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Abstract: The treatment of cancer tumors varies based on cancer type, stage, location, and patient health. This
research focuses on viral therapy, which employs viruses that target and eliminate malignant cells while sparing
healthy ones. A stochastic model investigates suicidal viral tumor therapy, emphasizing the interaction between
tumorous and non-tumorous cells. The study analyzes the stochastic dynamics and stability of the system's
equilibrium points through stochastic differential equations. Key model factors affecting viral treatment outcomes are
identified through bifurcation parameters and sensitivity analysis, validated by numerical simulation.
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1. INTRODUCTION

There has been a lot of interest in viruses as potential tumor-destroying agents since the late 1880s.
Oncolytic virus history reveals that physicians have noted that some patients with cancer do
experience remission following viral infection [1]. Therefore, the viral therapy method has
received significant attention from researchers interested in studying cancer tumor treatments.
The chief problem that the researchers sought to answer is how to undermine the ability of those

viruses that cause the disease so that they convert appropriate as medicines. It turns out that
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viruses can Kill cancer patients' tumor tissues in the right circumstances. It has been discovered that
tumor tissues sustain far more damage than normal host tissues.

The majority of these viruses were deemed unsafe for use in cancer treatment due to their
pathogenicity. However, most viruses can have their pathogenicity removed without losing their
oncolytic effectiveness thanks to adaptability and genetic engineering approaches [2].

A type of immunotherapy called oncolytic virotherapy uses certain viruses to target and infect
tumor cells, causing them to proliferate and die. Viruses multiply inside infected tumor cells
during this process, releasing more virion particles that can infect more tumor cells. Because the
viruses utilized in this treatment can only replicate in cancer cells, healthy cells are largely
unaffected.By infecting neighboring or distant tumor cells, the freshly released viruses from the
lysed cells may initiate many cycles of infection.

Considerably work has recently been done to comprehend the molecular mechanics and
dynamics of oncolytic virus cytotoxicity. These initiatives offered an intriguing potential
substitute treatment strategy to aid in the recovery of cancer patients.

However, the outcomes of virotherapy are complicatedly influenced by both the immune
response and the virus-cancer interaction [3-7]. The majority of cancer treatments currently in
use were created empirically [8].

However, several mathematical models have recently been developed to describe the outcome of
such interactions. [9-15]. Other models and techniques are being developed to study the dynamics
of virotherapy [16-22].

This may not be the case, though, as it is obvious that local connections as well as the spatial
component play a significant role in population expansion (see, for example, [12]). Several
computational models of virotherapy were created with particular standard mathematical
frameworks, like diffusion-reaction models and Lotka-Volterra models, which typically assume
that populations are closely mixed. In general, there hasn't been any experimental evidence to
support many of the modeling techniques used today.

This problem has been addressed by developing an in vitro computational model which may be
explicit represent the relationships between viral and tumor populations [3,10]. They explored
several important characteristics of oncolytic viruses using the computational model after
informing the model parameters using in vitro 2D and 3D data. They demonstrated how adding a

third dimension drastically changes the dynamics, which has substantial effects on how well
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therapy works. Nevertheless, their research did not examine the model's mathematical and
qualitative characteristics. The qualitative characteristics of the model from [3,10] are
examined in [23], in addition to the behavior of the solution and the stability of rest points.
Significant features of the model make it intriguing from a mathematical and clinical standpoint.
In [24], Under particular circumstances, the study's stochastic model for the growing of malignant
cancers through targeted chemotherapy reveals a stable tumor-free equilibrium state. The paper
provides a thorough mathematical analysis of the cancer-virus interaction by examining
equilibrium points stability, sensitivity analysis, parameter impacts, and numerical simulations.
The results are compared with previous research.

This is how the paper is structured. A comprehensive overview of random dynamical systems
and stochastic differential equations is given in Section 2. Section 3 introduces the system of
stochastic differential equations that describes our situation and establishes its parameters. Section
4 shows the boundedness and positive invariance of the stochastic model. In Section 5, the
stochastic model's long behavior is examined. Section 6 looks at the random attractors and stability
analysis of the random dynamical system produced by the stochastic model. Section 7 displays the
model's numerical simulations and sensitivity analysis. Finally, conclusions and remarks are

offered in Sections 8 and 9.

2. PRELIMINARIES
This section focuses on presenting some basic concepts related to stochastic differential
equations and stochastic dynamic systems relevant to the research topic.

Let {&:}iso be a filtration of a complete probability space (Q,&, P), and B(t) =
(B1(0), ..., Bp(©))T, t =0 be an m —dimensional Brownian motion defined on (Q,F, P).
Let f: R X [to, T] — RY and g: R X [ty, T] — R¥™ be two Boral measurable functions.
Let

dx(t) = f(x(t), t)dt + g(x(t),t)dB(t)on t, <t <T (1)
be the Ito stochastic differential equation of d — dimensional with initial value x(t,) = x,,
where x,:Q — R be an &t,_measurable with E|xo|? < . Equation (1) is equivalent to

the equation:

x(t) = %y + ftto f(x(s),s)ds + ft’; g(x(s),s)dB(s) onty<t<T 2)
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For more detail see [25].

Definition 2.1 [25]: The solution of the equation (1) is the stochastic process {x(t)}¢,<t<r
where x(t) € R% such that
(@) {x(t)} is F.- adapted and continuous;
(b) {f(x(6), )} € L1([to, T, RY) and {g(x(t), )} € L2([to, T]; RP™);
(c) equation (2) holds for every t € [t,, T] with full measure.
Remark 2.2 [25]: From (2), we have
x2(t) = x(s) + fstf(x(r),r)dr + fstg(x(r),r)dﬁB(r) on s<t<T, se€E/|ty,T] 3)
Definition 2.3 [26]: A collection of measurable actions {0;: — ,t € R} is measurable
dynamical system (MDS) if every member in § is [P —invariant.
Definition 2.4 [26]: Consider the function
PRXAXX > X, (t,w,x) — o(t,w,x) ,
with the following axioms:
(1) forevery t € R and w € Q the function x+— @(t,w,x) = @(t, w)x is continuous,
(i1) the function ¢@(t, w): = @(t, w,") satisfy:
(0, w)x =2, p(t+s,w)x = p(t,0;w) o (s, w)x.
Then the pair (6, ¢) is called random dynamical system (RDS).
Definition 2.5 [26]: The RDS (6, ¢) is said to be affine if X is a linear Polish space and
o(t,w)x = ®(t,w)x + PY(t, w) €))
where ®(t,w) is a co-cycle over 0 and the function 1 : R X Q — X is a measurable. The
RDS (6, ¢) is called linear whenever ¥ (t,w) = 0 and it is written by LRDS. If (8,®) is a
LRDS, then ¢ in (4) is corresponding to
p(t+s,w) =0t 0;w)P(s,w)+ Yt bw), t,s = 0 (5)
Definition 2.6 [26]: Let X = (X,d) be a metric space. If the function y: Q — R, given by
P(w) = disty (%, D(w)), is measurable for each x, then a multifunction D: Q — 2* /{@} is a
random set. D is considered closed (rep. compact, bounded) if D(w) is closed (compact,
bounded) in X for w.
Definition 2.7 [26]: The random set D is called tempered if there exist »: Q0 — R and ¢ €
X with D(w) c {x:d(x,¢4) < r(w)} and

Supfem{e_“lrll/l’(ﬂtw )I} <o forevery a>0and w € Q. (6)
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Definition 2.8 [26]: A collection of closed random sets that are closed under inclusions called the
universe of sets.
Definition 2.9 [26]: A member B in the universe D is said to be absorbing for (6, ¢), if
there is a ty(w) with @(t,0_;w)D(0_;w) € B(w) forall t = ty(w), forall D €D and w €
Q.
Definition 2.10 [26]: An RDS (6, @) is dissipative in D if there exist a random variable
7 (w), 2y € X and absorbing set B in D such that B(w) containing in the random closed
ball B, () (xo).
Definition 2.11 [26]: A random equilibrium of (8,¢) is a measurable function u:Q+— X
with

p(t,w)u(w) =u(f;w), t = 0, w € Q.

