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Abstract. In this paper, we investigate a fractional-order delayed dynamical system. Taking the time delay τ as

the bifurcation parameter, we establish that the equilibrium is asymptotically stable for all τ < τ0, and a Hopf

bifurcation occurs as τ passes through the critical value τ0. We derive the characteristic equation and verify the

transversality condition, which identifies the onset of oscillations and characterizes the stability of the emerging

periodic solutions. Numerical experiments carried out in MATLAB with a predictor–corrector scheme support the

analysis and illustrate the resulting oscillatory behavior.
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1. INTRODUCTION

Delayed differential equation systems have an important place in many fields of science, since

many processes, both natural and man-made, such as biology, medicine, chemistry, physics,

mathematics, engineering and economics, involve time delays. The best example of time delay

from nature is the afforestation of forest areas. After a tree is cut, it takes twenty years for the

planted tree to reach maturity. A mathematical model that studies this process must include
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a time delay. By using ordinary differential equations, existing delays are always ignored in

systems where modeling is desired, but even very small amounts of delay in the system, may

cause major changes in the current state of the system. For this reason, it is more realistic

to use delayed differential equations when modeling many of the problems encountered. In

the last few decades, the study of dynamical systems of population models has received much

attention by theoreticians and experimentalists [1, 18, 19, 20, 21, 28, 31]. To study past-to-

present impacts, researchers augment population models with delay terms—most notably in

delayed predator–prey systems.

Fractional calculus extends differentiation and integration to non-integer orders. In recent

decades, the area has advanced rapidly and found broad applications. Because fractional dif-

ferential equations naturally encode memory and hereditary effects, they have been used in

contexts such as earthquake dynamics [34] and biological modeling [2, 13, 32, 33]. They

also provide a flexible methodology for a range of mathematical models, including epidemic

processes [8, 29, 35], neural networks [30, 33], control systems [4], and chaotic dynamics

[36, 37]. Compared with classical integer-order formulations, fractional-order models often

provide greater fidelity and adaptability for nonclassical phenomena in the natural and engineer-

ing sciences—spanning economics, biology, and electroanalytical chemistry—with particularly

notable gains in biological systems, where long-memory and history-dependent molecular dy-

namics are captured more faithfully [2, 13, 32, 33].

Because fractional operators accumulate past information with weighted influence, they pro-

vide a global, memory-aware description of functions. Evidence across many fields indicates

that this formalism surpasses the expressive scope of integer-order calculus. Accordingly, re-

cent progress and applications—especially in dynamical systems—have intensified attention on

stability properties and qualitative behaviors.

Bifurcation occurs when a small change in the bifurcation parameter chosen in a system

around the positive equilibrium point of the system causes a topological change in the be-

havior of the system. The change in the behavior of the solution occurs when the parameter

changes the stability of the equilibrium point. The type of bifurcation that occurs in systems

containing two or more first-order differential equations is called “Hopf bifurcation”. At the
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same time, French mathematician Jules Henri Poincaré (1854-1912), Russian mathematician

Alexander A. Andronov (1901-1952), and German mathematician Heinz Hopf (1894-1971)

made contributions to the development of this theory. For this reason, it is also referred to as

the Poincaré–Andronov–Hopf bifurcation.

Çelik C. and Çekiç G. previously performed the Hopf bifurcation and stability analysis of the

following model [1], which is of integer order

dx(t)
dt

= x(t)[r1−a11x(t)−a12y(t− τ)]

dy(t)
dt

= y(t)[−r2 +a21x(t)−a22y(t− τ)](1.1)

where x(t) is the population density of the prey and y(t) is the population density of the predator

at time t, τ > 0 is the feedback time delay of the predator species to the growth of the species

itself, r1 > 0 symbolizes the intrinsic growth rate of the prey and r2 > 0 symbolizes the death

rate of the predator. This paper investigates the predator–prey model (1.1) in a fractional-order

setting:

c
t0Dq

t x(t) = x(t)[r1−a11x(t)−a12y(t− τ)]

c
t0Dq

t y(t) = y(t)[−r2 +a21x(t)−a22y(t− τ)](1.2)

2. PRELIMINARIES

Definition 2.1 (Podlubny, 1999). Let f (t) ∈ Cn
−1, with n ∈ N∪ {0}. The Caputo fractional

derivative is defined by

(2.1) C
0Dq

t f (t) =
1

Γ(p−q)

∫ t

0

f (p)(τ)

(t− τ)q−p+1 dτ,

where p−1 < q≤ p.

