

1

2
𝜎1
2)

𝑟
. 

Now,  

𝑑 𝓎 = [𝑠 𝓎(1 −  𝓎 ) − 𝑠 𝓎( 𝓍 + 𝓏) − ( 𝑏 𝓎 +  𝑐 𝓎𝓏)]𝑑𝑡 + 𝜎2 𝓎 𝑑𝔅2 ≤ 𝑠 𝓎(1 − 𝓎)𝑑𝑡 + 𝜎2 𝓎 𝑑𝔅2  

Consider the SDE  𝑑𝓎̅ = 𝑠𝓎̅ (1 − 𝓎̅ )𝑑𝑡 + 𝜎2𝓎̅ 𝑑𝔅2. Then 

𝓎̅(𝑡) =
exp{(𝑠−

1

2
𝜎2
2)𝑡+𝜎2𝔅2(𝑡)}

(𝓎̅(0))−1+𝑠∫ exp{(𝑠−
1

2
𝜎2
2)𝜏+𝜎2𝔅2(𝜏)}

𝑡
0

𝑑𝜏
 . 

Since 𝑑𝓎 ≤ 𝑑𝓎̅. Then  lim
𝑡⟶∞

sup  𝓎(𝑡) ≤ lim
𝑡⟶∞

sup 𝓎̅(𝑡). But lim
𝑡⟶∞

sup 𝓎̅(𝑡) ≤
(𝑠−

1

2
𝜎2
2)

𝑠
 , so 

lim
𝑡⟶∞

sup  𝓎(𝑡) ≤
(𝑠−

1

2
𝜎2
2)

𝑠
. 

Finally, the solution of the SDE 𝑑𝓏 = ( 𝑐 𝓎 − 𝛿)𝑑𝑡 + 𝜎3𝓏𝑑𝔅3  is given by  

𝓏(𝑡) = 𝓏(0) exp [∫ 𝑐 𝓎(𝜏)
𝑡

0
𝑑𝜏 − 𝛿𝑡 + 𝜎3𝔅3(𝑡)]. 

Thus  

lim
𝑡⟶∞

sup𝓏(𝑡, 𝜔) ≤ 𝓏(0) exp [
𝑐(𝑠−

1

2
𝜎2
2)

𝑠
𝑡 + 𝜎3𝔅3(𝑡)]. 

So, we have ∆= {(𝓍, 𝓎, 𝓏) ∈ ℜ3: 𝑥 ≤ 𝜆1, 𝑦 ≤ 𝜆2, 𝑣 ≤ 𝜆3}, where 𝜆1 ≔
(𝑟−

1

2
𝜎1
2)

𝑟
, 𝜆2 ≔

(𝑠−
1

2
𝜎2
2)

𝑠
, 

𝜆3 ≔
𝑐(𝑠−

1

2
𝜎2
2)

𝑠
. 

The domain region ∆ is positively invariant, which verifies that the model system (22) is 

biologically feasible. 

Theorem 4.2 The system (22) admits a unique positive local solution (𝓍(𝑡), 𝓎(𝑡), 𝓏(𝑡)) for 

(𝓍0,  𝓎0, 𝓏0) ∈ 𝐼𝑛𝑡(ℜ+
3 ) and 𝑡 ∈ [0, 𝜏𝑒) almost surely, where 𝜏𝑒 is the explosion time.  

Proof. Take the transformation of variables 𝑁 = ln 𝓍, 𝑇 = ln  𝓎, and 𝐼 = ln 𝓏. Using the Itô 

formula, 

ℒ𝒱 = 𝒱𝑡(𝑡, 𝓍) + 𝒱𝑥(𝑡, 𝓍)𝑓(𝑡, 𝓍) +
1

2
𝑡𝑟𝑎𝑐𝑒 (𝔤𝑇(𝑡, 𝓍)𝒱𝓍𝓍(𝑡, 𝓍)𝔤(𝑡, 𝓍)),  

we get 
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𝑒𝑁𝑑𝑁 = [𝑟𝑒𝑁 (1 − 𝑒𝑁 ) − 𝑟𝑒𝑁( 𝑒𝑇 + 𝑒𝐼)–  𝑎𝑒𝑁 −
1

2
𝜎1
2𝑒𝑁] 𝑑𝑡 + 𝜎1𝑒

𝑁𝑑𝔅1. 

Then  

ℒ𝑁 = [𝑟 (1 − 𝑒𝑁 ) − 𝑟( 𝑒𝑇 + 𝑒𝐼)– (𝑎 +
1

2
𝜎1
2)] and  𝑑𝑁 = ℒ𝑁 + 𝜎1𝑑𝔅1. 

Likewise, we get, from (22) 

{
 
 

 
 𝑑𝑁 = [𝑟 (1 − 𝑒𝑁 ) − 𝑟( 𝑒𝑇 + 𝑒𝐼)– ( 𝑎 +

1

2
𝜎1
2)] 𝑑𝑡 + 𝜎1𝑑𝔅1,

𝑑𝑇 = [𝑠(1 − 𝑒 𝑇 ) − 𝑠( 𝑒 𝑁 + 𝑒 𝐼) − 𝑐𝑒 𝐼 − ( 𝑏 +
1

2
𝜎2
2)] 𝑑𝑡 + 𝜎2𝑒 

𝑇  𝑑𝔅2,

𝑑𝐼 = [𝑐𝑒 𝑇 − ( 𝛿 +
1

2
𝜎3
2)] 𝑑𝑡 + 𝜎3𝑑𝔅3.

      (24) 

with 𝑁(𝑡) = ln𝓍(𝑡) , 𝑇(𝑡) = ln𝓎(𝑡) , and 𝐼(𝑡) = ln 𝓏(𝑡) . At the present, the functions 

conforming to (24) admit initial growth and they fulfill the local Lipchitz condition. Thus, there 

is a unique local solution (𝑁, 𝑇, 𝐼) defined in [0, 𝜏𝑒). 

Theorem 4.3. The model (22) has a unique solution (𝓍(𝑡), 𝓎(𝑡), 𝓏(𝑡)) for 𝑡 ∈ [0, 𝜏𝑒) and for 

every (𝓍0, 𝓎0, 𝓏0) ∈ 𝐼𝑛𝑡(ℜ+
3 )  and ℙ{(𝓍(𝑡), 𝓎(𝑡), 𝓏(𝑡)) ∈  𝐼𝑛𝑡(ℜ+

3 ): 𝑡 ≥ 0} = 1. 

Proof. In order to prove the existence of the global solutions it is sufficient to demonstration that the 

global solution exists, it is sufficient to verify that ℙ{𝜏∞ = ∞} = 1. If  𝜅0 ∈ ℤ+ is a sufficient 

large such  that (𝓍0, 𝓎0, 𝓏0) lies in  the closed ball ℬ(𝜅0) ⊂ ℜ+
3 . For  𝜅 ≥ 𝜅0, we take and 

describe the stop-time as 

         𝜏𝜅 = inf {𝑡 ∈ [0, 𝜏𝑒): 𝓍 ∉ (
1

𝜅
, 𝜅)  𝑜𝑟 𝓎 ∉ (

1

𝜅
, 𝜅)  𝑜𝑟 𝓏 ∉ (

1

𝜅
, 𝜅) }.          (25) 

Now, inf ∅  =  ∞ (∅ is the empty set). So, 𝜏𝜅 is growing as 𝜅 ⟶ ∞.  Let 𝜏∞ = lim
𝜅⟶∞

𝜏𝜅 ; 

then, 𝜏∞ ≤ 𝜏𝑒 almost surely.  If ℙ{𝜏∞ = ∞} = 1, then ℙ{𝜏𝑒 = ∞} = 1. If this declaration is 

false, i.e., if 𝜏∞  ≠  ∞, then 𝑇 >  0 and 𝜀 ∈ (0, 1) exist with 

                       ℙ{𝜏∞ ≤ 𝑇} > 𝜀.                                     (26) 

Hence, put  Ω𝜅 = {𝜏𝜅 ≤ 𝑇}, then 𝜅1 ≥ 𝜅0 is an integer such that, for all 𝜅 ≥ 𝜅1,  

                           ℙ{𝜏𝜅 ≤ 𝑇} ≥ 𝜀                                               (27) 

Define a function  𝒱: Int(ℜ+
3 ) ⟶ Int(ℜ+)   as follows  

               𝒱(𝓍,𝓎, 𝓏) = (𝓍 − 1 − ln 𝓍) + (𝓎 − 1 − ln𝓎) + (𝓏 − 1 − ln 𝓏),           (28) 

where 𝒱(𝓍,𝓎, 𝓏) > 0 for all (𝓍, 𝓎, 𝓏) ∈ Int(ℜ+
3 ). By Itô's formula, yield  

ℒ𝒱 = (𝓍 − 1)[𝑟(1 − 𝓍 − 𝓎 − 𝓏 )–  𝑎] + (𝓎 − 1)[𝑠 (1 − 𝓍 −  𝓎 − 𝓏 ) − 𝑏 +  𝑐𝓏)]   

   +(𝓏 − 1)( 𝑐𝓎 − 𝛿) + (
𝜎1
2+𝜎2

2+𝜎3
2

2
). 
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Taking the differential of 𝒱(𝓍,𝓎, 𝓏), one gets 

           𝑑𝒱(𝓍, 𝓎, 𝓏) = 𝔣(𝓍, 𝓎, 𝓏)𝑑𝑡 + 𝔤(𝓍,𝓎, 𝓏)𝑑𝔅,                         (29) 

where 𝔤(𝓍, 𝓎, 𝓏) = 𝜎1(𝓍 − 1) + 𝜎2(𝓎 − 1) + 𝜎3(𝓏 − 1) , and  

𝔣(𝓍, 𝓎, 𝓏) = (
𝜎1
2+𝜎2

2+𝜎3
2

2
) − (𝓍 − 1)[𝑎 − 𝑟(1 − 𝓍 − 𝓎 − 𝓏)] − (𝓎 − 1)[𝑏 − 𝑠 (1 − 𝓍 −  𝓎 −

𝓏) −  𝑐𝓏)] −(𝓏 − 1)(𝛿 − 𝑐𝓎 ). 

