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Abstract. In this paper, we investigate a fractional-order delayed dynamical system. Taking the time delay 7 as
the bifurcation parameter, we establish that the equilibrium is asymptotically stable for all T < 7y, and a Hopf
bifurcation occurs as T passes through the critical value 7p. We derive the characteristic equation and verify the
transversality condition, which identifies the onset of oscillations and characterizes the stability of the emerging
periodic solutions. Numerical experiments carried out in MATLAB with a predictor—corrector scheme support the
analysis and illustrate the resulting oscillatory behavior.
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1. INTRODUCTION

Delayed differential equation systems have an important place in many fields of science, since
many processes, both natural and man-made, such as biology, medicine, chemistry, physics,
mathematics, engineering and economics, involve time delays. The best example of time delay
from nature is the afforestation of forest areas. After a tree is cut, it takes twenty years for the
planted tree to reach maturity. A mathematical model that studies this process must include
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a time delay. By using ordinary differential equations, existing delays are always ignored in
systems where modeling is desired, but even very small amounts of delay in the system, may
cause major changes in the current state of the system. For this reason, it is more realistic
to use delayed differential equations when modeling many of the problems encountered. In
the last few decades, the study of dynamical systems of population models has received much
attention by theoreticians and experimentalists [1, 18, 19, 20, 21, 28, 31]. To study past-to-
present impacts, researchers augment population models with delay terms—most notably in
delayed predator—prey systems.

Fractional calculus extends differentiation and integration to non-integer orders. In recent
decades, the area has advanced rapidly and found broad applications. Because fractional dif-
ferential equations naturally encode memory and hereditary effects, they have been used in
contexts such as earthquake dynamics [34] and biological modeling [2, 13, 32, 33]. They
also provide a flexible methodology for a range of mathematical models, including epidemic
processes [8, 29, 35], neural networks [30, 33], control systems [4], and chaotic dynamics
[36, 37]. Compared with classical integer-order formulations, fractional-order models often
provide greater fidelity and adaptability for nonclassical phenomena in the natural and engineer-
ing sciences—spanning economics, biology, and electroanalytical chemistry—with particularly
notable gains in biological systems, where long-memory and history-dependent molecular dy-
namics are captured more faithfully [2, 13, 32, 33].

Because fractional operators accumulate past information with weighted influence, they pro-
vide a global, memory-aware description of functions. Evidence across many fields indicates
that this formalism surpasses the expressive scope of integer-order calculus. Accordingly, re-
cent progress and applications—especially in dynamical systems—have intensified attention on
stability properties and qualitative behaviors.

Bifurcation occurs when a small change in the bifurcation parameter chosen in a system
around the positive equilibrium point of the system causes a topological change in the be-
havior of the system. The change in the behavior of the solution occurs when the parameter
changes the stability of the equilibrium point. The type of bifurcation that occurs in systems

containing two or more first-order differential equations is called “Hopf bifurcation”. At the
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same time, French mathematician Jules Henri Poincaré (1854-1912), Russian mathematician
Alexander A. Andronov (1901-1952), and German mathematician Heinz Hopf (1894-1971)
made contributions to the development of this theory. For this reason, it is also referred to as
the Poincaré—Andronov—Hopf bifurcation.

Celik C. and Ceki¢ G. previously performed the Hopf bifurcation and stability analysis of the

following model [1], which is of integer order

d);(tt) = x(t)[r1 —anx(t) —any(t — )]
(1.1) d);,—(tt) = Y(t)[=r2+anx(t) —axny(t — )]

where x(t) is the population density of the prey and y(¢) is the population density of the predator
at time t, T > 0 is the feedback time delay of the predator species to the growth of the species
itself, r; > 0 symbolizes the intrinsic growth rate of the prey and r, > 0 symbolizes the death
rate of the predator. This paper investigates the predator—prey model (1.1) in a fractional-order

setting:

fOD?x(t) = x(t)[r1 —anx(t) —apy(t —1)]

(1.2) oDiy(t) = y(t)[=r2+aux(t) —any(t — 1)

2. PRELIMINARIES

Definition 2.1 (Podlubny, 1999). Let f(t) € C", with n € NU{0}. The Caputo fractional

derivative is defined by

Crdpy_ L A
@.1) DI F(r) = ) /0 : dr
where p—1 < q < p.