Definition 2.2 (Podlubny, 1999). The Laplace transform of the Caputo fractional derivative

function f (t) is expressed as follows.

L{c
0Dq

t f (t);s}= sqF(s)−
n−1

∑
p=0

sq−p−1 f p(0) n−1 < q≤ n,(2.2)

f p(0), p = 0,1,2, ...,n−1 are the initial conditions.
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3. ANALYSIS OF STABILITY AND HOPF BIFURCATION FOR FRACTIONAL DYNAMICS

System (1.1) possesses a unique positive equilibrium E∗ = (x∗,y∗), where x∗ = r1a22+r2a12
a11a22+a12a21

and y∗= r1a21−r2a11
a11a22+a12a21

. To assess the local stability of E∗, we apply the linear shift u1(t) = x(t)−

x∗ and u2(t) = y(t)− y∗. For fractional orders n, p ∈ (0,1), this change of variables recenters

the dynamics at the origin and enables the linearized analysis of system (1.1) about E∗. This

translation moves the equilibrium to the origin and rewrites system (1.1) in the variables u =

(u1,u2); linearizing at u = 0 yields the Jacobian J(E∗) governing the local dynamics (higher-

order terms neglected).

du1

dt
= (u1(t)+ x∗)[r1−a11(u1(t)+ x∗)−a22(u2(t− τ)+ y∗)]

du2

dt
= (u2(t)+ y∗)[−r2 +a21(u1(t)+ x∗)−a22(u2(t− τ)+ y∗)](3.1)

and using relations r1−a11x∗−a12y∗ = 0 and−r2+a21x∗−a22y∗ = 0, we obtain the following

linear system

du1

dt
= −a11x∗u1(t)−a12x∗u2(t− τ)

du2

dt
= a21y∗u1(t)−a22y∗u2(t− τ).(3.2)

By replacing the left-hand side of equation (3.2) with the fractional derivative of order q∈ (0,1],

the following system is obtained.

c
t0Dq

t u1(t) = −a11x∗u1(t)−a12x∗u2(t− τ)

c
t0Dq

t u2(t) = a21y∗u1(t)−a22y∗u2(t− τ).(3.3)

When the Laplace transform of the system (3.3) is applied, the following equations are ob-

tained.

L{c
t0Dq

t u1(t)} = L{−a11x∗u1(t)−a12x∗u2(t− τ)}

and

sqU1(s)− sq−1U1(0) = −a11x∗U1(s)−a12x∗e−sτ(
∫ 0
−τ

θ(t)e−stdt +U2(s))
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Similarly,

L{c
t0Dq

t u2(t)} = L{a21y∗u1(t)−a22y∗u2(t− τ)}

L{c
t0Dq

t u2(t)} = a21y∗U1(s)−a22y∗e−sτ(
∫ 0
−τ

θ(t)e−stdt +U2(s))

sqU2(s)− sq−1U2(0) = a21y∗U1(s)−a22y∗e−sτ(
∫ 0
−τ

θ(t)e−stdt +U2(s))

The system can be reformulated as follows:

∆(s)

 U1(s)

U2(s)

=

 b1(s)

b2(s)


where

∆(s) =

 sq +a11x∗ a12x∗e−sτ

−a21y∗ sq +a22y∗e−sτ

 ,

 b1(s)

b2(s)

=

 sq−1U1(0)−a12x∗e−sτ(
∫ 0
−τ

θ(t)e−stdt)

sq−1U2(0)−a22y∗e−sτ(
∫ 0
−τ

θ(t)e−stdt)

 .

det(∆(s)) =(sq +a11x∗)(sq +a22y∗e−sτ)− (−a21y∗a12x∗e−sτ)

=s2q +a11x∗sq +a22y∗e−sτsq +(a11a22 +a12a21)x∗y∗e−sτ .

ki(i = 1,2,3) are determined by

k1 = a11x∗, k2 = a22y∗, k3 = (a11a22 +a12a21)x∗y∗.