Then , there  is 𝑀 > 0 so,   |𝔣(𝓍, 𝓎, 𝓏)|  ≤ 𝑀, for all (𝓍, 𝓎, 𝓏) ∈ ℜ+
3 . It follows (29) that  

             ∫ 𝑑𝒱(𝓍,𝓎, 𝓏)
𝜏𝑚∧𝑇

0
≤ ∫ 𝑀

𝜏𝑚∧𝑇

0
𝑑𝑡 + ∫ 𝔤(𝓍,𝓎, 𝓏)

𝜏𝑚∧𝑇

0
𝑑𝔅(𝑡),            (30) 

where 𝜏𝑘 ∧ 𝑇 = min{𝜏𝑘, 𝑇}. Considering the aforementioned inequality's expectations, yield  

      𝔼𝒱(𝓍(𝜏𝑘 ∧ 𝑇), 𝓎(𝜏𝑘 ∧ 𝑇), 𝓏(𝜏𝑘 ∧ 𝑇)) ≤ 𝒱(𝓍(0), 𝓎(0), 𝓏(0)) + 𝑀𝑇            (31) 

Note that no less than one of 𝓍(𝜏𝑘, 𝜔), 𝓎(𝜏𝑘, 𝜔), and 𝓏(𝜏𝑘, 𝜔) lies in {𝜅, 1/𝜅}, for every 𝜔 ∈

Ω𝜅; consequently,  

    𝒱(𝓍(𝜏𝑘 ∧ 𝑇),𝓎(𝜏𝑘 ∧ 𝑇), 𝓏(𝜏𝑘 ∧ 𝑇)) ≥ (𝜅 − 1 − ln 𝜅) ∧ (
1

𝜅
− 1 − ln

1

𝜅
)          (32) 

Hence, from (27) 

𝔼𝒱(𝓍(𝜏𝑘 ∧ 𝑇),𝓎(𝜏𝑘 ∧ 𝑇), 𝓏(𝜏𝑘 ∧ 𝑇)) ≥ 𝔼[𝕀Ω𝜅(𝜔)𝑉(𝓍(𝜏𝑘 ∧ 𝑇), 𝓎(𝜏𝑘 ∧ 𝑇), 𝓏(𝜏𝑘 ∧ 𝑇))] 

                   ≥ 𝜀(𝜅 − 1 − ln 𝜅) ∧ (
1

𝜅
− 1 − ln

1

𝜅
)           (33) 

Here 𝕀Ω𝜅(𝜔) represents the characteristic  function of Ω𝜅. Using  (32), we get  

   𝒱(𝓍(0), 𝓎(0), 𝓏(0)) + 𝑀𝑇 ≥ 𝜀(𝜅 − 1 − ln 𝜅) ∧ (
1

𝜅
− 1 − ln

1

𝜅
)              (34) 

𝜅 ⟶ ∞  implies to a contradiction: ∞ > 𝒱(𝓍(0),𝓎(0), 𝓏(0)) + 𝑀𝑇 =  ∞ : Therefore, 

ℙ{𝜏∞ = ∞} = 1. Thus, ℙ{(𝓍(𝑡), 𝓎(𝑡), 𝓏(𝑡)) ∈  𝐼𝑛𝑡(ℜ+
3 ): 𝑡 ≥ 0} = 1.  

Theorem 4.4.  The solutions of system (22) are stochastically ultimately bounded, for every 

initial value 𝓌0 = (𝓍0, 𝓎0, 𝓏0) ∈ ℜ+
3 .  

Proof. From Theorem 4.3, we have ℙ{𝓌(𝑡) ∈  𝐼𝑛𝑡(ℜ+
3 ): 𝑡 ≥ 0} = 1. Suppose that  𝒱1(𝑡, 𝓍)  =

 𝑒𝑡𝓍𝜃 for  𝜃 > 0. The Itô formula implies that   

  ℒ𝒱1(𝑡, 𝑥) =
𝜕𝒱1(𝑡,𝑥) 

𝜕𝑡
+
𝜕𝒱1(𝑡,𝑥)

𝜕𝑥
𝔣1(𝑡, 𝓍, 𝓎, 𝓏) +

1

2

𝜕2𝒱1(𝑡,𝓍)

𝜕𝓍2
𝔤1
2(𝑡, 𝓍, 𝓎, 𝓏) 

         = 𝑒𝑡𝓍𝜃 {1 + 𝜃[𝑟 (1 − 𝓍 − 𝓎 − 𝓏)–  𝑎] +
𝜎1
2

2
𝜃(𝜃 − 1)}  

         ≤ 𝑒𝑡 {[1 + 𝑟𝜃 +
𝜎1
2

2
𝜃(𝜃 − 1)] 𝓍𝜃 −  𝑟𝜃𝓍𝜃+1} ≤ 𝑀1(𝜃)𝑒

𝑡.                         (35) 
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Taking the integral and expectation on two sides of the above inequality, yield  𝑒𝑡𝔼(𝓍𝜃(𝑡)) −

 𝔼(𝓍0
𝜃)  ≤ 𝑀1(𝜃)𝑒

𝑡 . Thus, lim sup𝑡⟶∞ 𝔼𝓍
𝜃(𝑡)  ≤ 𝑀1(𝜃) <  +∞ . Suppose that 𝒱2(𝑡, 𝓎)  =

 𝑒𝑡𝓎𝜃 for  𝜃 > 0; the Itô formula, implies that  

ℒ𝒱2(𝑡, 𝓎) =
𝜕𝒱2(𝑡,𝓎) 

𝜕𝑡
+
𝜕𝒱2(𝑡,𝓎)

𝜕𝓎
𝔣2(𝑡, 𝓍, 𝓎, 𝓏) +

1

2

𝜕2𝒱2(𝑡,𝓎)

𝜕𝓎2
𝔤2
2(𝑡, 𝓍, 𝓎, 𝓏)  

           = 𝑒𝑡𝓎𝜃 {1 + 𝜃[𝑠 (1 −  𝓎 − 𝓍 − 𝓏 − 𝑐𝓏) − 𝑏] +
𝜎1
2

2
𝜃(𝜃 − 1)}  

      ≤ 𝑒𝑡 {[1 + 𝜃𝑠 +
𝜎1
2

2
𝜃(𝜃 − 1)]𝓎𝜃 − 𝜃𝑠𝓎𝜃+1} ≤ 𝑀2(𝜃)𝑒

𝑡                        (36) 

Taking the integral and expectation on two sides of the above inequality , yield   

𝑒𝑡𝔼(𝓎𝜃(𝑡)) −  𝔼(𝓎0
𝜃)  ≤ 𝑀2(𝜃)𝑒

𝑡. 

Thus,  

lim sup𝑡⟶∞ 𝔼𝓎
𝜃(𝑡)  ≤ 𝑀2(𝜃) <  +∞. 

Similarly, suppose that  𝒱3(𝑡, 𝑧)  =  𝑒
𝑡𝓏𝜃 for  𝜃 > 0; it follows from  Itô formula that 

  ℒ𝒱3(𝑡, 𝓏) =
𝜕𝒱3(𝑡,𝓏) 

𝜕𝑡
+
𝜕𝒱3(𝑡,𝓏)

𝜕𝓏
𝔣3(𝑡, 𝓍, 𝓎, 𝓏) +

1

2

𝜕2𝒱2(𝑡,𝓏)

𝜕𝓏2
𝔤3
2(𝑡, 𝓍, 𝓎, 𝓏) 

           = 𝑒𝑡𝓏𝜃 + 𝜃𝑒𝑡𝓏𝜃−1( 𝑐𝓏 − 𝛿)𝓏 +
1

2
𝜃(𝜃 − 1)𝑒𝑡𝓏𝜃−2𝜎3

2𝓏2 

     ≤ 𝑒𝑡 {1 + 𝜃𝑐𝓎 +
𝜎3
2

2
𝜃(𝜃 − 1)} 𝓏𝜃 ≤ 𝑀3(𝜃)𝑒

𝑡                          (37) 

Taking the integral and expectation on two sides of the above inequality , yield   

𝑒𝑡𝔼(𝓏𝜃(𝑡)) −  𝔼(𝓏0
𝜃)  ≤ 𝑀3(𝜃)𝑒

𝑡. 

Thus 

lim sup𝑡⟶∞ 𝔼𝓏
𝜃(𝑡)  ≤ 𝑀3(𝜃) <  +∞.  

For  𝓌(𝑡) = (𝓍(𝑡), 𝓎(𝑡), 𝓏(𝑡)) ∈ ℜ+
3 , we may get  

    |𝓌(𝑡)|𝜃 ≤ (3max{𝓍3(𝑡), 𝓎3(𝑡), 𝓏3(𝑡)})𝜃/3 ≤ 3𝜃/3(𝓍𝜃(𝑡) + 𝓎𝜃(𝑡) + 𝓏𝜃(𝑡)).         (38) 

      lim
𝑡⟶∞

sup𝔼|𝓌(𝑡)|𝜃 ≤ 𝑀4(𝜃) < +∞,                              (39) 

where 𝑀4(𝜃) = 3
𝜃

3(𝑀1(𝜃) + 𝑀2(𝜃) + 𝑀3(𝜃)) . The Chebyshev inequality leads us to the 

conclusion that every solution is stochastically bounded. 

   It is remain to demonstrate that the positive solution using basic features and appropriate 

Lyapunov functions 

𝓌(𝑡) = (𝓍(𝑡), 𝓎(𝑡), 𝓏(𝑡)) is uniformly Hölder continuous. 
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Theorem 4.5. Every sample path of (𝓍(𝑡), 𝓎(𝑡), 𝓏(𝑡)) is uniformly continuous, where 

(𝓍(𝑡), 𝓎(𝑡), 𝓏(𝑡))  is a solution of system (22) on 𝑡 ≥ 0 with (𝓍0, 𝓎0, 𝓏0) ∈ ℜ+
3  . 

Proof. It follows from the first equation of  (22) that 

𝓍(𝑡) = 𝓍0 + ∫ [𝑟𝓍(𝑢) (1 − 𝓍(𝑢) − 𝓎(𝑢) − 𝓏(𝑢))–  𝑎𝓍(𝑢)]
𝑡

0
𝑑𝑢 + ∫ 𝜎1𝓍(𝑢)

𝑡

0
𝑑𝔅1(𝑢). 