Definition 2.2 (Podlubny, 1999). The Laplace transform of the Caputo fractional derivative

function f(t) is expressed as follows.
n—1

(2.2) L{D]f(1)is} = sTF(s) = ) s77 P71 fP(0) n—1<q<n,
p=0

fP(0), p=0,1,2,....n— 1 are the initial conditions.
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3. ANALYSIS OF STABILITY AND HOPF BIFURCATION FOR FRACTIONAL DYNAMICS

riaxp+map

. . N [k ok .
System (1.1) possesses a unique positive equilibrium E* = (x*,y*), where x* = A \detaai]

riax1—rai|
ajraxntapas

and y* = . To assess the local stability of E*, we apply the linear shift u; (f) = x(r) —
x* and uy (1) = y(tr) — y*. For fractional orders n,p € (0, 1), this change of variables recenters
the dynamics at the origin and enables the linearized analysis of system (1.1) about E*. This
translation moves the equilibrium to the origin and rewrites system (1.1) in the variables u =

(u1,us); linearizing at u = 0 yields the Jacobian J(E*) governing the local dynamics (higher-

order terms neglected).

% = (u1 (1) +x7)[r1 —an (u1 (t) +x7) — azz (uz(r — 7) +y")]
GO T = )y () +4) — (el — 1)+ )

and using relations r; — a1 x* —appy* =0 and —ry + a1 x* —azy* = 0, we obtain the following

linear system

du; . .
d—: —apx ul(t)—alzx uz(l‘—T)
t
duy . .
(3.2) E = a1y Lt](l‘) —any uz(l‘ — T).

By replacing the left-hand side of equation (3.2) with the fractional derivative of order ¢ € (0, 1],

the following system is obtained.

,COD?MI (1) = —anx*ui(t) —apx*ur(t — 1)

3.3) tCOD;Zuz(l) = azly*ul(t) — azzy*uz(l‘ — ‘L').

When the Laplace transform of the system (3.3) is applied, the following equations are ob-

tained.
L{zDfw (1)} = L{—anx"u (t) — anpx‘uy(t — 1)}
and

sU; (s) — 597U (0) = —anx* Uy (s) — alzx*e’”(fgf 0(t)e'dt +Us(s))
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Similarly,
L{E Dius (1)} = L{az1y*u; (t) — any*us (t — 7)}
L{; Dluy(1)} = any*Ui(s) — any*e ([0, 0(t)e " dt + Up(s))
s1Uy(s) = 51705 (0) = a1y Ui (s) — anay*e ([0 0(t)e~"dt + Un(s))

The system can be reformulated as follows:

Ui(s bi(s
AGs) 1(s) _ 1(s)
Us(s) by(s)
where
Als) = s +apx* apxte St |
—ap1y*  s1+apytet
bi(s) \ [ s77'UL(0) —anpxte ([0, 0(t)e " dr)
by (s) s UL (0) — apay*e™T([° L 6(r)e " dr)

det(A(s)) =(s+anx™) (s +axny*e ") — (—axy*apx*e ")
=52+ ay1x"s? + any'e s+ (ay1axn +apan )x*y e .
ki(i =1,2,3) are determined by
ki =anx®, ky=any*, k3= (anan+anay)x’y".

Thus,

(3.4) det(A(s)) = 5%+ ks +koe 5759 + kze ™57,
Fors=iow (0 > 0),

(3.5) det(A(s)) =(i0)* + k(i) + kae (i) + kze T = 0.

Using appropriate trigonometric identities for i, 9, and e ~/®, we obtain

det(A(s)) =™ (cos(gm) +isin(gm)) + ki a)q(cos(%) + iSin(%))
+ky(cos(@T) — isin(a)r))wq(cos(%) + isin(%))



6 C. CELIK, K. DEGERLI
+k3(cos(wT) —isin(0T))

(3.6) =0.
Real part of Eq. (3.6):

cos(gm)®*? + ki cos(%)wq = —ky? cos(G — oT) — kzcos(w1)
Imaginary part of Eq. (3.6);

sin(gm) 07 4k sin(%)a)q = —ky0sin(5 — 07) + kzcos(w7).

If we square both sides of the real and imaginary parts separately and add them, we obtain the

following equation.
(3.7) 0™ +2kicos(G) @3 + (k3 — k3) 0% — 2kokscos (L) o — k3 = 0.

Since cos(%4) >0, @7 >0and 0 < g < 1. Let v = @, then we get h(v) = v* + 2k;cos(4)v* +
(k% — k3)v* — 2kokscos(%F)v — k3 = 0. Since h(0) = —(k3)> < 0 and lim,_. h(v) = oo, there
exists a vo > 0 such that i(vp) = 0. Next, we determine the critical delay 7.

Since,
det(A(s)) = s%+kisd+kye 759+ kze .
Then, we get

det(A(s)) = 529 + ki 59+ koe 559 + kze ST =0,

A= 529 4 kys9,
E = kos? + k3,
A+Ee ™" = 0.

Let s = io(w > 0), and let A represent the real part of A and A, the imaginary part of A.