Thus,

det(∆(s)) = s2q + k1sq + k2e−sτsq + k3e−sτ .(3.4)

For s = iω (ω > 0),

det(∆(s)) =(iω)2q + k1(iω)q + k2e−iωτ(iω)q + k3e−iωτ = 0.(3.5)

Using appropriate trigonometric identities for i2q, iq, and e−iωτ , we obtain

det(∆(s)) =ω
2q(cos(qπ)+ isin(qπ))+ k1ω

q(cos(
qπ

2
)+ isin(

qπ

2
))

+k2(cos(ωτ)− isin(ωτ))wq(cos(
qπ

2
)+ isin(

qπ

2
))
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+k3(cos(ωτ)− isin(ωτ))

=0.(3.6)

Real part of Eq. (3.6):

cos(qπ)ω2q + k1 cos(
qπ

2
)ωq =−k2ωq cos(qπ

2 −ωτ)− k3cos(ωτ)

Imaginary part of Eq. (3.6);

sin(qπ)ω2q + k1 sin(
qπ

2
)ωq =−k2ωq sin(qπ

2 −ωτ)+ k3cos(ωτ).

If we square both sides of the real and imaginary parts separately and add them, we obtain the

following equation.

ω
4q +2k1cos(qπ

2 )ω3q +(k2
1− k2

2)ω
2q−2k2k3cos(qπ

2 )ωq− k2
3 = 0.(3.7)

Since cos(qπ

2 )> 0, ωq > 0 and 0 < q < 1. Let v = ωq, then we get h(v) = v4 +2k1cos(qπ

2 )v3 +

(k2
1− k2

2)v
2− 2k2k3cos(qπ

2 )v− k2
3 = 0. Since h(0) = −(k3)

2 < 0 and limv→∞ h(v) = ∞, there

exists a v0 > 0 such that h(v0) = 0. Next, we determine the critical delay τ .

Since,

det(∆(s)) = s2q + k1sq + k2e−sτsq + k3e−sτ .

Then, we get

det(∆(s)) = s2q + k1sq + k2e−sτsq + k3e−sτ = 0,

A = s2q + k1sq,

E = k2sq + k3,

A+Ee−sτ = 0.

Let s = iω(ω > 0), and let A1 represent the real part of A and A2 the imaginary part of A.

Similarly, let E1 represent the real part of E and E2 the imaginary part of E. Thus,

(A1 + iA2)+(E1 + iE2)(cos(ωτ)− isin(ωτ)) = 0
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where

A1 = ω2q cos(qπ)+ k1ωq cos(qπ

2 ),

A2 = ω2q sin(qπ)+ k1ωq sin(qπ

2 ),

E1 = k2ωqcos(qπ

2 )+ k3,

E2 = k2ωqsin(qπ

2 ).

We can write

A1 +E1 cos(ωτ)+E2 sin(ωτ) = 0,

A2 +E2 cos(ωτ)−E1 sin(ωτ) = 0.

sin(ωτ)

cos(ωτ)
= A1E2−A2E1

A1E1+A2E2
,

tan(ωτ) = A1E2−A2E1
A1E1+A2E2

,

ωτ = arctan(A1E2−A2E1
A1E1+A2E2

),

which leads to

τk =
1
ω

arctan(
A1E2−A2E1

A1E1 +A2E2
)+

kπ

ω
for k = 0,1,2, ...

Let s(τ) = α(τ)+ iω(τ) be a root of (3.4) in a neighborhood of τ = τk such that α(τk) = 0 and

ω(τk) = ω1 for k = 0,1,2, . . .. Then the following result holds.

Lemma 3.1. Assume g′(z1) 6= 0, then the following transversality condition is satisfied:

d(Res(τk))

dτ
6= 0, k = 0,1,2,3, ...

and g′(z1) and d(Res(τk))
dτ

have the same sign.

Proof. Assume that at τ = τk the characteristic equation (3.4) admits a purely imaginary root

s = iω with ω ∈ R, ω > 0. Differentiating (3.4) with respect to τ yields
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2qs2q−1 ds
dτ

+ k1qsq−1 ds
dτ

+(k2qsq−1 ds
dτ

)e−sτ − e−sτ(τ
ds
dτ

+ s)(k2sq + k3) = 0.

So,

dτ

ds
=

2qs2q−1 + k1qsq−1

s(k2sq + k3)
esτ +

k2qsq−1

s(k2sq + k3)
− τ

s
.