Assume that 𝔣1(𝑢) = [𝑟𝓍(𝑢) (1 − 𝓍(𝑢) − 𝓎(𝑢) − 𝓏(𝑢))–  𝑎𝓏(𝑢)]  and 𝔣2(𝑢) = 𝜎1𝓍(𝑢) . We 

infer from Theorem (4.4) that 

𝔼|𝔣1(𝑡)|
𝜃 = 𝔼|𝑟𝓍 (1 − 𝓍 − 𝓎 − 𝓏)–  𝑎𝓏|𝜃  

         ≤
1

2
𝔼|𝓍|2𝜃 +

1

2
𝔼|𝑟 + 𝑟𝓍 + 𝑟𝓎 + 𝑟𝓏)|2𝜃   

         ≤
1

2
𝔼|𝓍|2𝜃 + 44𝜃−3/2[𝑟2𝜃 + 𝑟2𝜃𝔼|𝓍|2𝜃 + 𝑟2𝜃𝔼|𝓎|2𝜃 + 𝑟2𝜃𝔼|𝓏|2𝜃]  

        ≤
1

2
𝑀1(2𝜃) + 4

4𝜃−
3

2[𝑟2𝜃 + 𝑟2𝜃𝑀1(2𝜃) + 𝑟
2𝜃𝑀2(2𝜃) + 𝑟

2𝜃𝑀3(2𝜃)] = 𝐹1(𝜃),  

𝔼|𝔣2(𝑡)|
𝜃 = 𝔼|𝜎1𝓍(𝑡)|

𝜃 = 𝜎1
𝜃𝔼|𝓍|𝜃 ≤ 𝜎1

𝜃𝑀1(𝜃) ≤ 𝐹2(𝜃).                        (40) 

For stochastic integrals, we use the moment inequality for 0 ≤ 𝑡1 ≤ 𝑡2 and 𝜃 > 2, to obtain 

The moment inequality for0 ≤ 𝑡1 ≤ 𝑡2 as well as 𝜃 > 2is used for stochastic integrals to derive 

𝔼 |∫ 𝔣2(𝑢)
𝑡2
𝑡1

𝑑𝑊1(𝑢)|
𝜃

≤ (
𝜃(𝜃−1)

2
)
𝜃/2

(𝑡2 − 𝑡1)
(𝜃−2)/2 ∫ 𝔼|𝔣2(𝑢)|

𝜃𝑡2
𝑡1

𝑑𝑢  

           ≤ (
𝜃(𝜃−1)

2
)
𝜃/2

(𝑡2 − 𝑡1)
𝜃/2𝐹2(𝜃).                          (41) 

Thus, for 0 < 𝑡1 < 𝑡2 < ∞, 𝑡2 − 𝑡1 ≤ 1, (
1

𝜃
) + (

1

𝜅
) = 1 (or 

𝜃

𝜅
+ 1 = 𝜃) , we get 

𝔼|𝓍(𝑡2) − 𝓍(𝑡1)|
𝜃 = 𝔼 |∫ 𝔣1(𝑢)

𝑡2
𝑡1

𝑑𝑢 + ∫ 𝔣2(𝑢)
𝑡2
𝑡1

𝑑𝔅1(𝑢)|
𝜃

  

≤ 2𝜃−1𝔼 |∫ 𝔣1(𝑢)
𝑡2
𝑡1

𝑑𝑢|
𝜃

+ 2𝜃−1𝔼 |∫ 𝔣2(𝑢)
𝑡2
𝑡1

𝑑𝔅1(𝑢)|
𝜃

  

≤ 2𝜃−1(𝑡2 − 𝑡1)
𝜃/2 {(𝑡2 − 𝑡1)

𝜃/2𝐹1(𝜃) + (
𝜃(𝜃−1)

2
)
𝜃/2

𝐹2(𝜃)}   

≤ 2𝜃−1(𝑡2 − 𝑡1)
𝜃

2 {1 + (
𝜃(𝜃−1)

2
)

𝜃

2
}𝐹(𝜃)                                          (42) 

where 𝐹(𝜃) = max{𝐹1(𝜃), 𝐹2(𝜃)}. By Lemma 2.20, for each exponent 𝜐 ∈ (0, (𝜃 − 2)/2𝜃),  

the uniform continuity of each sample path of 𝓍(𝑡) on ℜ+
3  is demonstrated by the fact that each 

sample path of 𝓍(𝑡) is uniformly and locallylder continuous. Each sample path of 𝓍(𝑡)  on ℜ+
3   

is uniformly and locally continuous, proving the uniform continuity of each sample path. Similarly, 
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on ℜ+
3 , the uniform continuity of 𝓎(𝑡) and 𝓏(𝑡) is demonstrated. As a result, on 𝑡 >  0, we 

obtain the uniform continuity of each sample path of (𝓍(𝑡),𝓎(𝑡), 𝓏(𝑡)) to system (22). 

5. LONG TIME BEHAVIOR OF SYSTEM  

We focus our attention in this section on the long-term behavior of the system. For this purpose, 

we will define two hypotheses that will be useful in the stability analysis later. 

(H1): 
𝐿

𝜂
max{𝑟, 𝑎} +

1

2
max{𝜎1

2, 𝜎2
2, 𝜎3

2} < min{𝑟 − 𝑠, 𝑟 − 𝛿} 

(H2): 𝑟 − 𝑎 −
𝜎1
2

2
< 0,  𝑠 − 𝑏 −

𝜎2
2

2
< 0, 𝑐 − 𝛿 −

𝜎3
2

2
< 0                            (43) 

We will first demonstrate stochastic persistence, which is crucial to population dynamics. Here is 

how we talk about this property: 

Theorem 5.1. If (𝐻1) fulfills , then model (22) is  stochastically permanent.  

Proof. For 𝓌(0) = (𝓍(0),𝓎(0), 𝓏(0)) ∈ ℜ+
3 , we show that a solution 𝓌(𝑡) =

(𝓍(𝑡), 𝓎(𝑡), 𝓏(𝑡)) exists such that 

                                      lim
𝑡⟶∞

sup𝔼 (
1

|𝓌(𝑡)|𝛾
) ≤ 𝑀,                             (44) 

where 𝛾 ∈ ℜ+ fulfills  

                   
𝐿

𝜂
max{𝑟, 𝑎} +

(𝛾+1)

2
max{𝜎1

2, 𝜎2
2, 𝜎3

2} < min{𝑟 − 𝑠, 𝑟 − 𝛿}                (45) 

By (45), there is a 𝜌 > 0 fulfills 

             min{𝑟 − 𝑠, 𝑟 − 𝛿} − 𝜌 −
𝐿

𝜂
max{𝑟, 𝑎} −

1

2
max{𝜎1

2, 𝜎2
2, 𝜎3

2} > 0.           (46) 

Define 𝒱(𝓍, 𝓎, 𝓏) = 𝓍 + 𝓎 + 𝓏 for (𝓍, 𝓎, 𝓏) ∈ ℜ+
3   and 𝒱̅(𝓍, 𝓎, 𝓏) = 1/𝒱(𝓍, 𝓎, 𝓏); so  

𝑑𝒱(𝓍,𝓎, 𝓏) = {[𝑟𝓍 (1 − 𝓍 − 𝓎 − 𝓏)–  𝑎𝓍] + [𝑠𝓎 (1 −  𝓎 − 𝓍 − 𝓏 ) − ( 𝑏𝓎 +  𝑐𝓎𝓏)] + (𝑐𝓎

− 𝛿)𝓏}𝑑𝑡 

                +(𝜎1𝓍𝑑𝔅1 + 𝜎2𝓎 𝑑𝔅2 + 𝜎3𝓏𝑑𝔅3)  

𝑑𝒱̅(𝓍, 𝓎, 𝓏) = −𝒱̅2(𝓍, 𝓎, 𝓏){[𝑟𝓍 (1 − 𝓍 − 𝓎 − 𝓏)–  𝑎𝓍] + [𝑠𝓎 (1 −  𝓎 − 𝓍 − 𝓏 ) − ( 𝑏𝓎 +

 𝑐𝓎𝓏)] + (𝑐𝓎 − 𝛿)𝓏}𝑑𝑡  

+𝒱̅2(𝓍, 𝓎, 𝓏)[(𝜎1𝓍)
2 + (𝜎2𝓎 )

2 + (𝜎3𝓏)
2]𝑑𝑡 − 𝑉̅2(𝓍, 𝓎, 𝓏)(𝜎1𝓍𝑑𝔅1 + 𝜎2𝓎 𝑑𝔅2 + 𝜎3𝓏𝑑𝔅3)  

= ℒ𝒱̅(𝓍, 𝓎, 𝓏)𝑑𝑡 − 𝒱̅2(𝓍, 𝓎, 𝓏)(𝜎1𝓍𝑑𝔅1 + 𝜎2𝓎 𝑑𝔅2 + 𝜎3𝓏𝑑𝔅3)                     (47) 

We choose 𝛾 > 0 under (H1) so that condition (45) is satisfied. Therefore  

ℒ(1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾 = 𝛾(1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾−1ℒ𝒱̅(𝓍, 𝓎, 𝓏)  

         +
1

2
𝛾(𝛾 − 1)(1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾−2𝒱̅4(𝓍, 𝓎, 𝓏) × [(𝜎1𝓍)

2 + (𝜎2𝓎 )
2 + (𝜎3𝓏)

2].  (48) 
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Then, we select 𝜌 > 0 so that (46) is satisfied. So, 

ℒ𝑒𝜌𝑡(1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾 = 𝜌𝑒𝜌𝑡(1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾 + 𝑒𝜌𝑡ℒ(1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾  

                  = 𝑒𝜌𝑡(1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾−2[𝜌(1 + 𝒱̅(𝓍, 𝓎, 𝓏))2 +𝒜]              (49) 

where  

𝒜 = −𝛾𝒱̅2(𝓍, 𝓎, 𝓏){[𝑟𝓍 (1 − 𝓍 − 𝓎 − 𝓏)–  𝑎𝓍] + [𝑠𝓎 (1 −  𝓎 − 𝓍 − 𝓏 ) − ( 𝑏𝓎 +  𝑐𝓎𝓏)] +

(𝑐𝓎 − 𝛿)𝓏} −𝛾𝒱̅3(𝓍, 𝓎, 𝓏){[𝑟𝓍 (1 − 𝓍 − 𝓎 − 𝓏)–  𝑎𝓍] + [𝑠𝓎 (1 −  𝓎 − 𝓍 − 𝓏 ) − ( 𝑏𝓎 +

 𝑐𝓎𝓏)] + (𝑐𝓎 − 𝛿)𝓏} +𝛾𝒱̅3(𝓍, 𝓎, 𝓏)[(𝜎1𝓍)
2 + (𝜎2𝓎 )

2 + (𝜎3𝓏)
2] 

+
𝛾(𝛾+1)

2
𝒱̅4(𝓍, 𝓎, 𝓏)[(𝜎1𝓍)

2 + (𝜎2𝓎 )
2 + (𝜎3𝓏)

2]  

The upper bound of the function (1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾−2[𝜌(1 + 𝒱̅2(𝓍, 𝓎, 𝓏) )  + 𝒜] is described 

as: 

𝛾𝒱̅3(𝓍, 𝓎, 𝓏)[(𝜎1𝓍)
2 + (𝜎2𝓎 )