Definition 2.12 [26]: The Lyapunov exponent for (8, ¢) is the smallest number A satisfy :

2w, x) = tETw%mg lotwxll, w € QF,t > 0 (7)

where P(Q*) = 1.
Proposition 2.13 [26]: Suppose that D is a universe with the following properties:
(i) {0} €D,
(i) AD(w) = {x:2171 € D(w)} € D forevery D(w) €D and 1 > 0,
(ii) D containing an attracting compact random set By(w) of asymptotically compact affine
RDS (6, ).
Then u(w) = tgrlloozp(t, 0_;w) exists (it is an equilibrium) and u(w) is globally
asymptotically stable (GAS), that is,
i supyenco_u |9 (t,0-c0)v — u(w)]| = 0, D €D,

Proposition 2.14.[26] If the LRDS (8, ®) admits a negative top Lyapunov exponent A as
well as for every w€Q there is a tempered compact set By(w) with
lim supyes, o) (¢, 0-¢) = bll = 0. Then
u(w) = tgr_lr_loogb(t, 0_;w) € By(w), w € Q.
Additionally, u(w) isthe unique almost surely equilibrium on Q* and
1im {7 Supyen(o_all0(t, 6-c0)v —u(@)Il} = 0, w €, ®)

where D c X is a tempered closed random set and y < —A.
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Proposition 2.15 [25]: Consider the SDE
dx = (ax +y)dt + (Bx + 6)dB, x(0) = x, 9)

where B is a standard Brownian motion and «,8,y, and & are real . The function

x(t,w) = YO (o + (y — B8) [} —=ds + 6 [, —

W) 0 39 PBE)) (10)

form a solution of (9), where

W(®) = exp (@~ 262)t + BB(D)) (1)
Scalar linear SDEs with multiplicative noise are common in financial applications because they
may be used to simulate strictly positive processes.

Theorem 2.16 [25] The solution x(t) of the nonhomogeneous linear SDE
dx(t) = [f1(6) + F2(O)x(O)]dt + [81(t) + g2 (D) 2(O)]dB(t) (12)

can be written
2() = 2o(0) {2(0) + [ 251 ()[F2(8) — 01.()g2()] ds + J, 2652 (5)81() dB(s)}

where 2o(t) = exp { [y [12(5) 3 63()] ds + [ g2(s) dB(s)}.
Proposition 2.17 [25] The function

ex;o{(rl(—%azzt+023t} >0,
274 [ exp{(rK—Eaz)s+023s}ds

Xt =

form a solution of the SDE
dx; = rx;(K — x¢)dt + ox,dB; .
Let CZ1( R x R*; R) be the class of all functions V: R* x R — R with the property that

they are continuously twice differentiable in x and once in t. For V € C*1( R x R*; R),

define
0%y LAY,
av av oV aZ'V axl.axl ) 6x1.6xd
Vt = E, Vt = (a, . @), vxx = PP — : ) :
Y dxd a2y 3%y
axdaxl axdaxd

Let V € C*1( S, x R*; RT), where 0 < h < o0. Define

2

3} 7] 1 a
L=—+TL fi(xt) P ~2i=1ls(x, 06" (x, 0]y Swony
as the differential operator related with (2). If £ acts on a function V € C%1( S, x R*; R), then

LY =V(x,t) + V,(x,t)f(x,t) + %trace[gT (x, )V, (x, ) g(x, t)].
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Definition 2.18[25](i) The trivial solution of equation (2) is said to be stochastically stable if for
every € € (0,1) and r > 0, there existsa § = (g, 7, ty) > 0 with
P{|lx(t; tg, xp)| <T:t>ty}>1—¢
when |x,| < &. Else, called a stochastically unstable.
(i) When the trivial solution is stochastically stable as well as for any ¢ € (0,1), thereisa &, =
6o(g,ty) > 0 with
]P{w: tli_)rrolo x(t;ty, xo) = 0} >1-¢
when |x,| < &, then it called stochastically asymptotically stable (SAS).
Theorem 2.19 [25] If there is V(x,t) € C(Sp X [t,0);RT), with V(x,t) >0 and
LY (x,t) <0
forall (x,t) € Sy X [t, ), then the trivial solution of (2) is stochastic stable.
Lemma 2.20 [27, 28]. If x:[0,00) x Q — R" is a stochastic process fulfill
Elx(t) — x2(s)|* < c|t —s|**%2, 0<s, t < oo, (13)
where a;, a,,c >0 and there is a continuous modification &(t) of x(t) so that, Vv €
(0,a2/al), 3 Y:Q — R*/{0} which is measurable with

|2(t,w)—3z(t,w)| 2 .
]P’{(U: SUPo<|t-s|<p(w),0<s,t<o [t—s|? = 1_2—17} =1 (14)

Definition 2.21 [29]. The solution x(t) of model (1) is called stochastically ultimately bounded
(SUB), if, for every £ € (0, 1), there exists § = §(¢) > 0, so that for every x, € R3, we have

tli_)rrgo sup P{|x(t)| > 8} < e. (15)
Definition 2.22 [29]. The solution x(t) of (1) has stochastic permanent property, if there is a
couple of real numbers ¢ = ¢@(v) >0 and y = y(v) > 0, v € (0,1) so that for any x, €
R3, we have

tlim infP{|lx(t)| = p} =1 -, tlim infP{lx(t)| < x} =1-v. (16)

3. MODEL FORMULATION
This section focus to study the deterministic and stochastic model for our main problem.
3.1 DETERMINISTIC MODEL
A classic three-species Lotka-Volterra system is the model under investigation; these systems

have been essential for modeling interspecies competition, this has a considerable impact on
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research of different competition models in biology, ecology, and medicine. Take [2,8,30] as an
example. Our model depicts three distinct cell types: normal cells (x), infected cancer cells (),
and cancer cells (¢). Based on predator-prey interactions, this mean-field model explains how
viral infection of tumor cells and tumor growth are related.