If we take s = iω, we can get

Re(
dτ

ds
)|s=iω = Re[2q(iω)2q−1+k1q(iω)q−1

(iω)(k2(iω)q+k3)
eiωτ + k2q(iω)q−1

(iω)(k2(iω)q+k3)
− τ

iω ],

Re(
dτ

ds
)|s=iω = Re[ (2q(iω)2q−1+k1q(iω)q−1)(cos(ωτ)+isin(ωτ))+k2q(iω)q−1

(iω)(k2(iω)q+k3)
],

Re(
dτ

ds
)|s=iω

=
(k1k2ω2q−2qcos( q−2

2 π)cos( q−1
2 π)cos(ωτ− qπ

2 ))

(k2ωq cos( qπ

2 )+ k3)2 + sin2( qπ

2 )
+

k2
2qω2q−2 cos( qπ

2 )cos( q−2
2 π)

(k2ωq cos( qπ

2 )+ k3)2 + sin2( qπ

2 )

+
(k1k3qωq−2(sin(ωτ)cos( q−1

2 π)+ cos( q−2
2 π))

(k2ωq cos( qπ

2 )+ k3)2 + sin2( qπ

2 )
−

qωq−2(k1 sin(ωτ + qπ

2 )+ k2)(sin( qπ

2 )cos( (q−1)π
2 ))

(k2ωq cos( qπ

2 )+ k3)2 + sin2( qπ

2 )

+
2qω2q−2 cos((q−1)π)(ωqk2 cos( qπ

2 )+ k3)

(k2ωq cos( qπ

2 )+ k3)2 + sin2( qπ

2 )
−

2qω2q−2 sin( qπ

2 )cos( (2q−1)π
2 )

(k2ωq cos( qπ

2 )+ k3)2 + sin2( qπ

2 )
.

Since the denominators are positive, analysis of the numerators is sufficient to determine the

value of the sign.

sgn(Re(
dτ

ds
)|s=iω)

= (k1k2ω
2q−2qcos(

q−2
2

π)cos(
q−1

2
π)cos(ωτ− qπ

2
))+ k2

2qω
2q−2 cos(

qπ

2
)cos(

q−2
2

π)

+ (k1k3qω
q−2(sin(ωτ)cos(

q−1
2

π)+ cos(
q−2

2
π))

− qω
q−2(k1 sin(ωτ +

qπ

2
)+ k2)(sin(

qπ

2
)cos(

(q−1)π
2

))

+ 2qω
2q−2 cos((q−1)π)(ωqk2 cos(

qπ

2
)+ k3)−2qω

2q−2 sin(
qπ

2
)cos(

(2q−1)π
2

)

0 < q < 1, ωq > 0, 0 < cos qπ

2 ,sin qπ

2 < 1, 0 < cos (q−1)π
2 < 1 and ,−1 < cos (q−2)π

2 < 0,

So,

Re(
dτ

ds
)|s=iω 6= 0.

Thus, lemma follows. �
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Theorem 3.1. For system (3.3), the following statements are valid:

i) If τ ∈ [0,τ0), then the equilibrium at the origin (0,0) is asymptotically stable.

ii) If g′(z1) 6= 0, then a Hopf bifurcation occurs at the origin when τ = τk with k = 0,1,2, . . ..

4. THE NUMERICAL EXAMPLE

In this section, to support our theoretical results, we illustrate an example numerically using

MATLAB programming. To see the behavior of the solution for stability and Hopf bifurcation,

we consider q = 0.72 in the underlying system. To obtain the graphs, we modified the Adams -

Bashforth - Moulton predictor - corrector scheme and used MATLAB programming as in [9].

For r1 = 1.5, r2 = 0.6, a11 = 0.7, a12 = 0.8, a21 = 0.45 and a22 = 0.006 in system (1.2). We

obtain the following system

c
t0D0.82

t x(t) = x(t)[1.5−0.7x(t)−0.8y(t− τ)]

c
t0D0.82

t y(t) = y(t)[−0.6+0.45x(t)−0.006y(t− τ)](4.1)

x∗ = r1a22+r2a12
a11a22+a12a21

= 1.50.006+0.60.8
0.70.006+0.80.45 = 1.3427

y∗ = r1a21−r2a11
a11a22+a12a21

= 1.50.45−0.60.7
0.70.006+0.80.45 = 0.7001.

So, we get E∗ = (x∗,y∗) = (1.3427,0.7001).

k1 = a11x∗ = (0.7)(1.3427) = 0.9399, k2 = a22y∗ = (0.006)(0.7001) = 0.0042,

k3 = (a11a22 +a12a21)x∗y∗ = ((0.7)(0.006)+(0.8)(0.45))(1.3427)(0.7001) = 0.3424.