2 + (𝜎3𝓏)
2] ≤ 𝛾𝒱̅(𝓍, 𝓎, 𝓏)max{𝜎1

2, 𝜎2
2, 𝜎3

2} ,  

𝛾(𝛾+1)

2
𝒱̅4(𝓍, 𝓎, 𝓏)[(𝜎1𝓍)

2 + (𝜎2𝓎 )
2 + (𝜎3𝓏)

2] ≤
𝛾(𝛾+1)

2
𝒱̅2(𝓍, 𝓎, 𝓏)max{𝜎1

2, 𝜎2
2, 𝜎3

2},   (50) 

ℒ𝑒𝜌𝑡(1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾 = 𝑒𝜌𝑡(1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾−2[𝑒𝜌𝑡(1 + 𝒱̅(𝓍, 𝓎, 𝓏))2 +𝒜] 

≤ 𝑒𝜌𝑡(1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾−2 {𝜌 + [2𝜌 − 𝛾min{𝑟 − 𝑠, 𝑟 − 𝛿} +
𝛾𝐿

𝜂
max{𝑟, 𝑎} +

𝛾max{𝜎1
2, 𝜎2

2, 𝜎3
2}] 𝒱̅(𝓍, 𝓎, 𝓏) [𝜌 − 𝛾min{𝑟 − 𝑠, 𝑟 − 𝛿} +

𝛾𝐿

𝜂
max{𝑟, 𝑎} +

𝛾(𝛾+1)

2
max{𝜎1

2, 𝜎2
2, 𝜎3

2}] 𝒱̅2(𝓍, 𝓎, 𝓏)}.                                          (51) 

As of (45) and (46), we get a nonnegative constant 𝑄 satisfying ℒ𝑒𝜌𝑡(1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾 ≤

 Q𝑒𝜌𝑡. This implies that  

     𝔼[𝑒𝜌𝑡(1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾] ≤ (1 + 𝒱̅(𝓍, 𝓎, 𝓏))𝛾 +
𝑄(𝑒𝜌𝑡−1)

𝜌
                     (52) 

Therefore, 

lim
𝑡⟶∞

sup𝔼[𝒱̅(𝓍(𝑡), 𝓎(𝑡), 𝓏(𝑡))𝛾] ≤ lim
𝑡⟶∞

sup𝔼[(1 + 𝒱̅(𝓍(𝑡), 𝓎(𝑡), 𝓏(𝑡))
𝛾
)] ≤

𝑄

𝜌
.    (53) 

Note that, 

                        (𝓍 + 𝓎 + 𝓏)𝛾 ≤ 3𝛾(𝓍3 + 𝓎3 + 𝓏3)𝛾/3 = 3𝛾|𝓌|𝛾,       (54) 

where 𝓌 = (𝓍,𝓎, 𝓏) ∈ ℜ+
3 . Accordingly  

          lim
𝑡⟶∞

sup𝔼 [
1

|𝓌(𝑡)|𝛾
] ≤ 3𝛾 lim

𝑡⟶∞
sup𝔼[𝒱̅(𝓍(𝑡),𝓎(𝑡), 𝓏(𝑡))𝛾] ≤ 3𝛾

𝑄

𝜌
≔ ℛ.    (55) 

Assume that 𝒬 = (𝑣/ℛ)1/𝛾 for any 𝜈 > 0; then, it follows from Chebyshev’s inequality that  

 ℙ{|𝓌(𝑡)| < 𝒬} = ℙ{|𝓌(𝑡)|−𝛾 < 𝒬−𝛾} ≤ 𝔼[|𝓌(𝑡)|−𝛾]/𝒬−𝛾 ≤ 𝔼[|𝓌(𝑡)|−𝛾]/𝒬−𝛾,    (56) 
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i.e.,  

                         lim
𝑡⟶∞

infℙ{|𝓌(𝑡)| ≥ 𝒬} ≥ 1 − 𝜈.                      (57) 

Likewise, we may obtain  𝜒 >  0 for every 𝜀 >  0 so that 

lim
𝑡⟶∞

infℙ{|𝓌(𝑡)| ≤ 𝜒} ≥ 1 − 𝜈. 

System (22) is therefore stochastically persistent according to Definition 2.22. 

    The possibility of a species' population completely disappearing exists in population 

dynamics. Therefore, the study of species extinction is crucial to the ecosystem. 

Theorem 5.2. The solution 𝓌(𝑡) = (𝓍(𝑡),𝓎(𝑡), 𝓏(𝑡))  of system (22) will be extinct with 

probability one for every given initial value 𝓌(0) = (𝓍(0),𝓎(0), 𝓏(0)) ∈ ℜ+
3  when (H2) is 

fulfills. 

Proof. Suppose that 𝒱4(𝓍, 𝓎, 𝓏) = ln𝓍. Therefore   

   𝑑(ln 𝓍) = [𝑟 (1 − 𝓍 − 𝓎 − 𝓏 )–  𝑎 −
1

2
𝜎1
2] 𝑑𝑡 + 𝜎1𝑑𝔅1                 (58) 

Then  

    ∫ 𝑑(ln 𝓍(𝜏))
𝑡

0
= ∫ [𝑟 (1 − 𝓍(𝜏) − 𝓎(𝜏) − 𝓏(𝜏) )–  𝑎 −

1

2
𝜎1
2]

𝑡

0
𝑑𝜏 + ∫ 𝜎1

𝑡

0
𝑑𝔅1(𝜏).  

Consequently,  

ln 𝓍(𝑡) = ln 𝓍(0) + (𝑟 − 𝑎 −
1

2
𝜎1
2) 𝑡 − 𝑟 ∫ [𝓍(𝑢) + 𝓎(𝑢) + 𝓏(𝑢)]

𝑡

0
𝑑𝑡 + 𝜎1 ∫  𝑑𝔅1

𝑡

0
(𝑢). (59) 

Then  

               ln 𝓍(𝑡) ≤ ln𝓍(0) + (𝑟 − 𝑎 −
1

2
𝜎1
2) 𝑡 + 𝜎1𝔅1(𝑡).           (60) 

Hence  

    lim
𝑡 ⟶∞

ln𝓍(𝑡)

𝑡
≤ lim

𝑡 ⟶∞

ln𝓍(0)

𝑡
+ lim
𝑡 ⟶∞

(𝑟−𝑎−
1

2
𝜎1
2)𝑡

𝑡
+ lim
𝑡 ⟶∞

𝜎1𝔅1(𝑡)

𝑡
. 

Therefore, 

          lim
𝑡⟶∞

sup
ln 𝓍(𝑡)

𝑡
≤ 𝑟 − 𝑎 −

1

2
𝜎1
2 < 0, almost surely.                 (61) 

Also, define the Lyapunov function 𝒱5(𝓍, 𝓎, 𝓏) = ln𝓎; use Itô’s formula yield  

   𝑑(ln𝓎) = [𝑠 − 𝑏 − ( 𝓎 + 𝓍 + (1 + 𝑐)𝓏)) −
1

2
𝜎2
2] 𝑑𝑡 + 𝜎2 𝑑𝔅2.           (62) 

Then  

∫ 𝑑(ln𝓎)
𝑡

0
= ∫ [𝑠 − 𝑏 − ( 𝓎 + 𝓍 + (1 + 𝑐)𝑧)) −

1

2
𝜎2
2]

𝑡

0
𝑑𝑡 + ∫ 𝜎2

𝑡

0
𝑑𝔅2. 

Thus 
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ln 𝓎(𝑡) = ln𝓎(0) + (𝑠 − 𝑏 −
1

2
𝜎2
2) 𝑡 − ∫ ( 𝓎(𝑢) + 𝓍(𝑢) + (1 + 𝑐)𝓏(𝑢)))

𝑡

0
𝑑𝑢 + 𝜎2 ∫ 𝑑𝔅2(𝑢)

𝑡

0
          

(63) 

Consequently, 

ln 𝓎(𝑡) ≤ ln𝓎(0) + (𝑠 − 𝑏 −
1

2
𝜎2
2) 𝑡 + 𝜎2𝔅2(𝑡). 

Then  

lim
𝑡 ⟶∞

ln𝓎(𝑡)

𝑡
≤ lim

𝑡 ⟶∞

ln𝓎(0)

𝑡
+ lim
𝑡 ⟶∞

(𝑠−𝑏−
1

2
𝜎2
2)𝑡

𝑡
+ lim
𝑡 ⟶∞

𝜎2𝔅2(𝑡)

𝑡
. 

Hence  

          lim
𝑡⟶∞

sup
ln𝓎(𝑡)

𝑡
≤ 𝑠 − 𝑏 −

1

2
𝜎2
2 < 0, almost surely.             (64) 

Likewise,  define 𝒱6(𝓍, 𝓎, 𝓏) = ln 𝓏 as  the Lyapunov function, and then  

    𝑑(ln 𝓏) = (𝑐𝓎 (𝑢) − 𝛿 −
1

2
𝜎3
2)𝑑𝑡 + 𝜎3𝑑𝔅3                             (65) 

Therefore  

  ln 𝓏(𝑡) = ln 𝓏(0) + (−𝛿 −
1

2
𝜎3
2) 𝑡 + ∫  𝑐𝓎 (𝑢)

𝑡

0
 𝑑𝑢 + 𝜎3 ∫  

𝑡

0
𝑑𝔅3(𝑢).        (66) 

Consequently  

                 ln 𝓏(𝑡) ≤ ln 𝓏(0) + (𝑐 − 𝛿 −
1

2
𝜎3
2) 𝑡 + 𝜎3𝔅3(𝑡).               (67) 

Then  

lim
𝑡 ⟶∞

ln 𝓏(𝑡)

𝑡
≤ lim

𝑡 ⟶∞

ln 𝓏(0)

𝑡
+ lim
𝑡 ⟶∞

(𝑐−𝛿−
1

2
𝜎3
2)𝑡

𝑡
+ lim
𝑡 ⟶∞

𝜎3𝔅3(𝑡)

𝑡
. 

Therefore,  

     lim
𝑡⟶∞

sup
ln 𝓏(𝑡)

𝑡
≤ 𝑐 − 𝛿 −

1

2
𝜎3
2 < 0, almost surely.                         (68) 

Thus, the required claim is validated. 

 

6. STOCHASTIC STABILITY AND RANDOM ATTRACTORS 

Our focus in this section is on studying the stability of model (22), where we will show under 

certain conditions that the coexistence equilibrium points and the level equilibrium points are 

stochastically asymptotically stable. In addition, we will study the exponential stability, 

asymptotic stability, and random attractors of the random dynamical system generated by the 

SDEs system described in system (22). 