Tablel: Parameters Description, ref. [10]

Parameter Description Value Unit
r Proliferation of normal cells 0.5 1/h cell
a Death rate of normal population 0.2 1/h cell
s Proliferation of the uninfected cells 1.0 mm3 h/ cell
b Death rate of uninfected population 0.1 1/h cell
c Proliferation of the infected cells 1.2 mm3 h/ cell
d Death rate of the infected cells 0.1 1/h cell
o 0.1 Estimate
o, 0.7 Estimate
O3 0.2 Estimate

Although the important contact is mostly between infected and uninfected cells, the three model
parts can describe the fundamental dynamics of such a communication. The following situation is
used to formulate the model: One method for simulating virotherapy under discussion is to use a
network with nodes that are both empty and populated by the three different types of cells. Since
the virus is only meant to attack cancer cells and spreads from cell to cell, infected cells can only
attack and take over a node that is occupied by a cancer cell. In contrast, A neighboring empty
node must be occupied by the newly created cell when a normal or cancerous cell multiplies.
([31,32]). Since the virus primarily targets cancer cells and travels from cell to cell, Only a node
that is occupied by a cancer cell can be attacked and taken over by infected cells. . On the other
hand, whether a cancerous or normal cell proliferates, it needs to take up a neighboring empty node
([31,32]). The viruses arrive at different times, but they all follow the Poisson process, which has
exponential distributions for the time to the next event. The three different cell kinds' growth and
death rates can be changed, according to the model. It is also possible to specify the parameters of
virus infection [3,10].

All of the parameters in the model mentioned above are nonnegative, as well as it is controlled by

the differential equation system below:
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%: rx(l —x— —2z) — ax

d

f: sy(l —x —y—2) — by — cyz (17)
dz

— = cyzs — 03

dt

and the initial conditions are:  x(0) = xy > 0« »(0) = ¢¢ > 0 <and z(0) = 57 > 0:
where a, b, and d stand for the corresponding population's death rates, and r for proliferation.
The model is based on mass action kinetics and was fitted to data from in vitro studies [3,10].

Now, using the boundedness of the model equation (17), we offer specific constraints to bound
the system's solutions.
Theorem 3.1[23] With nonnegative initial conditions in the invariance region,

A={(x,y,5) ERI:x <1,y +3 <1}

every solution to system (17) is bounded and nonnegative.
Theorem 3.2 With positive initial conditions, every solution of system (17) in R3 is uniformly
bounded.

Proof. Set

w =x+y+23. (18)
So,
dw _ dx dz

_dx dy
at ~ dt = dt = dt
=[re(1l—=x)—rx(y+2)-ax]+[sy (11— y)—sy(x+ 2)—(by+ cyz)] +
(cy —d)z
<rx(1—x)—-rx(y+2)+sy(1l—-y)—sy(x+2z)—nx+ y+3),

where n = min{a, b, 6}. So, C;—f +nw <rx(1—-=x) +sy (11— ¢) <r+s. Assume that
A=r+s > 0,thisimplies ‘;—f+ nw < A. Hence
0 < wx9,2) < (1 -e) +w@(0),40),50)e ™, (19)
and letting t — +o0, from (15) yield
0<w(xyz)< % (20)
Consequently, the solution space of model (11) belongs to
D= {(x,';/l, z2) ERS:w = % + ¢, for every € > O}. (21)

Henceforth, the proof is completed.
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3.2 STOCHASTIC MODEL

As in [33], the stochastic model that agrees to (17) can be expressed as follows: It may happen
that the effector cells’ natural death rate (d,), intrinsic growth rate of tumor cells (1) ,
maximum carrying capacity of tumor cells (1/b;), normal cells’ growth rate (r,) and decay
rate of targeted chemo-drug (d,) are not totally identified nonetheless conditional on some
random ecological effects, so that

r(t) — r@) + 0,8, st) — s(t) + 0,8, ,and 5(t) — 8(t) — 0383,

where the probability distribution of the noise terms o;%B; is unknown, but 8;(t) denotes the
typical independent Brownian motions and og; > 0, i = 1,2,3. It is supposed that the functions

r(t),s(t), and §(t) are constants and nonrandom. Consequently, system (17) becomes into

dx = [rx(1 — x— ¢y — z) — ax]dt + 0,xdB,
dy= [sy(1l—-—x— y —32) — by— cyzldt+o,ydB, (22)
dz = [c yz — 6z]dt + 033dB;
or in the matrix form
dX =X, t)dt + g(X,t)dB, (23)
where
x rx(1 —x—y—3%) — ax 01% 0 0
X=<%>, fX)=|sy(1-x—- 9y -2 —by—cys ,g(X,t)=(0 o2 Y 0>,
z cyz— 06z 0 0 o032

B4
and B = (%2). Also, all  x(0) = x4 ¢« 4(0) = g, «and z(0) = 3, are positive.
B

3.3 MEDICAL INTERPRETATION OF THE MATHETICAL MODEL FOR NORMAL,
CANCEROUS, AND INFECTED CELLS

This mathematical model describes the temporal dynamics of three kinds of cells in the body:
normal cells (x), cancerous cells (¢), and infected cancerous cells (z). Random effects have been
included to represent environmental, therapeutic, or genetic mutation factors.

The first equation: natural cells (x)

- rx(1 — x): Logistic growth of natural cells.

- —rx(y + z): Decrease in normal cells due to competition with cancerous and infected cells.

- —ax: Natural loss of cells.

- 012d®B4: The effect of random environmental or therapeutic factors on normal cells.
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The second equation: cancer cells (¢)

s 4(1 — ¢): Autologous growth of cancer cells.

- —s y(x + 2): Negative effect of interaction with normal and infected cells.

- —b y: Natural loss or due to the immune system.

- —c yz: The transfer of some cancer cells to the affected type.

- 0, »ydB,: The influence of randomness on the growth or deterioration of cancer cells.

The third equation: infected cancer cells ()

- ¢ yz: The increase in the number of infected cells due to the interaction of cancer with the
infection.

- —63: Loss of infected cells due to treatment or natural deterioration.

- 033 dBs3: A direct random effect on the affected cells.

THE GENERAL INTERPRETATION OF THE MODEL

The model represents a dynamic communication between different types of cells in the body,
taking into account competition, interaction, and transformation from one type to another, in
addition to unexpected fluctuations that affect the system. This model helps in understanding
tumor development and treatment response, and can be used to simulate future therapeutic

strategies.

4. POSITIVE INVARIANCE AND BOUNDEDNESS OF THE STOCHASTIC

In this section we will show whether the solutions of the model (22) are biologically acceptable
or not for all the values of the parameters adopted in the model. So, we use the principle of
stochastic comparison to ensure that the solutions are positive and constrained [11].

Theorem 4.1. The solutions of (22) are bounded and nonnegative in A= {(x,4,32) € R3:x <

/11;)’ S /12, U}a
(r—%af)’ /12 . (5_2022), and /13 — C(S_S%GZ).

r

where A; =

Proof. First, we have

dx =[re(1—x2) —rx( 4y +2)- ax]ldt + [oy2 (1 —x) — oy 2( » + 3)]dB,
<rx(1—x)dt + o,x dW;.

Now, consider dx = rx (1 — x )dt + o,x dW;.
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exp{(r—%af)t+al‘l31(t)}
(£(0) 147 fot exp{(r—%of)r+01‘l31 (T)}d‘['

Then x(t) =

12)
r—=c
(21

Since dx < dx. Then tlim sup x(t) < tlim sup #(t).But tlim sup x(t) <

1 2)
r—=o
( 2 1
—T .