Similarly, let E| represent the real part of E and E> the imaginary part of E. Thus,

(A1 +iA2) + (Ey +iE;)(cos(wT) —isin(@wT)) =0
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where

Al = @ cos(qm) +kjwicos(%),
Ay = 0% sin(qn) +k w?sin(4),
E| = kza)qcos(%) + k3,

_ L
E, = ko w9sin(%5).
We can write

A+ E cos(@t)+ Epsin(wt) = 0,

Ay + Eycos(@t) — Epsin(ot) = 0.

sin(w7) _ A Ex—ALE;
cos(@T) AEI+ALEY
— AEy—ArE,
tan(71) = TR
— A1Er—AyE,
0T = arctan(TFT 6 ),

which leads to

1 A1Ey, —AyEq km
7, = —arctan( 22220 L5 por k=0,1,2,...
k () <A1E1 +A2E2) + @

Let (1) = a(7) +i®(7) be aroot of (3.4) in a neighborhood of T = 7; such that o(7;) = 0 and
o(7;) = o) for k=0,1,2,.... Then the following result holds.

Lemma 3.1. Assume g'(z1) # 0, then the following transversality condition is satisfied:

d(Res(7))

0, k=0,1,2,3,...
dT 757 [t Rt ]

and g'(z1) and % have the same sign.

Proof. Assume that at T = 7; the characteristic equation (3.4) admits a purely imaginary root

s =i with ® € R, ® > 0. Differentiating (3.4) with respect to 7 yields
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d d
(kzq/sq*1 —S)e*” — e*”(’c—s +5)(kps? +k3) = 0.

ds ds
2 2g—1 kias?™ 1
4= gt dt dt

d'c
So,

dt  2gs* '+ kgt kogs?~! T

ds 5(kosq + k3) s(kps?+k3) s

If we take s = i@, we can get

drt 2q(i )2q—1+k (i)T y Jlioo)i- |
Re(ds)|s o =R [ q(?;))(kz(ia);qq—o—lz) a)r_'_Wam_%],
Re(dr)|s—iw = Re [(2q(zw)2‘1 thig(io)? ])(COS((DT)+ZSln(wf))+k2q(iw)q—1]’

ds (i0) (k2 (iw)9+k3)

Re(5 ) io
_ (kikyw*2gcos( 5= 21) co ("T )cos((m’——)) k3qw*1% cos(4F )cos("2 )
(kza)‘icos( )+ k3)2 +sin’(4F) (ko7 cos(%F) +k3)? + sin® (%)
(kiksq@=2(sin(@7) cos( 452 ) + cos( 52w ))_qu(klsin(m+%)+k2)(sm(%)cos(@j>”))
(ko7 cos(%GF) +k3)? + sin® (%) (kyw cos(%F) +k3)? + sin® (%)
N 2qw*12 cos((q — 1)) (@k; cos(%F) + k3) quzq’zsin(%)cos((zqgl)”)
(ko7 cos(GF) + k3 )2 + sin® (%) (kzwqcos(%)—&—kg) +sin® (%)

Since the denominators are positive, analysis of the numerators is sufficient to determine the

value of the sign.

dt
sgn(Re(5) s-i0)
-2 —1 -2
= (klkza)zq_zqcos(q 5 ) cos(q 5 T)cos(wT — %))+k§qwzq_2cos(%)cos(q 5 )

+  (kikzqw? 2 (sin(®7) cos( 1

) +cos(q;27r))

(g—Dm

— g0k sm(a)’H—qz )+k2)(sin(%)cos(T))

2g—1
+ 2q(02q_zcos((q—l)n)(a)qkzcos(qz)+k3) quzq_zsin(%)cos(%)

0<g<l a?>0, 0<C05q2ﬂ751nqn<1 0 < cos Y=L 1) < 1and, 1<cos—(q_22)n<0,
So,

drt
Re(—)|=; 0.
(7m0 #

Thus, lemma follows. ]
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Theorem 3.1. For system (3.3), the following statements are valid:
i)If T € [0,7), then the equilibrium at the origin (0,0) is asymptotically stable.

ii) If g'(z1) # 0, then a Hopf bifurcation occurs at the origin when T = T, withk=0,1,2,. ...

4. THE NUMERICAL EXAMPLE

In this section, to support our theoretical results, we illustrate an example numerically using
MATLAB programming. To see the behavior of the solution for stability and Hopf bifurcation,
we consider q = 0.72 in the underlying system. To obtain the graphs, we modified the Adams -
Bashforth - Moulton predictor - corrector scheme and used MATLAB programming as in [9].