Taking x∗ = 1.3427, y∗ = 0.7001, q = 0.82 , k1 = 0.9399, k2 = 0.0042, and k3 = 0.3424 in

equation (3.7), for v = ω0.82 the following equation is obtained

(4.2) v4 +0.5244v3 +0.8834v2− (8.024e−04)v−0.1172 = 0.

For which the solutions are v = 0.3192 and ω = 0.2484.

A1 = ω
2q cos(qπ)+ k1ω

q cos(
qπ

2
) =−0.0023,

A2 = ω
2q sin(qπ)+ k1ω

q sin(
qπ

2
) = 0.3427,

E1 = k2ω
qcos(

qπ

2
)+ k3 = 0.3428,
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E2 = k2ω
qsin(

qπ

2
) = 0.0013,

τk =
1
ω

arctan(
A1E2−A2E1

A1E1 +A2E2
)+

kπ

ω
for k = 0,1,2, ...

τ0 = 6.3115.

We know the following equation from Lemma 3.1.

Re(
dτ

ds
)|s=iω =

(k1k2ω2q−2qcos( q−2
2 π)cos( q−1

2 π)cos(ωτ− qπ

2 ))

(k2ωq cos( qπ

2 )+k3)2+sin2( qπ

2 )
+

k2
2qω2q−2 cos( qπ

2 )cos( q−2
2 π)

(k2ωq cos( qπ

2 )+k3)2+sin2( qπ

2 )

+
(k1k3qωq−2(sin(ωτ)cos( q−1

2 π)+cos( q−2
2 π))

(k2ωq cos( qπ

2 )+k3)2+sin2( qπ

2 )
− qωq−2(k1 sin(ωτ+ qπ

2 )+k2)(sin( qπ

2 )cos( (q−1)π
2 ))

(k2ωq cos( qπ

2 )+k3)2+sin2( qπ

2 )

+
2qω2q−2 cos((q−1)π)(ωqk2 cos( qπ

2 )+k3)

(k2ωq cos( qπ

2 )+k3)2+sin2( qπ

2 )
− 2qω2q−2 sin( qπ

2 )cos( (2q−1)π
2 )

(k2ωq cos( qπ

2 )+k3)2+sin2( qπ

2 )

Using all values, Re(dτ

ds )|s=iω is obtained as follows:

Re(
dτ

ds
)|s=iω =−0.8459 6= 0.

Using the Adams- Bashforth - Moulton predictor-corrector method that we mentioned in the

first part of this section, we also plot our predator and prey functions to illustrate the dynamic

behavior of our fractional model (3.3), modified with parameters τ0 and ω .

0 100 200 300 400 500 600 700 800
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1.6

1.7

x
(t

)

FIGURE 1. State paths for the fractional system with the initial conditions x0 =

1.1,y0 = 0.4, q = 0.82, and τ = 5.9 < τ0 = 6.3115.
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FIGURE 2. State paths for the fractional system with the initial conditions x0 =

1.1,y0 = 0.4, q = 0.82, and τ = 5.9 < τ0 = 6.3115.
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FIGURE 3. State paths of x versus y when τ = 5.9 < τ0.

0 200 400 600 800 1000

t

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x
(t

)

FIGURE 4. State paths for the fractional system with the initial conditions x0 =

1.1,y0 = 0.4, and τ = 6.32
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FIGURE 5. State paths for the fractional system with the initial conditions x0 =

1.1,y0 = 0.4, and τ = 6.32
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FIGURE 6. State paths of x versus y when τ = 6.32

5. CONCLUSION

In this paper, a fractional-order delayed ecology model was examined. The existence and

stability conditions for the equilibrium point were determined using the Laplace transform and

linearization theory. By selecting the time delay τ as the bifurcation parameter, the critical value

of τ was calculated to determine the point of Hopf bifurcation. Moreover, a numerical example

is given to verify the theoretical results. In the example, the equilibrium point is obtained as

E∗ = (1.3427,0.7001), ω = 0.2484 and τ0 = 6.3115. For q = 0.82, first τ = 5.9 < τ0 is taken
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and the graphs of Figure-1,2 are obtained, respectively. These figures show that the positive

equilibrium point is asymptotically stable when τ < τ0. However, in Figure-4,5, while q = 0.82

and τ = 6.32 are close enough to τ0, the existence of periodic solutions bifurcating from the

equilibrium point E∗ is shown. Figure 3,6 also show the relative positions of the x and y for the

values of τ = 5.9 and τ = 6.32, respectively.
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