, SO

<

tlim sup x(t) <

Now,
dy=[sy(l—y)—sy(x+3z3)—(by+ cyz)|dt+o,4dB, <sy(l—y)dt+ o,y dB,
Consider the SDE  d# = s¢ (1 — 4 )dt + 0,4 dB,. Then

exp{(s—%ozz)tﬂrz B, (t)}

%) = (#(0))"1+s fotexp{(s—%azz)r+02582(r)}d‘r ’
: _ . . _ . _ (s—30%)
Since dy < d. Then thm sup ¢(t) < tllm sup #%(t). But tllm sup #(t) < i , SO
152
tlim sup y(t) < (S+O—2)
Finally, the solution of the SDE dz = (c¢ — 6)dt + 033dB3; is given by
2(t) = 2(0) exp | f; c () dr — 5t + 0;B5(8) |
Thus
) c(s—lazz)
thm sup z(t,w) < z(0) exp SZ t+ 03B5(t)].
(r——crf) (5—1022)
So, we have A= {(x,4,%) € R3:x < A,y < A,,v < A3}, where 1, :=—32—~ 1, = ; :

/13 = C(S_%GZZ).

N

The domain region A is positively invariant, which verifies that the model system (22) is
biologically feasible.

Theorem 4.2 The system (22) admits a unique positive local solution (x(t),#(t),z(t)) for
(%0, %0, 30) € Int(R3) and t € [0,7,) almost surely, where 7, is the explosion time.

Proof. Take the transformation of variables N =Inx, T =1In g, and I = Inz. Using the Itd

formula,
LV = V,(t ) + Ve(t, 2)f (£, ) + 5 trace (o7 (t, £)V,, (t, )a(t, 2)),

we get
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eNdN = [re” (1—eV)—reV(e® +e!)- aeV — %alzeN] dt + 0,eNdB;.
Then
LN = [r 1—-eV)—r(e+eD)-(a+ %012)] and dN = LN + 0,d%B,.

Likewise, we get, from (22)

dN = [r (l—eN)—r(eT+e’)—(a+%af)]dt+ald581,

dT =[s(1—eT)—s(eN+ e’)—ce’—(b+%ozz)]dt+azeTdSBZ, (24)
1

dl = |ce™ = (8 +302)|dt + 03ds.

with N(t) =lnx(t), T(t) =lny(t), and I(t) =Inz(t). At the present, the functions
conforming to (24) admit initial growth and they fulfill the local Lipchitz condition. Thus, there
is a unique local solution (N,T,I) definedin [0, z,).

Theorem 4.3. The model (22) has a unique solution (x(t), »(t),z(t)) for t € [0, t,) and for
every (xo, %o 20) € Int(R3) and P{(x(t), 4 (t),2(t)) € Int(R3):t =0} = 1.

Proof. In order to prove the existence of the global solutions it is sufficient to demonstration that the
global solution exists, it is sufficient to verify that P{r,, = oo} = 1. If K, € Z, is a sufficient
large such that (xq, 4, 2,) lies in the closed ball B(x,) € R3. For k > k,, we take and
describe the stop-time as

T, = inf{t €[0,te):x ¢ (i,x) ory & (%,K) orz ¢ (%,K) } (25)

Now, inf@ = oo (@is the empty set). So, 7, iS growing as k — . Let 7, = lim 7, ;

K—00

then, 7, < 7, almost surely. If P{t,, = o} =1, then P{r, = o} = 1. If this declaration is

false, i.e., if 7, # oo,then T > 0 and ¢ € (0,1) existwith

P{t, < T} > «. (26)
Hence, put Q, = {t, < T}, then k; = Kk, is an integer such that, for all k > x;,
P{r, <T}>¢ (27)
Define a function V:Int(R3) — Int(R,) as follows
Vx,y,z)=(x—-1-Inx)+(yg—-1—-Iny)+ (z—1-1In3), (28)

where V(x,y,z) > 0 forall (x,4,2) € Int(R3). By Itd's formula, yield
LV=x-Dr(A-x—-—y—23z)-al+@—-D[s(1 —x—y—3)—b+ cz)]

af+022+cr§)

+(z—1)(cy — &) + (2
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Taking the differential of V(x, ¢, z), one gets
dV(x,y,z) = f(x,4,z)dt + g(x,4,2)dB, (29)
where g(x,4,2) =0 (x—1)+0,(p — 1)+ 03(z—1) ,and

ie) = (B2%) - Dla—r(Q-x -4 -2)] - (g-Db-s1-x— -
2) - co)l —(z - DG —cy).

Then, there is M >0 so, |f(x,4,%)| <M, forall (x,4,3) € R3. It follows (29) that

me/\T d,]] (x’ y, Z) S meAT

’ M dt + [T o(x, ¢, 5) dB(L), (30)

where 7, AT = min{t,, T}. Considering the aforementioned inequality's expectations, yield
EV(x(ti AT), y(ti AT), z(t; AT)) < V(2(0),4(0),z(0)) + MT (31)
Note that no less than one of x(zy, w), ¢ (T, @), and z(ty, w) liesin {x, 1/k}, forevery w €
Q,; consequently,
V(x(t AT), 4(t AT),2(1 AT)) = (kk — 1 — Ink) A (% ~1-In %) (32)
Hence, from (27)
EV(x(ti AT), 9(ti AT), (1, AT)) = E[lg, )V (2 (ti AT), (1 AT), 2(ti AT))]
>e(c—1-Ii)A(3—1-1In3) (33)
Here I o) represents the characteristic functionof Q,. Using (32), we get
V(2(0),4(0),2(0)) + MT 2 £(c =1 = Inx) A (= — 1~ In<) (34)
k — oo implies to a contradiction: o > V(x(0),4(0),z(0)) + MT = o : Therefore,
P{te, = 0} = 1. Thus, P{(x(t), »(t),z(t)) € mt(R}):t =0} = 1.
Theorem 4.4. The solutions of system (22) are stochastically ultimately bounded, for every
initial value w, = (x¢, %0, 20) € R3.
Proof. From Theorem 4.3, we have P{w(t) € Int(R3):t > 0} = 1. Suppose that V;(t,x) =

etx? for 6 > 0. The It formula implies that

Vv, (tx) | dVi(tx) 192V, (tx) o

ot + ox fl(t,x,’y’; Z) +_7g1(t,x,’y-, Z)

LVl(t, X) = >

= etx? {14+ 0[r 1 -2~y —2)- al + 260 - 1)}

<et {[1 +718 + 07%9(9 - 1)] x0 — r6x9+1} < M,(6)e". (35)
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Taking the integral and expectation on two sides of the above inequality, yield efE(x?(t)) —

E(x§) < M;(0)et. Thus, lim sup,_. Ex?(t) < M;(6) < +oo. Suppose that V,(t,4) =

ety? for 6 > 0; the 1t6 formula, implies that

192V,(ty) o

fz(t, X, Y, Z) + _Wgz (tr X, Y, Z)

MV, (¢, oV, (ty)
LVz(t,’y)) — 2( y‘) + 2Ly -

at iy

:ety9{1+9[s(1 — y—x—z—cz)—b]+%%9(6—1)}

<et{[1+05s+Z0(0 - 1]y’ - 5471} < My(0)e"
Taking the integral and expectation on two sides of the above inequality , yield
e'E(y? (1)) — E(yf) < My(6)e’.
Thus,
lim sup;_ E4?(t) < My(0) < +oo.
Similarly, suppose that V5(t,z) = efz? for 6 > 0; it follows from 1td formula that