Forr; =1.5,r, =0.6,a11 =0.7, a;p = 0.8, a1 = 0.45 and a;; = 0.006 in system (1.2). We

obtain the following system

cDYPx(t) = x(t)[1.5—0.7x(t) — 0.8y(t — 7)]
4.1 e DYBy(t) = y(t)[—0.6+0.45x(t) — 0.006y(t — 7)]
_ + _ 1.50.0064+-0.60.8 __
X = aﬁiiiﬁ‘;}é] = 070.00610.8045 — 1-3427
_ — _ 1.50.45-0.60.7 __
y = a7123;+;213;12] = 0:70.006+0.80.45 — 0-7001.

So, we get E* = (x*,y*) = (1.3427,0.7001).
ky = apx* = (0.7)(1.3427) = 0.9399,  k» = axny* = (0.006)(0.7001) = 0.0042,
ks = (ay1a2 +arpaz )x*y* = ((0.7)(0.006) + (0.8)(0.45))(1.3427)(0.7001) = 0.3424.

Taking x* = 1.3427, y* = 0.7001, ¢ = 0.82 , k; = 0.9399, k, = 0.0042, and k3 = 0.3424 in

equation (3.7), forv = w82

the following equation is obtained
4.2) v 4+0.52441° 4+ 0.883417 — (8.024¢ — 04)y —0.1172 = 0.
For which the solutions are v = 0.3192 and @ = 0.2484.
2 qr
A = ™ cos(gr) +k1a)qcos(7) = —0.0023,
2q .; . g
Ay = osin(gm)+kiw? sm(7) = 0.3427,

E = kga)qcos(%)+k3:0.3428,
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E, = kza)qsm(qz) 0.0013,

1 A]Ez—A2E1 km
T, = —arctan(———— )+ — for k=0,1,2,...
" 5 arctan (AIEI +A2E2)+

T = 6.3115.

We know the following equation from Lemma 3.1.

Re(ﬂ)’ o (kiky 0?7 2gcos(2 fn)cos(%n)cos(wr—%)) k3qw*i2 cos(%* )COS(qTTC
ds §=10 (ky @4 cos (%)+k’;) +si 2(‘12”) (kza)CIcos(%) 3)2 +s1n2(%)
i (k1kzqo?~ 2(Sin(a)f)00§(qu )+cos(q727r)) _ qa)q_z(k] sin(@7+2 7 2)(51n(q7) ( ))
(ky 7 cos(GF ) +k3)2+sin? (4F) (ky 7 cos(GF ) +k3)2+sin? (L)
2q0*7 2 cos((g—1)m )(a)qkzcos(%)—i-kﬂ _ 2qw*a—2 n(%)cos((zq;)”)
T (kngCOS(%)+k3)2+sin2(%) (ko9 cos(4F)+k3)? +sm2(%)

Using all values, Re( %)|s=iw is obtained as follows:

drt
( )|S iw = —0.8459 £ 0.

Using the Adams- Bashforth - Moulton predictor-corrector method that we mentioned in the
first part of this section, we also plot our predator and prey functions to illustrate the dynamic

behavior of our fractional model (3.3), modified with parameters 7y and @ .

I I I I I I I
0 100 200 300 400 500 600 700 800
t

FIGURE 1. State paths for the fractional system with the initial conditions xy =

1.1,y0=0.4,g=0.82, and T = 5.9 < 1 = 6.3115.
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. . . . . . .
0 100 200 300 400 500 600 700 800
t

FIGURE 2. State paths for the fractional system with the initial conditions xy =

1.1,y0=0.4,g=0.82, and T = 5.9 < 7 = 6.3115.
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0.7F

061

051
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0.9

0 200 400 600 800 1000
t

FIGURE 4. State paths for the fractional system with the initial conditions xg =

1.1,yo =0.4, and 7 = 6.32

11
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t

FIGURE 5. State paths for the fractional system with the initial conditions xg =

1.1,y0=0.4,and 7 = 6.32

FIGURE 6. State paths of x versus y when 7 = 6.32

5. CONCLUSION

In this paper, a fractional-order delayed ecology model was examined. The existence and
stability conditions for the equilibrium point were determined using the Laplace transform and
linearization theory. By selecting the time delay 7 as the bifurcation parameter, the critical value
of T was calculated to determine the point of Hopf bifurcation. Moreover, a numerical example
is given to verify the theoretical results. In the example, the equilibrium point is obtained as

E* =(1.3427,0.7001), @ = 0.2484 and 1y = 6.3115. For ¢ = 0.82, first T = 5.9 < 19 is taken
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and the graphs of Figure-1,2 are obtained, respectively. These figures show that the positive
equilibrium point is asymptotically stable when 7 < 79. However, in Figure-4,5, while g = 0.82
and T = 6.32 are close enough to 7y, the existence of periodic solutions bifurcating from the
equilibrium point £* is shown. Figure 3,6 also show the relative positions of the x and y for the

values of T =5.9 and 7 = 6.32, respectively.
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