Theorem 6.1. The GAS for 𝐸0 = (0, 0, 0) of (22) occur when 𝜇1 ≔
𝑎

𝑟
>  1 and 𝜇2 ≔

𝑏

𝑠
>  1. 
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Proof. Suppose that a Lyapunov function  𝒱:ℜ3 ⟶ℜ, defined by 𝒱(𝓍, 𝓎, 𝓏) =  𝓍 + 𝓎 + 𝓏. 

Since  𝓍, 𝓎, 𝓏 > 0, then 𝒱(𝓍, 𝓎, 𝓏) > 0. The derivative of 𝒱 along the solutions of (22), can 

be computed by Itô formula ,  

ℒ𝒱(𝑋, 𝑡) = (𝑟 − 𝑎)𝓍 + (𝑠 − 𝑏)𝓎 − (𝑟 + 𝑠)𝓍𝓎 − 𝑟𝓍𝓏 − 𝑠𝓎𝓏 − 𝑟𝓍2 − 𝑠𝓎2. 

Now, ℒ𝒱(𝑂, 𝑡) = 0 , 𝑂 = (0,0,0) .Hence ℒ𝒱(𝑋, 𝑡) < 0  , whene 𝑟 < 𝑎   and 𝑠 < 𝑏 . Thus 

𝐸0 = (0, 0, 0) is GAS [34,35] and hence by Theorem 2.2 in [25] it is stochastically stable. 

Note that the equilibrium points of (22) are the steady-state solutions. Model (22) has one trivial 

equilibrium point which is  𝐸0 = (0, 0, 0) : signifies a free equilibrium wherever totally 

populations become extinct. 

Theorem 6.2. The equilibrium 𝐸1 = (𝜇1, 0, 0) , where 𝜇1 = 1 −
𝑎

𝑟
, of (22) is SAS on ∆ , 

whenever   

          𝜇1 ≥ 1,  𝜇1 >
2+𝑠−𝑏−𝛿

2
 and 

1

2

𝜎1
2𝑥1

𝑥2
≤ 𝜂1(𝑥, 𝑦, 𝑧),                         (69) 

Where 𝜂1(𝓍, 𝓎, 𝓏) = [𝓍(𝓍1 − 𝜇1) + 𝓎(𝑏 − 𝓍1 − 𝑠) + 𝓏(𝛿 − 𝓍1) + 𝜇1𝓍1]. 

Proof. We create the appropriate Lyapunov function in the manner described below: 

𝒱(𝓍, 𝓎, 𝓏) = (𝓍 − 𝓍1 − 𝓍1 ln
𝓍

𝓍1
) + 𝓎 + 𝓏.                      (70) 

 We define ℒ on 𝒱 to obtain 

ℒ𝒱(𝓍, 𝓎, 𝓏) = 𝓍 (1 + 𝓍1 −
𝑎

𝑟
) + 𝓎(𝓍1 + 𝑠 − 𝑏) + 𝓏(𝓍1 − 𝛿) − 𝓍𝓎 − 𝓍𝓏  

              +𝓍1 (
𝑎

𝑟
− 1) − 𝑠𝓎𝓍 − 𝑠𝓎2 − 𝑠𝓎𝓏 − 𝓍2 +

1

2

𝜎1
2𝓍1

𝓍2
            

            ≤ −[𝓍(𝓍1 − 𝜇1) + 𝓎(𝑏 − 𝓍1 − 𝑠) + 𝓏(𝛿 − 𝓍1) + 𝜇1𝓍1] +
1

2

𝜎1
2𝓍1

𝓍2
   

          = −𝜂1(𝓍, 𝓎, 𝓏) +
1

2

𝜎1
2𝓍1

𝓍2
                                                    (71) 

If 𝜇1 ≥ 1,  𝜇1 >
2+𝑠−𝑏−𝛿

2
, it follows that 𝜂1(𝓍, 𝓎, 𝓏) ≥ 0. By assumptions, ℒ𝒱(𝓍,𝓎, 𝓏) < 0 on 

∆= {(𝓍,𝓎, 𝓏) ∈ ℜ+
3 : 𝜂1(𝓍, 𝓎, 𝓏) = 0}. Therefore, 𝐸1 is SAS. 

Biological interpolation of Theorem 6.2: The cancer extinction equilibrium 𝐸1 = (1 −

𝜇1, 0, 0), 𝜇1 =
𝑎

𝑟
: if the death rate of the infected cells is positive, they will follow the extinction of 

cancer. 

Theorem 6.3 The equilibrium 𝐸2 = (0,1 − 𝜇2, 0) of (22) is SAS on 𝒟, whenever 

     𝜇2 = 1, 
𝑠

𝑐(𝑠−1)
> 1, 

𝑠

𝑟−𝑎
> 1 and  

1

2

𝜎2
2𝑦2

𝑦2
≤ 𝜂2(𝓍, 𝓎, 𝓏)                 (72) 
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where  

 𝜂2(𝓍, 𝓎, 𝓏) = [(𝓎2 − 𝑟 + 𝑎 + 𝑠)𝓍 + (
𝑏

𝑠
− 1 − 𝓎2)𝓎 + (𝛿 − 𝓎2 −

𝑐

𝑠
𝓎2) 𝓏 + (1 +

𝑐

𝑠
−

𝑐)𝓎𝓏 + (1 −
𝑏

𝑠
)𝓎2]. 

Proof. For 𝐸2, define a Lyapunov function as follows 

𝒱(𝓍, 𝓎, 𝓏) = 𝓍 +
1

𝑠
(𝓎 − 𝓎2 − 𝓎2 ln

𝓎

𝓎2
) + 𝓏. 

So, 

ℒ𝒱(𝓍, 𝓎, 𝓏) = (𝑟 − 𝑎 − 𝑠 − 𝓎2)𝓍 + (1 + 𝓎2 −
𝑏

𝑠
)𝓎 + (𝓎2 − 𝛿 +

𝑐

𝑠
𝓎2) 𝓏  

          +(𝑐 − 1 −
𝑐

𝑠
)𝓎𝓏 + (

𝑏

𝑠
− 1)𝓎2 − 𝑟𝓍

2 − 𝑟𝓍𝓎 − 𝑟𝓍𝓏 − 𝓎2 +
1

2

𝜎2
2𝓎2

𝓎2
,   

where 𝓎2 = 1 −
𝑏

𝑠
. Thus 

ℒ𝒱(𝓍, 𝓎, 𝓏) ≤ (𝑟 − 𝑎 − 𝑠 − 𝓎2)𝓍 + (1 + 𝓎2 −
𝑏

𝑠
)𝓎 + (𝓎2 − 𝛿 +

𝑐

𝑠
𝓎2) 𝓏 + (𝑐 − 1 −

𝑐

𝑠
)𝓎𝓏 +

(
𝑏

𝑠
− 1)𝓎2 +

1

2

𝜎2
2𝓎2

𝓎2
.   

     = −𝜂2(𝓍, 𝓎, 𝓏) + +
1

2

𝜎2
2𝓎2

𝓎2
 

Thus  𝜂2(𝓍, 𝓎, 𝓏) ≥ 0 if 𝜇2 = 1, 
𝑠

𝑐(𝑠−1)
≥ 1, and 

𝑠

𝑟−𝑎
≥ 1. By assumptions, ℒ𝒱(𝓍,𝓎, 𝓏) < 0 

on {(𝓍, 𝓎, 𝓏) ∈ ℜ+
3 : 𝜂2(𝓍, 𝓎, 𝓏) = 0}. Therefore, 𝐸2 is SAS. 

Biological interpolation of Theorem 6.3: The virus population reaches zero at the virus extinction 

equilibrium 𝐸2 = (0, 1 − 𝜇2, 0), indicating that normal cells are also extinct. 

Theorem 6.4. The equilibrium  𝐸3 = (0,
𝑑

𝑐
,
𝑠𝑐−𝑏𝑐−𝑑𝑠

𝑠+𝑐
) of  (22) is SAS on 𝒟, whenever   

                         
𝑎−𝑟+1

2(𝑠−𝑏−1)
> 1 and  

1

2

𝜎2
2𝓎3

𝓎2
+
1

2

𝜎3
2𝓎3

𝓎2
≤ 𝜂3(𝓍, 𝓎, 𝓏)                   (73) 

where  

𝜂3(𝓍, 𝓎, 𝓏) = [(𝑠𝓎3 − 𝑟 + 𝑎)𝓍 + (𝑏 + 𝑐 − 𝑠 − 𝑠𝓎3)𝓎 + (
𝛿

𝑧3
− 𝑠𝓎3 − 𝑐𝓎3) 𝓏 + (𝑐 + 𝑠 −

𝑐

𝓏3
)𝓎𝓏 + (𝑠𝓎3 − 𝑏𝓎3 − 𝛿)]  

Proof. Define   

𝒱(𝓍, 𝓎, 𝓏) = 𝓍 + (𝓎 − 𝓎3 − 𝓎3 ln
𝓎

𝓎3
) +

1

𝓏3
(𝓏 − 𝓏3 − 𝓏3 ln

𝓏

𝓏3
), 

where 𝓎3 =
𝑑

𝑐
 and 𝓏3  =

𝑠𝑐−𝑏𝑐−𝑑𝑠

𝑠+𝑐
 . Therefore,   
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ℒ𝒱(𝓍,𝓎, 𝓏) = (𝑟 − 𝑎 − 𝑠𝓎3)𝓍 + (𝑠 + 𝑠𝓎3 − 𝑏 − 𝑐)𝓎 + (𝑠𝓎3 + 𝑐𝓎3 −
𝛿

𝑧3
) 𝓏

+ (
𝑐

𝓏3
− 𝑠 − 𝑐)𝓎𝓏 + (𝑏𝓎3 − 𝑠𝓎3 + 𝛿) − 𝑟𝓍

2 − 𝑟𝓍𝓎 − 𝑟𝓍𝓏 − 𝑠𝓎𝓍 − 𝑠𝓎2

+
1

2

𝜎2
2𝓎3
𝓎2

+
1

2

𝜎3
2𝓏3
𝓏2

 

        ≤ (𝑟 − 𝑎 − 𝑠𝓎3)𝓍 + (𝑠 + 𝑠𝓎3 − 𝑏 − 𝑐)𝓎 + (𝑠𝓎3 + 𝑐𝓎3 −
𝛿

𝓏3
) 𝓏  

        +(
𝑐

𝓏3
− 𝑠 − 𝑐)𝓎𝓏 + (𝑏𝓎3 − 𝑠𝓎3 + 𝛿) + 

1

2

𝜎2
2𝓎3

𝓎2
+
1

2

𝜎3
2𝓏3

𝓏2
  

        = −𝜂3(𝓍, 𝓎, 𝓏) + 
1

2

𝜎2
2𝓎3

𝓎2
+
1

2

𝜎3
2𝓏3

𝓏2
 

Clearly that 𝜂3(𝓍, 𝓎, 𝓏) ≥ 0 whenever  
𝑠𝛿

𝑐(𝑎−𝑟)
≤ 1, 

𝑠𝛿

𝑐(𝑏−𝑠+𝑐)
≤ 1, 

𝑠𝑐−𝑏𝑐−𝑠𝛿

𝑐
≤ 1, 

𝑠

𝑐+𝑏
≥ 1, and 

𝑠𝑐−𝑏𝑐−𝑠𝛿

𝑐
≥ 1.  Combining these conditions, we get the following condition 

𝑎−𝑟+1

2(𝑠−𝑏−1)
≥ 1. By 

assumptions, ℒ𝒱(𝓍,𝓎, 𝓏) < 0 on 𝒟. So, 𝐸3 is SAS. 