6V3 (t,Z) + 6V3(t,z)
at 0z

192V5(t3) o

LV3(t, Z) = E g3(tl x, Y, Z)

fB(t; X, %: Z) +
=e'z9 +0e'z9 1 (cz — &)z + %9(0 —1Detz%7 20252

<et{1+00y+20(0 - 1D}z < My(0)e
Taking the integral and expectation on two sides of the above inequality , yield
e'E(z0 (1)) — E(z8) < M;(0)et.
Thus
lim sup;_,0 Ez%(t) < M3(0) < +oo.
For w(t) = (x(t),5(t),z3(t)) € R3, we may get
lw (®)1° < Bmax{x®(t), 4> (1), > (ON?? <3973« + 4° () + 5°(1)).
tli_)r%o sup Elw ()|® < M,(8) < +oo,

(36)

37)

(3%)
(39)

0
where M,(6) = 33(M,(0) + M,(6) + M3(6)). The Chebyshev inequality leads us to the

conclusion that every solution is stochastically bounded.

It is remain to demonstrate that the positive solution using basic features and appropriate

Lyapunov functions

w(t) = (x(t),»(t), z(t)) isuniformly Hoélder continuous.
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Theorem 4.5. Every sample path of (x(t), ¢ (t),z(t)) is uniformly continuous, where
(x(t),4(t),z(t)) isasolution of system (22) on t > 0 with (xq, %0, 30) € RS .
Proof. It follows from the first equation of (22) that

x(t) = %y + fot[rx(u) (1 -2 —y@ —3zw)- ax(u)] du + fot o12(w) dB, (u).
Assume that fy(w) = [re) (1 —x@) — gy W) — 3(w))- az(w)] and f,(u) = oyx(u). We
infer from Theorem (4.4) that
Elf,(t)|° = Elrx (1 —x — ¢ — 3)- azl°

< 1E|x|?0 + %[Elr +rx+ry +713)|*°

=N

SEE|x|29+449_3/2[T29+T29[E|x|29 +r291E|/y)|29+r291E|z|29]

3
< = My(20) +4*072[r20 + 20 M1 (20) + 120 M, (26) + 120 M3(26)] = Fy ().

Elf,(1)I° = Eloyx(t)|° = of Elx|° < 07 M;(6) < F,(). (40)
For stochastic integrals, we use the moment inequality for 0 < t; <t, and 8 > 2, to obtain
The moment inequality for0 < t, <t, aswell as 8 > 2is used for stochastic integrals to derive

0(6-1)

6/2
=) (6 — ) O/ [ EIf, W) du

¢ 0
E|f,7 2w dwi )| < (

—_1\9/
< (0)" ¢, - 1)072F; (0). (41)

Thus, for 0 <t; <t, <oo, t, —t; <1, (%>+(%)=1 (org+1=0),weget

(2]

Elx(t;) — 2(t)|° = E | [ f, () du + [ f,(w) dB, ()|
ts o t; o

< 29 [[Pf, ) du| +2°7 B[ f,(w) dB, (w)|

< 20-1(t, — t,)9/2 {(tz —t)%2F,(0) + (@)9/2 Fz(g)}

< 20-1(t, — tl)g {1 + (@)E}F(H) (42)

where F(68) = max{F,(60),F,(0)}. By Lemma 2.20, for each exponent v € (0, (6 — 2)/26),
the uniform continuity of each sample path of x(t) on R3 is demonstrated by the fact that each
sample path of x(t) is uniformly and locallylder continuous. Each sample path of x(t) on R3

is uniformly and locally continuous, proving the uniform continuity of each sample path. Similarly,
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on R3, the uniform continuity of 4(t) and z(t) is demonstrated. As a result, on ¢ > 0, we

obtain the uniform continuity of each sample path of (x(t), »(t),z(t)) to system (22).

5. LONG TIME BEHAVIOR OF SYSTEM
We focus our attention in this section on the long-term behavior of the system. For this purpose,

we will define two hypotheses that will be useful in the stability analysis later.

(H1): %max{r, a} + %max{alz, 02,02} < min{r —s,r — &}

H2: r—a-2<0, s-b-Z<0,c-5-2<0 43)
We will first demonstrate stochastic persistence, which is crucial to population dynamics. Here is
how we talk about this property:

Theorem 5.1. If (H,) fulfills , then model (22) is stochastically permanent.

Proof. For w(0) = (x(0),%(0),z(0)) € R3, we show that a solution wr(t) =

(x(t), (), z(t)) exists such that

tli_}rr; sup E (Iw(t)l”) <M, (44)
where y € R, fulfills
%max{r, a} + @max{af, 0Z,02} < min{r — s, — &} (45)
By (45), thereisa p > 0 fulfills
min{r —s,r — 8} —p — %max{r, a} — %max{alz,azz, az} > 0. (46)

Define V(x,4,3) =x+y + 2z for (x,4,3) €RY and V(x,4,2) = 1/V(x,4,3); so

dV(x,y,2)={re(1l—x—y—2z)-ax]+[sy (1 —y—x—23)— (by+ cyz)] + (cy

— 6)z}dt
+(012dB, + o,y dB, + 033dB3)

dV(x,4,2) = —V*(x,4,23){rr(1l—-x—y—2)-ax]+[sy 1 —y—x—2)—(by +
cyz)] + (cy — 6)z}dt
+V2(x,4,2)[(012)* + (0,4 )? + (033)%]dt — V?(x, 4, 2)(012dB, + 0,4 dB, + 0;5dB3)
= LV(x,4,3)dt — V*(x,4,3)(0,2dB; + 0,4 dB, + 032dB3) (47)
We choose y > 0 under (H1) so that condition (45) is satisfied. Therefore
LOA+V(x,4.2) =y(1+V(x,4,2) 1LV (x4, 2)

+oy(r = DA+ V(x,4,2) 2V (2, 4,2) X [(0:2)% + (0,4 )? + (032)2]. (48)
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Then, we select p > 0 so that (46) is satisfied. So,
LeP (1 +V(x,4,2)) = peP (1 +V(x,4,2)) +eP L1+ V(x,4, 3))

=eP 1+ V(x,4,2)) *[p(1 4+ V(x,4,2))* + A] (49)
where
A=—yVi(x,y,5){rx(1l—x—y—2)-ax]l+[sy (1 —y—x—3)—(by + cyz)] +
(cy —8)z} vV (x,y2)lrx(1—x—y—2)-ax]l+[sy (1 — y—x—3)— (by+
cyz)] + (cy — 8)z} +yV(x,4,2)[(012)* + (029 )* + (032)°]
+ 10D (2,4, 2)[(012)% + (029 ) + (032)°]
The upper bound of the function (1 + V(x,4,%))Y ?[p(1 + V?(x,4,3)) + A] is described
as:
yVi(x, 4, 2)[(012)% + (024 )? + (032)°] < yV(%, 4, 2) max{o{, 07,05}
HERV (2,4, ) (012)? + (029)? + (032)%) < FEP V2 (w9, 5) maxdot, of, 03}, (50)