Biological interpolation of Theorem 6.4: According to the cancer-virus equilibrium 𝐸3 =

(0,
𝑑

𝑐
,
𝑠𝑐−𝑏𝑐−𝑑𝑠

𝑠+𝑐
), cancer cells and virus-infected cells with constant sizes are sent off while normal 

cells go extinct. 

Theorem 6.5. The equilibrium  𝐸4 = (
𝑐(𝑟−𝑎)−𝑟(𝛿+𝑏)−𝑎𝑠

𝑟𝑐
,
𝛿

𝑐
,
𝑎𝑠

𝑟𝑐
−
𝑏

𝑐
)  of  (22) is SAS on 𝒟 , 

whenever  
2𝑐+𝑏

𝑐+𝑠
< 𝜇1 <

𝑠𝑎𝛿−2𝑏𝑟𝛿

𝑟(𝑐−𝛿+𝑏)−𝑎(𝑐+𝑠)
  and  

1

2

𝜎1
2𝑥4

𝑥2
+
1

2

𝜎2
2𝑦4

𝑦2
+
1

2

𝜎3
2𝑧4

𝑧2
≤ 𝜂4(𝑥, 𝑦, 𝑧), where  

𝜂4(𝓍, 𝓎, 𝓏) = −(1 + 𝓍4 + 𝓎4) − (1 + 𝓍4 + 𝓎4)𝓎 − (𝓍4 + 𝓎4 +
𝑐

𝑠
𝓎4) 𝓏

− (
𝑎

𝑟
𝓍4 +

𝑏

𝑠
𝓎4 +

𝛿

𝑠
𝓏4) 

Proof. For the coexistence equilibrium, create the appropriate Lyapunov function as follows. 

𝒱(𝓍, 𝓎, 𝓏) =
1

𝑟
(𝓍 − 𝓍2 − 𝓍2 ln

𝓍

𝓍2
) +

1

𝑠
(𝓎 − 𝓎2 − 𝓎2 ln

𝓎

𝓎2
) +

1

𝑠
(𝓏 − 𝓏2 − 𝓏2 ln

𝓏

𝓏2
), 

Define ℒ on 𝒱(𝓍,𝓎, 𝓏) and grouping coefficients of the positive terms we get 

ℒ𝒱(𝓍, 𝓎, 𝓏) = (1 + 𝓍4 + 𝓎4) + (1 + 𝓍4 + 𝓎4)𝓎 + (𝓍4 + 𝓎4 +
𝑐

𝑠
𝓎4) 𝓏 + (

𝑎

𝑟
𝓍4 +

𝑏

𝑠
𝓎4 +

𝛿

𝑠
𝓏4) − 𝓍

2 − 𝓍𝓎 − 𝓍𝓏 −
𝑎

𝑟
𝓍 − 𝓍4 − 𝓎𝓍 − 𝓎

2 −
𝑏

𝑠
𝓎 −𝓎4 −

𝛿

𝑠
𝓏 −

𝑐

𝑠
𝓏4𝓎 +

1

2

𝜎1
2𝓍4

𝓍2
+
1

2

𝜎2
2𝓎4

𝓎2
+

1

2

𝜎3
2𝓏4

𝓏2
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≤ (1 + 𝓍4 +𝓎4) + (1 + 𝓍4 + 𝓎4)𝓎 + (𝓍4 + 𝓎4 +
𝑐

𝑠
𝓎4) 𝓏 + (

𝑎

𝑟
𝓍4 +

𝑏

𝑠
𝓎4 +

𝛿

𝑠
𝓏4) +

1

2

𝜎1
2𝓍4
𝓍2

+
1

2

𝜎2
2𝓎4
𝓎2

+
1

2

𝜎3
2𝓏4
𝓏2

 

= −𝜂4(𝓍, 𝓎, 𝓏) +
1

2

𝜎1
2𝓍4

𝓍2
+
1

2

𝜎2
2𝓎4

𝓎2
+
1

2

𝜎3
2𝓏4

𝓏2
   

We find that 𝜂4(𝓍, 𝓎, 𝓏) ≥ 0 if 
2𝑐+𝑏

𝑐+𝑠
< 𝜇1 <

𝑠𝑎𝛿−2𝑏𝑟𝛿

𝑟(𝑐−𝛿+𝑏)−𝑎(𝑐+𝑠)
. By assumptions, ℒ𝒱(𝓍,𝓎, 𝓏) <

 0 on 𝒟 = {(𝓍,𝓎, 𝓏) ∈ ℜ+
3 : 𝜂4(𝓍, 𝓎, 𝓏) = 0}. Therefore, the coexistence equilibrium 𝐸4 of (22) 

is SAS. 

Biological interpolation of Theorem 6.5: Three population coexistence equilibrium 𝐸4 =

(
𝑐(𝑟−𝑎)−𝑟(𝛿+𝑏)−𝑎𝑠

𝑟𝑐
,
𝛿

𝑐
,
𝑎𝑠

𝑟𝑐
−
𝑏

𝑐
): There are all three cell types, and their populations are steady. 

    The remaining part of this section is dedicated to studying the asymptotic stability, exponential 

stability, Lyapunov exponent, and random attractors of the stochastic dynamic system generated 

by the stochastic differential equations system (22). 

Theorem 6.6. Consider the system  

                {

𝑑𝓍 = 𝑟𝓍 (1 − 𝑥 )𝑑𝑡 + 𝜎1𝓍𝑑𝔅1
𝑑𝓎 = 𝑠𝓎 (1 −  𝓎 )𝑑𝑡 + 𝜎2𝓎𝑑𝔅2
𝑑𝓏 = −𝛿𝓏𝑑𝑡 + 𝜎3𝓏𝑑𝔅3

                    (74) 

corresponding to the original (non-linear) system (22). The random equilibriums  of this linear 

system are GAS and exponentially stable. 

Proof From the first equation we have  

                  𝓍(𝑡) =
exp{(𝑟−

1

2
𝜎1
2)𝑡+𝜎1𝔅1(𝑡)}

𝓍−1+𝑟 ∫ exp{(𝑟−
1

2
𝜎1
2)𝜏+𝜎1𝔅1(𝜏)}

𝑡
0

𝑑𝜏
                           (75) 

The equation (75) induce the RDS (𝜃, 𝜑𝓍) where  

                       𝜑𝓍(𝑡, 𝜔)𝓍 = {

exp{(𝑟−
1

2
𝜎1
2)𝑡+𝜎1𝔅1(𝑡)}

𝓍−1+𝑟 ∫ exp{(𝑟−
1

2
𝜎1
2)𝜏+𝜎1𝔅1(𝜏)}

𝑡
0 𝑑𝜏

, 𝓍 > 0

0 𝓍 = 0

  

This RDS is strictly order-preserving in ℝ+. the random set 𝒜(𝜔) = [0, 𝑢(𝜔)] is a random 

attractor for (𝜃, 𝜑𝑥) in ℜ+, where 𝑢(𝜔) ≥ 0 is a random equilibrium.  

Consequently 𝒜(𝜔) = {
{0}, 𝑟 < 0

[0, 𝑢𝛼,𝛽,𝑁(𝜔)], 𝑟 > 0
,  where 𝑢𝛼,𝛽,𝑁(𝜔) ≔ 𝑟 ∫ exp{𝑟𝜏 +

0

−∞

𝜎1𝔅1(𝜏, 𝜔)} 𝑑𝜏 
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In addition, it can be  shown that there exists   a 𝛾 > 0 with  

 lim
𝑡⟶∞

𝑒𝛾|𝜑𝓍(𝑡, 𝜃−𝑡𝜔)𝓍 − 𝑢𝛼,𝛽,𝑁(𝜔)| = 0 , ∀ 𝓍 > 0 ,𝜔 ∈ Ω.                  (76) 

If 𝑛 = 2𝑚 + 1 is odd, 𝑚 ≥ 1, then the first equation of the system (74) is invariant with 

respect to the transformation 𝓍 ⟼ −𝓍. 

The random set    𝒜𝓍(𝜔) = {
{0}, 𝛼 < 0

[−𝑢𝛼,𝛽,𝑛(𝜔), 𝑢𝛼,𝛽,𝑛(𝜔)], 𝛼 > 0
   , is the random attractor of 

(𝜃, 𝜑𝓍)  .In the latter case 𝑢𝛼,𝛽,𝑛(𝜔)  ( resp. −𝑢𝛼,𝛽,𝑛(𝜔) ) is globally stable random 

equilibrium and 𝑢0 ≡ 0 is an unstable random equilibrium. So, as 𝛼 increases through 0. 

From the second equation we have  

              𝓎(𝑡) =
exp{(𝑠−

1

2
𝜎2
2)𝑡+𝜎2𝔅2(𝑡)}

𝓎−1+𝑠∫ exp{(𝑆−
1

2
𝜎2
2)𝜏+𝜎2𝔅2(𝜏)}

𝑡
0 𝑑𝜏

                    (77) 

The equation (77) induce the RDS (𝜃, 𝜑𝓎) where  

                       𝜑𝓎(𝑡, 𝜔)𝓎 = {

exp{(𝑠−
1

2
𝜎2
2)𝑡+𝜎2𝔅2(𝑡)}

𝓎−1+𝑠∫ exp{(𝑆−
1

2
𝜎2
2)𝜏+𝜎2𝔅2(𝜏)}

𝑡
0 𝑑𝜏

, 𝓎 > 0

0 𝓎 = 0

 . 

This RDS is strictly order-preserving in ℜ+ . The random set ℬ𝓎(𝜔) = [0, 𝑣(𝜔)] is a 

random attractor for (𝜃, 𝜑𝓎)  in ℜ+ , where 𝑣(𝜔) ≥ 0  is a random  equilibrium. 