LeP*(1+V(x,4,2)) =ePt(1+V(x,4,2)) %[ePt(1+V(x,4,2))?* + Al

<ef(1+V(x4,2) " {p + [Zp —ymin{r —s,r — 8§} + Y,,—Lmax{ﬂ a}+

y max{o?, 62, 032}] V(x,4,3) [p —ymin{r —s,r — 6} + %Lmax{r, a}+

Mmax{(rlz, o2, 032}] V2(x,y, z)}. (51)

As of (45) and (46), we get a nonnegative constant Q satisfying Le*(1 + V(x,4,3))" <
Qe”t. This implies that
E[e” (1 + V(r,4,2))'] < (1 + V(xy,2) + LD (52)
Therefore,
Jim sup E[V(x(t),4(t),z(t)"] < Jim sup E[(1 + V(2 (), %), z(0))] < % (53)
Note that,
(x+y+3)Y <373+ 43+ 333 =3"w], (54)

where w = (x,4,2) € R3. Accordingly

lim sup E [——] < 37 Jim sup E[V(x(8), 4(8), 20" < 3V ¢:= R, (55)

t—oo lw ()Y
Assume that Q = (v/R)YY forany v > 0; then, it follows from Chebyshev’s inequality that
P{lw (®)| <9} = P{lw (O™ <97} < E[lw®I77]/Q7Y < E[lw®I77]/Q7",  (56)
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th_{& infP{lw ()| =0} =1 —w. (57)
Likewise, we may obtain y > 0 forevery € > 0 so that
tli_)rrgo infP{lw@®)| < xy}=1-v.
System (22) is therefore stochastically persistent according to Definition 2.22.
The possibility of a species’ population completely disappearing exists in population
dynamics. Therefore, the study of species extinction is crucial to the ecosystem.
Theorem 5.2. The solution w(t) = (x(t),»(t),z(t)) of system (22) will be extinct with
probability one for every given initial value w(0) = (x(0),4(0),z(0)) € R3 when (H2) is
fulfills.
Proof. Suppose that V,(x, 4, z) = Inx. Therefore
d(Inx) = [r (1l-x—y—3)- a—%af]dt+01d581 (58)
Then
[y dnzx(@) = [} |[r (1 - 2(1) - () — 5(2) )- @ —3 07| d + f; 0, dB, (7).
Consequently,

Inx(t) = In2(0) + (r —a— %012) t—r i [xw) + @) + zW]dt + 0y [, dB; (W). (59)

Then
Inx(t) <lnx(0) + (r —a-— %012) t + 0,B,(0). (60)
Hence
In x(t) In x(0) (r-a-30%)t 0184 (t)
lim —= < lim ——+ lim ~—2—+ lim /=,
t—oo t t > t —oo t —oo
Therefore,
tlirn sup@ <r—a- %012 < 0, almost surely. (61)

Also, define the Lyapunov function Vs(x, ¢, z) = Ing; use 1t6’s formula yield
dny) = [s—b— (g +x+(1+0)2) —20%|dt + 0, dB,. (62)
Then
fyd(ngy) = [}[s—b= (g +x+1+0)2) —0f|dt + [ 0,d%B,.
Thus
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Ing(t) = Ing(0) + (s —b =302t — [[(4@) +x(W) + (1 + )z(w)) du + 0, f, dB, W)

(63)
Consequently,
Ingy(t) < Ing(0) + (s —b—30%)t + 0, B,(t).
Then
lim 20 < lim no© |y B0 L @
t — oo t —o0 t — oo t — oo t
Hence
h_>n30 sup ( d<s—b— %azz < 0, almost surely. (64)
Likewise, define V¢(x,4,%) =Inz as the Lyapunov function, and then
d(Inz) = (cy (W) — & —502)dt + 03dB; (65)
Therefore
Inz(t) =nz(0) + (=6 =20 )t + f; cy (W) du+ 03 f, dBs(u). (66)
Consequently
Inz(t) <Inz(0) + (c — § =303t + 03B5(0). (67)
Then
lim =22 < lim 222 4 Jim (0598 | iy 2250
t — o t —o t — oo t t — oo t
Therefore,
Jim sup == Z(t) — 85— —032 < 0, almost surely. (68)

Thus, the required claim is validated.

6. STOCHASTIC STABILITY AND RANDOM ATTRACTORS

Our focus in this section is on studying the stability of model (22), where we will show under
certain conditions that the coexistence equilibrium points and the level equilibrium points are
stochastically asymptotically stable. In addition, we will study the exponential stability,
asymptotic stability, and random attractors of the random dynamical system generated by the

SDEs system described in system (22).
Theorem 6.1. The GAS for E, = (0,0,0) of (22) occur when p4 = % > 1 and u, = g > 1.
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Proof. Suppose that a Lyapunov function V:R3 — R, defined by V(x,4,2) = x + 4 + 3.
Since x,4,z > 0, then V(x,4,3) > 0. The derivative of V along the solutions of (22), can
be computed by It6 formula,

LVX, )= —a)x+(s—b)y — (r+s)xy —rxz — syz — rx? — sy’
Now, LV(0,t) =0, 0 = (0,0,0).Hence LV(X,t) <0 , whene r<a and s<b. Thus
Ey = (0,0,0) is GAS [34,35] and hence by Theorem 2.2 in [25] it is stochastically stable.
Note that the equilibrium points of (22) are the steady-state solutions. Model (22) has one trivial
equilibrium point which is E, = (0,0,0): signifies a free equilibrium wherever totally
populations become extinct.

Theorem 6.2. The equilibrium E; = (u4,0,0), where pu; = 1—%, of (22) is SAS on A,

whenever

2
A2 <m(xy,2), (69)

X
Where n,(x,4,2) = [x(x1 — 1) + y(b — 21 —5) + 3(6 — x1) + pyx4].
Proof. We create the appropriate Lyapunov function in the manner described below:

V(x,¢,2) = (x—xl—xl ln:—1)+y)+z. (70)
We define £ on V to obtain

LY (x,4,3) =x(1+x1—%)+y(x1+s—b)+z(x1—6)—xy—xz

1 crfxl
2 x2

+x1(%—1)—syx—sy2—syz—x2+

102x,

< —[x(xy —p) +yb—21 —5)+3(6 —x1) + pyxq] + PR

=~ (2, g, 2) + 302 (71)

x2

2+s—b-6

Ifw =1, pu > , it follows that 1, (x, 4, %) = 0. By assumptions, LV(x,4,z) < 0o0n
A= {(x,4,3) € R3:n,(x,4,3) = 0}. Therefore, E; is SAS.

Biological interpolation of Theorem 6.2: The cancer extinction equilibrium E; = (1 —
U1,0,0), uy = %: if the death rate of the infected cells is positive, they will follow the extinction of
cancer.

Theorem 6.3 The equilibrium E, = (0,1 — u,, 0) of (22) is SAS on D, whenever

=1 S

1 2
=1, —>1, =>1and ;22 <n,(x,9,2) (72)
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where
b
M y2) =g —r+a+)x+(c—1—g)p+ (06—t —S9) 2+ (1+5-
b
Proof. For E,, define a Lyapunov function as follows
— 2 — o — 2
V(x,y,2)=x+ . (y Yo — Yo lnyz) + 3.
So,
b
LY(x,4,2) =T —a—s—yy)x+ (1 + Yy, —;)y—i— (yz —6+§yz)z

103y,

+(c—1—§)yz+(§—1)y2—rxz—rxy—rxz—yz+2 e

where ¢, =1 —g, Thus
b
9090 < a5 =gt (1492~ gt (-5 4 g) 2+ (-1~ g+

(1w 358

2
02Y2

1
=M(*9.2) ++;73

Thus n,(x,4,2) =0 if u, =1, ﬁ >1,and — > 1. By assumptions, LV(x,4,3) <0

on {(x,4,3) € R}:n,(x,4,3) = 0}. Therefore, E, is SAS.
Biological interpolation of Theorem 6.3: The virus population reaches zero at the virus extinction

equilibrium E, = (0,1 — u,, 0), indicating that normal cells are also extinct.

Theorem 6.4. The equilibrium  E; = (0,%,“_::'15) of (22)is SASon D, whenever
ari1 \hus  10dus
26b-1) > 1 and 2 o7 +3 e < n3(x,4,2) (73)

where
s
ns(x,4,2) = [(sys—r+a)x+(b+c—s—sy3)y+ (g_sys —C/y;3)z+ (C+5_

=) gz + (sy3 — bys — 5)]
3
Proof. Define

Ve 2) =2+ (y -5 —us lni) +=-(z-2-2In%)

Z3 3

sc—bc—ds

where ¢ =% and z; = . Therefore,



23
ONCOLYTIC VIROTHERAPY WITH TUMOR-VIRUS INTERACTION

o)
LY(x,y4,3)=0—a—sy3)x+(+sys;—b—c)y + (sy3 + cys —Z—>Z
3

c
+(Z——s—c)yz+(by3—sy3+6)—rx2—rxy—rxz—syx—sy2
3

1o?y; 10z,
2 y? 2 32

S(r—a—sy3)x+(s+sy3—b—c)y+(sy3+cy3—£)z

zZ3

1U24f3 10533

+(Z——s—c)yz+(by3—sy3+6)+

2 72
1 0'2 Y3 1 0'3 Z3
=M@yt 5t
sé sc—bc—sé s
Clearly that n;(x,4,z) = 0 whenever pro— <1, oo = b T = 1, prr= 1, and
w > 1. Combining these conditions, we get the following condition . (S_r;_ll) > 1. By

assumptions, LV (x,y,z) < 0 on D. So, E3 is SAS.

Biological interpolation of Theorem 6.4: According to the cancer-virus equilibrium E; =

d sc—bc—-ds

0, ), cancer cells and virus-infected cells with constant sizes are sent off while normal

S+

cells go extinct.

c(r-a)-r(6+b)—as é as
rc "¢’ rc

Theorem 6.5. The equilibrium E, = ( —E) of (22) is SAS on D,

2c+b sa8—2bré 10%2x, 102y, 1 0% 24
whenever —— -2 -2 X Z her
eneve c+s <t < r(c—8+b)—a(c+s) d 2 x2 + 2 y2 2 7’[4_(X Y ) where

C
Ma(x,9,2) = —(1+ x4+ y4) — L+ x4+ yy — (x4 tyst+ 5’254)5
(a N b N [0) >
- 2 S Y4 S 34
Proof. For the coexistence equilibrium, create the appropriate Lyapunov function as follows.
Y P N iy -y — B z
V(x,¢4,2) = - (x X, — Xy lnxz) + 3 (4‘,,/ Yo — Yo lnyz) + S (z By — 3y lnzz),
Define £ on V(x,4,2z) and grouping coefficients of the positive terms we get

b
LY (x,4,2) =1 +x,+y) +(A+xs+y)y + (-”44 + Ya +§’y*4)z + (2754 +—xy,4 +

1 01x4

§ 2

1 0'§Z4.
2 z?
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a b 5 ) 1oz,

Cc
suﬁmq+yg+(Lhm+y@y+(mﬁqm+gyaz+<7m+gy4+gm o2

1 Gfx4 1 o§y4
+ =

2 x2 2 y? 2 32

= —Ny(x,94,2) +

+ sad—2bré

r(c=8+b)—a(c+s)’

We find that 1,(x, %, 2) = 0 if 222 <y, <

ct+s

By assumptions, LV (x,4,3) <

0 on D = {(x,4,2) € R3:n,(x,4,3) = 0}. Therefore, the coexistence equilibrium E, of (22)
is SAS.

Biological interpolation of Theorem 6.5: Three population coexistence equilibrium E, =

(u@)-r@tb)as 5 as _ by. There are all three cell types, and their populations are steady.

y
rc c rc c

The remaining part of this section is dedicated to studying the asymptotic stability, exponential
stability, Lyapunov exponent, and random attractors of the stochastic dynamic system generated
by the stochastic differential equations system (22).

Theorem 6.6. Consider the system

dx= rx(1—x)dt+ oy2dB,
dy = sy (1 — ¢)dt + o,4dB, (74)
dz = —08zdt + 033dB;

corresponding to the original (non-linear) system (22). The random equilibriums of this linear
system are GAS and exponentially stable.

Proof From the first equation we have

_ exp{(r—%of)”al%l(t)}
x(t) = x 147 f(fexp{(r—%af)‘wal%l(‘r)}d‘r

(75)

The equation (75) induce the RDS (6, ¢,) where

exp{(r—%af)t+01581(t)}
q)x(t» w)x =z 14r f; exp{(r—%af)‘ﬁal%l(r)}d‘r ’
0 x=0

This RDS is strictly order-preserving in R*. the random set A (w) = [0, u(w)] is a random

x>0

attractor for (0, ¢,) in R*, where u(w) = 0 is a random equilibrium.

{0}, r<o0

0
0, ua,B,N(w)], r>0"’ where ua,ﬁ,N((‘)) =r f_oo exp{rt +

Consequently A(w) = {[

018B,(t,w)}dt
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In addition, it can be shown that there exists a y > 0 with

Jim e¥ |, (t, 0_c)x —ugpn(@)| =0,V >0 ,weQ (76)

If n=2m+1 is odd, m > 1, then the first equation of the system (74) is invariant with
respect to the transformation x +— —x.
{0}, a<o0

, 18 the random attractor of
_ua,ﬁ,n(w);ua,ﬁ,n(w)], a > 0

The random set A, (w) = {[

(6,9,) .In the latter case ugpn(w) ( resp. —uUgpn(w)) is globally stable random
equilibrium and u, = 0 is an unstable random equilibrium. So, as a increases through 0.
From the second equation we have

exp{(s—%ozz)waz%z (t)}
y~l+s f; exp{(s—%azz)r+02232 (r)}dr

() = 7

The equation (77) induce the RDS (6, ¢,,) where

exp{(s—%azz)t+02582(t)}
Py (¢, w)y =4y l+s fot exp{(S—%azz)‘HazﬁBz(r)}dr
0 4y=0

, >0

This RDS is strictly order-preserving in R*. The random set B, (w) = [0,v(w)] is a
random attractor for (6,¢,) in R*, where v(w) =0 is a random equilibrium.