Consequently ℬ𝓎(𝜔) = {
{0}, 𝑠 < 0

[0, 𝑣𝛼,𝛽,𝑛(𝜔)], 𝑠 > 0
,  where  

𝑣𝛼,𝛽,𝑛(𝜔) ≔ 𝑠 ∫ exp {(𝑠 −
1

2
𝜎2
2) 𝜏 + 𝜎2𝔅2(𝜏, 𝜔)}

0

−∞
𝑑𝜏. 

In addition, it can be  shown that (see Proposition 1.14) there exists   a 𝛾 > 0 with  

     lim
𝑡⟶∞

𝑒𝛾|𝜑𝓎(𝑡, 𝜃−𝑡𝜔)𝓎 − 𝑣𝛼,𝛽,𝑛(𝜔)| = 0 , ∀ 𝑥 > 0 ,𝜔 ∈ Ω.          (78) 

If 𝑛 = 2𝑚 + 1 is odd, 𝑚 ≥ 1, then the second equation of the system (74) is invariant with 

respect to the transformation 𝓎 ⟼ −𝓎. 

The random set 𝐴𝓎(𝜔) = {
{0}, 𝛼 < 0

[−𝑣𝛼,𝛽,𝑛(𝜔), 𝑣𝛼,𝛽,𝑛(𝜔)], 𝛼 > 0
    is an attractor of (𝜃, 𝜑𝓎) .In 

the latter case 𝑣𝛼,𝛽,𝑛(𝜔) ( resp. −𝑣𝛼,𝛽,𝑁(𝜔)) is globally stable random equilibrium and 

𝑢0 ≡ 0 is an unstable random equilibrium. So, as 𝛼 increases through 0.  

From the third  equation we have 𝑑𝓏 ≥ −𝛿𝓏𝑑𝑡 + 𝜎3𝓏𝑑𝑊3. The equation 𝑑𝓏 = −𝛿𝓏𝑑𝑡 +

𝜎3𝓏𝑑𝔅3 creates an affine RDS (𝜃, 𝜑𝓏) in ℝ. Then 𝜑𝓏 admits the form (4), where 

φ𝓏(𝑡, 𝜔)𝓏 = Φ𝓏(𝑡, 𝜔)𝓏 = 𝓏 exp {− (𝛿 +
𝜎3
2

2
) 𝑡 + 𝜎3𝔅3(𝑡, 𝜔)}. 
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Then 𝜆3 ≔ −(𝛿 +
𝜎3
2

2
) is the (top) Lyapunov exponent for (𝜃, 𝜑𝓏). Since 𝜆3 ≔ −(𝛿 +

𝜎3
2

2
) < 0 ( from the fact that (𝛿 +

𝜎3
2

2
) > 0) , consequently  (𝜃, φ) is dissipative[36] in the 

universe of all tempered subsets of ℜ. It follows from Proposition 1.13 that , (𝜃, 𝜑𝓏) admits  

a unique equilibrium 𝑢(𝜔).  Since 

𝑢(ω) ≔ lim
t⟶+∞

𝜓(𝑡, 𝜃−𝑡𝜔) and 𝜓(𝑡, 𝜔) = 𝛽 ∫ exp{𝜆(𝑡 − 𝜏) + 𝜎(𝔅𝑡(𝜔) − 𝔅𝜏(𝜔))}
𝑡

0
𝑑𝜏 

then  𝓏∗(𝜔) = {0}. This equilibrium is measurable with respect to the past 𝜎 −algebra ℱ− 

(see [26] Sec.1.10) and exponentially stable[18,19] .This equilibrium is GAS [18,19].   

From the above discussion we have two random equilibriums of the linear system (74) 

Corresponding to the original  system (22). They are  𝑋1(𝜔) = (𝓍∗(𝜔),𝓎∗(𝜔), 0), and 

𝑋2(𝜔) = (𝑢𝛼,𝛽,𝑛(𝜔), 𝑣𝛼,𝛽,𝑛(𝜔), 0).The last one occur when  𝑟, 𝑠 < 0.  The equilibrium 

𝑋1(𝜔) = (𝓍
∗(𝜔),𝓎∗(𝜔), 0) is the random super-equilibrium of the original system (22) 

which is measurable with respect to the future 𝜎 −algebra ℱ+. This equilibrium is GAS and 

exponentially stable Proposition 1.13. 

Theorem 6.7 The random equilibrium 𝑋0(𝜔) = (0,0,0)  of the linear stochastic system  

                      {

𝑑𝓍 = 𝑟𝓍 𝑑𝑡 + 𝜎1𝓍𝑑𝔅1
𝑑𝓎 = 𝑠𝓎 𝑑𝑡 + 𝜎2𝓎𝑑𝔅2
𝑑𝓏 = −𝛿𝓏𝑑𝑡 + 𝜎3𝓏𝑑𝔅3

                        (79) 

is a super-equilibrium of the (non-linear) system (22) which is GAS and exponentially stable.  

Proof. The equation 𝑑𝓍 = 𝑟𝓍𝑑𝑡 + 𝜎1𝓍𝑑𝑊1 creates an affine RDS (𝜃, 𝜑𝓍) in ℜ. Then 𝜑𝓍 

admits the form (5), wherever 

φ𝓍(𝑡, 𝜔)𝓍 = Φ𝓍(𝑡, 𝜔)𝓍 = 𝓍 exp{𝑟𝑡 + 𝜎1𝔅1(𝑡, 𝜔)}. 

Then 𝜆1 ≔ 𝑟 is the (top) Lyapunov exponent for (𝜃, 𝜑𝓍).   

If 𝜆1 ≔ 𝑟 > 0, then (θ, φ𝓍)  possesses the equilibrium 𝓍∗(𝜔)  = 0 which is measurable 

with respect to the future 𝜎 −algebra ℱ+. This equilibrium is GAS (see Proposition 1.13).  

The equation 𝑑𝓎 = 𝑠𝓎𝑑𝑡 + 𝜎2𝓎𝑑𝔅2 creates an affine RDS (𝜃, 𝜑𝓎) in ℜ. So, 𝜑𝓎 admits 

the form (5), wherever φ𝓎(𝑡, 𝜔)𝓎 = Φ𝓎(𝑡, 𝜔)𝓎 = 𝓎 exp{𝑠𝑡 + 𝜎2𝔅2(𝑡, 𝜔)}. Then 𝜆2 ≔ 𝑠 

is the (top) Lyapunov exponent for (𝜃, φy). Since 𝜆2 ≔ 𝑠 > 0, then the RDS (θ, φ𝓎)  

possesses the equilibrium 𝓎∗(𝜔)  = 0  which is measurable with respect to the future 

𝜎 −algebra ℱ+.This equilibrium is GAS (see Proposition 1.13.). 

   The equation 𝑑𝓏 = −𝛿𝓏𝑑𝑡 + 𝜎3𝓏𝑑𝑊3 creates an affine RDS (𝜃, φ𝓏) in ℜ. Then φ𝓏 
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admits the form (5), wherever 𝜑𝓏(𝑡, 𝜔)𝓏 = Φ𝓏(𝑡, 𝜔)𝓏 = 𝓏 exp{−𝛿𝑡 + 𝜎3𝔅3(𝑡, 𝜔)} .Then 

𝜆3 ≔ −𝛿 is the (top) Lyapunov exponent for (𝜃, φ𝓏). Since 𝜆3 ≔ −𝛿 < 0( from the fact 

that 𝛿 > 0) , consequently (𝜃, φ𝓏) is dissipative in the universe of all tempered subsets of 

ℜ. It follows from  Proposition 1.13 hat  (𝜃, φ𝓏) admits a unique equilibrium 𝑢(𝜔). As in 

Theorem 6.6,  we get 𝓏∗(𝜔) = {0}. This equilibrium is measurable with respect to the past 

𝜎 −algebra ℱ− (see [37]) and exponentially stable. This equilibrium is GAS. From the above 

discussion we get the point 𝑋0(𝜔) = (0,0,0)  is the random equilibrium of the system (79) 

corresponding to the system (22). Thus 𝑋0(𝜔) = (0,0,0) is the random super-equilibrium of 

the (non-linear) system (22) which is measurable with respect to the future 𝜎 −algebra ℱ+. 

This equilibrium is GAS and exponentially stable(see [26,38]). 

7. NUMERICAL SIMULATION 

Now, we do a numerical simulation to confirm the results and see how well they match reality, 

as well as to make our conclusions more realistic. The comparable estimation formulas are as 

follows: 

  𝓍𝑘+1 = 𝓍𝑘 + [𝑟𝓍𝑘 (1 − 𝓍𝑘 ) − 𝑟𝓍𝑘( 𝓎𝑘 + 𝓏𝑘)–  𝑎𝓍𝑘]∆𝑡 + 𝓍𝑘 [𝜎1√Δ𝑡𝜉𝑘,1 +
𝜎1
2

2
(𝜉𝑘,1
2 − 1)Δ𝑡]  

   𝓎𝑘+1 = 𝓎𝑘 + [𝑠𝓎𝑘 (1 − 𝓎𝑘 ) − 𝑠𝓎𝑘( 𝓍𝑘 + 𝓏𝑘) − ( 𝑏𝓎𝑘 +  𝑐𝓎𝑘𝓏𝑘)]∆𝑡       (80) 

                                  +𝑦𝑘  [𝜎2√Δ𝑡𝜉𝑘,2 +
𝜎2
2

2
(𝜉𝑘,2
2 − 1)Δ𝑡] 

        𝓏𝑘+1 = 𝓏𝑘 + ( 𝑐𝓎𝑘 − 𝛿)𝓏𝑘∆𝑡 + 𝓏𝑘 [𝜎3√Δ𝑡𝜉𝑘,3 +
𝜎3
2

2
(𝜉𝑘,3
2 − 1)Δ𝑡]. 

All of the numerical simulations were performed using the parameter values listed in Table 1 as in 

[9]. The choice of parameter units was made at random. 

 

Figure 1: Model dynamics using starting values of  𝓍0  =  0.6, 𝓎0  =  0.6, and 𝓏0 = 0.6. 
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Figure 2: Model dynamics using starting values of 𝓍 0 =  0.5, 𝓎0  =  0.5, and 𝓏0 =  0.6. 

 

Figure 3: Model dynamics using starting values of 𝓍0  =  0.6, 𝓎0  =  0.4, and 𝓏0 =  0.09. 

8. DISCUSSION 

In this work, we examined an oncolytic virotherapy model that was created in the research [5,6] 

to explain the relationship between viruses and cancer cells. We investigated the qualitative 

characteristics of the solutions in our study, and we utilized the findings to enhance and broaden 

the previous research. We anticipate that our research will help us better understand how virus 

cells interact with cancer cells. It is demonstrated in the aforementioned texts that a high viral 

clearance rate may lead to treatment failure. Nonetheless, treatment success is achieved by 

marginally lowering the viral clearance rate while maintaining the other parameter values. This is 

consistent with the outcome found in [6]. 