{0}, s<0

O,va,ﬁ,n(w)], s>0 where

Consequently B, (w) = {[

0 1
va,ﬁ,n(w) =S f_oo exp {(S - 50'22) T+ 0,8,(7, a))} dr.
In addition, it can be shown that (see Proposition 1.14) there exists a y > 0 with

tlim e”|<p@(t, 0_w)y — va,ﬁ,n(w)| =0,Vx>0,0€q. (78)

If n=2m+1 is odd, m = 1, then the second equation of the system (74) is invariant with
respect to the transformation ¢ — —g.
{0}, a<o0

is an attractor of (6, In
_va'ﬁ,n(w), va,ﬁ,n(w)], a > O ( (p/ya)

The random set A4, (w) = {[

the latter case v, pgn(w) ( resp. —vgpn(w)) is globally stable random equilibrium and
Uy = 0 is an unstable random equilibrium. So, as a increases through 0.

From the third equation we have dz = —d8zdt + g3zdW;. The equation dz = —dzdt +
033dB3 creates an affine RDS (6,¢,) in R. Then ¢, admits the form (4), where

@, (t,w)z =D, (t,w)z = Zexp {— (5 + 07‘%) t + 03B5(t, w)}.
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2
Then A3 := —(6 +%3) is the (top) Lyapunov exponent for (6,¢,). Since Az = — (6 +

2 2
%3) < 0 ( from the fact that (6 + %3) > 0), consequently (6, @) is dissipative[36] in the

universe of all tempered subsets of R. It follows from Proposition 1.13 that , (8, ¢,) admits
a unique equilibrium u(w). Since
u(@) = lim Y(t,6_0) and Y(t,w) = B [ exp{A(t = 7) + 0(Bi(w) — B, (@)} dr

then z*(w) = {0}. This equilibrium is measurable with respect to the past o —algebra F_
(see [26] Sec.1.10) and exponentially stable[18,19] .This equilibrium is GAS [18,19].
From the above discussion we have two random equilibriums of the linear system (74)
Corresponding to the original system (22). They are X;(w) = (#"(w), %" (w),0), and
Xz (@) = (Ugpn(w), Vg pn(w),0).The last one occur when 7,5 <0. The equilibrium
X;(w) = (" (w), 4" (w),0) is the random super-equilibrium of the original system (22)
which is measurable with respect to the future o —algebra F,. This equilibrium is GAS and
exponentially stable Proposition 1.13.

Theorem 6.7 The random equilibrium X,(w) = (0,0,0) of the linear stochastic system

dx = rxdt+ o;xdB,
dy = sy dt+ o,4dB, (79)
dz = —0zdt + 032dB;

is a super-equilibrium of the (non-linear) system (22) which is GAS and exponentially stable.
Proof. The equation dx = rxdt + g,xdW,; creates an affine RDS (6, ¢,) in R. Then ¢,
admits the form (5), wherever
@, (t,w)x = D, (t,w)x = xexp{rt + 0,8, (t,w)}.

Then A4 :=r is the (top) Lyapunov exponent for (6, ¢,).
If A, =7 >0, then (6,¢,) possesses the equilibrium x*(w) = 0 which is measurable
with respect to the future o —algebra F,. This equilibrium is GAS (see Proposition 1.13).
The equation dy = sydt + o,4dB, creates an affine RDS (6, ¢,) in R. So, ¢, admits
the form (5), wherever @, (t,w)y = ®,(t,w)y = y exp{st + 6,B,(t,w)}. Then A, :=s
is the (top) Lyapunov exponent for (6,¢y). Since A, :=s> 0, then the RDS (6,¢,)
possesses the equilibrium ¢4*(w) = 0 which is measurable with respect to the future
o —algebra F,.This equilibrium is GAS (see Proposition 1.13.).

The equation dz = —3§zdt + 03zdW; creates an affine RDS (6,¢,) in R. Then ¢,
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admits the form (5), wherever @,(t,w)z = ®,(t,w)z = zexp{—3t + 03B3(t,w)}.Then
Az == —46 1is the (top) Lyapunov exponent for (6, ¢,). Since A3 := —§ < 0( from the fact
that 6 > 0) , consequently (0, ¢,) is dissipative in the universe of all tempered subsets of
R. It follows from Proposition 1.13 hat (6, @,) admits a unique equilibrium u(w). As in
Theorem 6.6, we get z*(w) = {0}. This equilibrium is measurable with respect to the past
o —algebra F_ (see [37]) and exponentially stable. This equilibrium is GAS. From the above
discussion we get the point X,(w) = (0,0,0) is the random equilibrium of the system (79)
corresponding to the system (22). Thus Xy(w) = (0,0,0) is the random super-equilibrium of
the (non-linear) system (22) which is measurable with respect to the future o —algebra F,.

This equilibrium is GAS and exponentially stable(see [26,38]).

7. NUMERICAL SIMULATION
Now, we do a numerical simulation to confirm the results and see how well they match reality,
as well as to make our conclusions more realistic. The comparable estimation formulas are as
follows:
2

Zipr = 2 + [ (1= 2 ) — 12 (g + 20) - ax JAL + xy [Ulmfk,l + 02_1 i1 — 1)At]

Y1 = Y+ sy (1 — g ) — sy (xp + 31) — (byw + cyrzr)]AL (80)

2
+yk [Uz\m_tfk,z + 02_2 Cra— 1)At]

2
Zr1 = Bk + (cyr — 8)z At + 2z [%mfks + 073(513,3 - 1)At]-
All of the numerical simulations were performed using the parameter values listed in Table 1 as in
[9]. The choice of parameter units was made at random.

sigma1=0.10; sigma2=0.70; sigma3=0.20; delta=0.20
T T T T T T

T
—x
—

z| |

1.2
.
1
:
0.8 -
0.6 -
0.4 .
0.2 _E/ 4
. ‘ =L ‘ ‘ . ‘
o 10 20 30 40 50 60 70 80 90 100
Time

Figure 1: Model dynamics using starting values of x, = 0.6, ¢y, = 0.6, and z, = 0.6.
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sigma1=0.10; sigma2=0.70; sigma3=0.20; delta=0.80

Figure 2: Model dynamics using starting values of x , = 0.5, ¢, = 0.5,and z, = 0.6.

" sigma1=0.10; sigma2=0.70; sigma3=0.20; delta=0.20
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Figure 3: Model dynamics using starting values of x, = 0.6, ¢, = 0.4,and 3, = 0.09.

8. DISCUSSION

In this work, we examined an oncolytic virotherapy model that was created in the research [5,6]
to explain the relationship between viruses and cancer cells. We investigated the qualitative
characteristics of the solutions in our study, and we utilized the findings to enhance and broaden
the previous research. We anticipate that our research will help us better understand how virus
cells interact with cancer cells. It is demonstrated in the aforementioned texts that a high viral
clearance rate may lead to treatment failure. Nonetheless, treatment success is achieved by
marginally lowering the viral clearance rate while maintaining the other parameter values. This is

consistent with the outcome found in [6].

9.CONCLUSIONS
According to the research, the effectiveness of the action is independent of the virus's propagation

and death values when certain conditions on the death rates of normal and cancer cells are met. The
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study emphasizes the significance of understanding the dynamics of virotherapy as both stochastic
models and deterministic approaches reveal different behavioral insights. Key findings indicate
that specific death and replication rate parameters significantly impact the stochastic model's
dynamics, with sensitivity analysis showing that certain factors are crucial for the fundamental
reproduction number. The paper concludes that further research is needed to explore additional

stochastic effects to better explain virotherapy dynamics.
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