9.CONCLUSIONS  

According to the research, the effectiveness of the action is independent of the virus's propagation 

and death values when certain conditions on the death rates of normal and cancer cells are met. The 
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study emphasizes the significance of understanding the dynamics of virotherapy as both stochastic 

models and deterministic approaches reveal different behavioral insights. Key findings indicate 

that specific death and replication rate parameters significantly impact the stochastic model's 

dynamics, with sensitivity analysis showing that certain factors are crucial for the fundamental 

reproduction number. The paper concludes that further research is needed to explore additional 

stochastic effects to better explain virotherapy dynamics. 

CONFLICT OF INTERESTS 

The authors declare that there is no conflict of interests. 

 

REFERENCES 

[1] E. Kelly, S.J. Russell, History of Oncolytic Viruses: Genesis to Genetic Engineering, Mol. Ther. 15 (2007), 

651-659. https://doi.org/10.1038/sj.mt.6300108. 

[2] L.R. Paiva, C. Binny, S.C. Ferreira, M.L. Martins, A Multiscale Mathematical Model for Oncolytic Virotherapy, 

Cancer Res. 69 (2009), 1205-1211. https://doi.org/10.1158/0008-5472.can-08-2173. 

[3] D.R. Berg, C.P. Offord, I. Kemler, M.K. Ennis, L. Chang, et al., In Vitro and in Silico Multidimensional 

Modeling of Oncolytic Tumor Virotherapy Dynamics, PLOS Comput. Biol. 15 (2019), e1006773. 

https://doi.org/10.1371/journal.pcbi.1006773. 

[4] D. Dingli, M.D. Cascino, K. Josić, S.J. Russell, Ž. Bajzer, Mathematical Modeling of Cancer Radiovirotherapy, 

Math. Biosci. 199 (2006), 55-78. https://doi.org/10.1016/j.mbs.2005.11.001. 

[5] D. Dingli, C. Offord, R. Myers, K. Peng, T.W. Carr, et al., Dynamics of Multiple Myeloma Tumor Therapy with 

a Recombinant Measles Virus, Cancer Gene Ther. 16 (2009), 873-882. https://doi.org/10.1038/cgt.2009.40. 

[6] T.A. Phan, J.P. Tian, The Role of the Innate Immune System in Oncolytic Virotherapy, Comput. Math. Methods 

Med. 2017 (2017), 6587258. https://doi.org/10.1155/2017/6587258. 

[7] J.P. Tian, The Replicability of Oncolytic Virus: Defining Conditions in Tumor Virotherapy, Math. Biosci. Eng. 8 

(2011), 841-860. https://doi.org/10.3934/mbe.2011.8.841. 

[8] G.I. Evan, K.H. Vousden, Proliferation, Cell Cycle and Apoptosis in Cancer, Nature 411 (2001), 342-348. 

https://doi.org/10.1038/35077213. 

[9] Ž. Bajzer, T. Carr, K. Josić, S.J. Russell, D. Dingli, Modeling of Cancer Virotherapy with Recombinant Measles 

Viruses, J. Theor. Biol. 252 (2008), 109-122. https://doi.org/10.1016/j.jtbi.2008.01.016. 

[10] D.R. Berg, A Flexible Simulator for Oncolytic Viral Therapy, Master Thesis, University of Minnesota, (2015). 

https://hdl.handle.net/11299/174710. 

[11] M. Biesecker, J. Kimn, H. Lu, D. Dingli, Ž. Bajzer, Optimization of Virotherapy for Cancer, Bull. Math. Biol. 

72 (2009), 469-489. https://doi.org/10.1007/s11538-009-9456-0. 

[12] R. Durrett, S. Levin, Spatial Aspects of Interspecific Competition, Theor. Popul. Biol. 53 (1998), 30-43. 

https://doi.org/10.1006/tpbi.1997.1338. 



30 

KHANSSA KADHIM HASHIM, IHSAN JABBAR KADHIM 

[13] M.E. Younoussi, Z. Hajhouji, K. Hattaf, N. Yousfi, Dynamics of a Reaction-Diffusion Fractional-Order Model 

for M1 Oncolytic Virotherapy with CTL Immune Response, Chaos Solitons Fractals 157 (2022), 111957. 

https://doi.org/10.1016/j.chaos.2022.111957. 

[14] D. Wodarz, Gene Therapy for Killing P53-Negative Cancer Cells: Use of Replicating Versus Nonreplicating 

Agents, Hum. Gene Ther. 14 (2003), 153-159. https://doi.org/10.1089/104303403321070847. 

[15] J. WU, Analysis of a Three-Way Race Between Tumor Growth, a Replication-Competent Virus and an Immune 

Response, Bull. Math. Biol. 66 (2004), 605-625. https://doi.org/10.1016/j.bulm.2003.08.016. 

[16] H. Arnouk, B.A.R. Hassan, Advances in Precision Medicine Oncology, IntechOpen, 2021. 

https://doi.org/10.5772/intechopen.91507. 

[17] A. Abu-Rqayiq, M. Zannon, On Dynamics of Fractional-Order Oncolytic Virotherapy Models, J. Math. Comput. 

Sci. 20 (2019), 79-87. https://doi.org/10.22436/jmcs.020.02.01. 

[18] K. Fujii, Complexity-Stability Relationship of Two-Prey-One-Predator Species System Model: Local and 

Global Stability, J. Theor. Biol. 69 (1977), 613-623. https://doi.org/10.1016/0022-5193(77)90370-8. 

[19] D.M. Rommelfanger, C.P. Offord, J. Dev, Z. Bajzer, R.G. Vile, et al., Dynamics of Melanoma Tumor Therapy 

with Vesicular Stomatitis Virus: Explaining the Variability in Outcomes Using Mathematical Modeling, Gene 

Ther. 19 (2011), 543-549. https://doi.org/10.1038/gt.2011.132. 

[20] D. Wodarz, Viruses as Antitumor Weapons: Defining Conditions for Tumor Remission, Cancer Res. 61 (2001), 

3501-3507. 

[21] D. Wodarz, Computational Approaches to Study Oncolytic Virutherapy: Insights and Challenges, Gene Ther. 

Mol. Biol., 8(2004), 137-146. 

[22] D. Wodarz, A. Hofacre, J.W. Lau, Z. Sun, H. Fan, et al., Complex Spatial Dynamics of Oncolytic Viruses in 

Vitro: Mathematical and Experimental Approaches, PLoS Comput. Biol. 8 (2012), e1002547. 

https://doi.org/10.1371/journal.pcbi.1002547. 

[23] A. Abu-Rqayiq, H. Alayed, Dynamics of a Mathematical Model of Oncolytic Virotherapy with Tumor-Virus 

Interaction, J. Math. Comput. Sci. 31 (2023), 461-476. https://doi.org/10.22436/jmcs.031.04.08. 

[24] M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, Boston, MA, 2015. 

https://doi.org/10.1007/978-1-4899-7612-3. 

[25] X. Mao, Stochastic Differential Equations and Applications, Woodhead Publishing, 2007. 

https://doi.org/10.1533/9780857099402. 

[26] I. Chueshov, Monotone Random Systems Theory and Applications, Springer, Berlin, Heidelberg, 2002. 

https://doi.org/10.1007/b83277. 

[27] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 2012. 

https://doi.org/10.1007/978-1-4612-0949-2. 

[28] X. Mao, Stochastic Versions of the LaSalle Theorem, J. Differ. Equ. 153 (1999), 175-195. 

https://doi.org/10.1006/jdeq.1998.3552. 

[29] X. Li, X. Mao, Population Dynamical Behavior of Non-Autonomous Lotka-Volterra Competitive System with 

Random Perturbation, Discret. Contin. Dyn. Syst. A 24 (2009), 523-545. 

https://doi.org/10.3934/dcds.2009.24.523. 



31 

ONCOLYTIC VIROTHERAPY WITH TUMOR-VIRUS INTERACTION 

[30] A. Friedman, J.P. Tian, G. Fulci, E.A. Chiocca, J. Wang, Glioma Virotherapy: Effects of Innate Immune 

Suppression and Increased Viral Replication Capacity, Cancer Res. 66 (2006), 2314-2319. 

https://doi.org/10.1158/0008-5472.can-05-2661. 

[31] H.T. Ong, M.M. Timm, P.R. Greipp, T.E. Witzig, A. Dispenzieri, et al., Oncolytic Measles Virus Targets High 

CD46 Expression on Multiple Myeloma Cells, Exp. Hematol. 34 (2006), 713-720. 

https://doi.org/10.1016/j.exphem.2006.03.002. 

[32] C.L. Reis, J.M. Pacheco, M.K. Ennis, D. Dingli, In Silico Evolutionary Dynamics of Tumour Virotherapy, 

Integr. Biol. 2 (2010), 41-45. https://doi.org/10.1039/b917597k. 

[33] I.J. Kadhim, A. A. Yasir, Stochastic Dynamic Behavior for the Prey-Predator Problem with Holling-Type II 

Functional Response, Commun. Math. Biol. Neurosci. 2025 (2025), 44. https://doi.org/10.28919/cmbn/9169. 

[34] I.J. Kadhim, A.A. Yasir, Lyapunov Stability, Parallelizablity, and Symmetry of Random Dynamical Systems, 

Symmetry 17 (2025), 325. https://doi.org/10.3390/sym17030325. 

[35] I.J. Kadhim, A.A. Yasir, On Higher Prolongation and Prolongational Limit Sets for Random Dynamical 

Systems, J. Interdiscip. Math. 28 (2025), 169-181. https://doi.org/10.47974/jim-1847. 

[36] A.A. Yasir, I.J. Kadhim, Dissipative Random Dynamical Systems and Levinson Center, Nonlinear Funct. Anal. 

Appl. 28 (2023), 521–535. https://doi.org/10.22771/NFAA.2023.28.02.12. 

[37] Y. TAKEUCHI, N. ADACHI, Existence and Bifurcation of Stable Equilibrium in Two-Prey, One-Predator 

Communities, Bull. Math. Biol. 45 (1983), 877-900. https://doi.org/10.1016/s0092-8240(83)80067-6. 

[38] Z. H. Hasan, I. J. Kadhim, Stochastic Dynamics of a Targeted Chemotherapy-Cancer Model, Commun. Math. 

Biol. Neurosci. 2025 (2025), 48. https://doi.org/10.28919/cmbn/9176. 


