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Abstract: In this study, we examine an eco-epidemiological prey-predator model that incorporates hunting 

cooperation, fear, and anti-predator behavior including linear harvest. There are two subclasses of prey: susceptible 

and diseased. We investigate thorough mathematical analysis, including the presence and stability of equilibria, the 

boundedness of the model, and the existence and uniqueness of solutions. The conditions under which local bifurcation 

could occur near the equilibrium points were discovered. Numerical simulations were run to validate the model's long-

term behavior and comprehend the impact of the model's main parameters. The purpose is to demonstrate the analytical 

findings numerically and study the impact of changing the parameters on the dynamical behavior of the system, and 

control settings are determined by numerical simulations using MATLAB, R2021a. 
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1. INTRODUCTION 

Models that include diseases in ecological communities are referred to as eco-epidemiological 

models [1]. Anderson and May presented the first eco-epidemiological model that included an 

infectious illness in prey [2]. Subsequently, eco-epidemiological models involving several 

biological components were created and studied by several researchers [3–10]. 

The interaction between prey and predators cannot be adequately described by direct predation 



2 

W.M. ALWAN, H.A. SATAR 

alone, according to certain evolutionary scientists and theoretical ecologists; the cost of fear must 

also be considered. The first mathematical model incorporating the fear effect in a two-species 

predator-prey model was introduced by Wang et al. in 2016. Prey populations may shift their 

grazing zones to safer locations out of fear of predation, giving up places where they could get the 

maximum intake rates. They might become more vigilant and change how they reproduce [11]. 

Many researchers have incorporated cooperation items into the modeling of functional responses 

for predation rates since cooperation between species of the same species is widespread in nature. 

These include cooperative hunting, where wolves hunt together against larger creatures [14], lions 

pursue quicker animals [12–13], and numerous academics have examined the importance of 

hunting collaboration [15–17]. Pal et al. [18] recently examined how predator-prey dynamics can 

be impacted by cooperation and fear effects in a predator-prey model with hunting cooperation 

among predators and the fear put on the prey population. Numerous scholars have examined the 

eco-epidemiological relationship between hunting collaboration and fear [17, 19–21]. 

However, a research of prey-predator interactions to prevent prey extinctions was presented [22], 

using anti-predator behavior as a means of protecting prey from predation pressure. When the prey 

feels threatened, it naturally responds with anti-predator behavior at the expense of specific bodily 

parts. To protect themselves from predators, lizards, for instance, may let go of their tails. The 

spines on fish and insects keep birds and predators from eating them. Different types of anti-

predator behaviors in different prey species have been researched by numerous behavioral 

ecologists [23–25]. Prey animals display inducible defense, which is characterized as protective 

actions acquired from previous attacks, when a predator is present. Chemicals in various parts of 

the prey's body are triggered by inducible defense to create new structures or cleverly fend off 

predators. 

Furthermore, [26] investigated the relationship between predator hunting and prey anti-predator 

behavior in the environment and used a stochastic predator-prey model that includes hunting 

cooperation and fear effects. 

Conversely, harvesting is an important and regular event. Fishermen frequently use harvesting 

because ecosystems are essentially regenerative. In a capitalized hunting system with two 

interacting species, scientists are examining the capture of either prey or predator species, or both. 

Numerous different techniques for harvesting have been used. Some employ nonlinear harvesting 

[27–29], while others use continuous threshold harvesting, proportional harvesting, and constant 
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harvesting [30–32]. The impact of fear and harvesting in a prey-predator paradigm with sickness 

on the prey was proposed by Ibrahim and Naji [33]. They discovered that while fear causes the 

system to stabilize, sickness and harvesting lead to the extinction of one or more species. 

A general prey-predator model that included fear, harvest, cooperative hunting, anti-predator, and 

approach was developed based on the previous studies. Both susceptible and diseased prey made 

up a significant portion of the prey population. Predators are said to consume both healthy and sick 

prey because they can't tell the difference. 

 

2. MODEL FORMULATION 

     The model includes three main species indicated as 𝑆(𝑡), 𝐼(𝑡), and 𝑌(𝑡) which represented 

the densities at time 𝑡  for the susceptible prey, Infected prey and predators, respectively. The 

mathematical model can be formulated according to the following assumptions  

• The predators feed on their prey on the Lotka-Volterra functional response; without the 

predator, prey numbers increase logistically.  

• Fear effect from the predation causes decrease in the growth rate with constant fear rate.  

• The disease is meant for dissemination within the prey species, the infected prey competing 

for resources and being genetically inherited, the predator makes no distinction between 

infected and susceptible prey; it consumes both. 

• As the predator has a hunting cooperation capability, it will successfully acquire prey. 

therefore, the predator population's attack rate,  𝑎1  >  0 , can be increased by the 

cooperation term to become (𝑐1 + 𝑎1𝑌)  , where 𝑎2  ≥  0,  denotes the predator 

cooperation in hunting. 

• Harvesting is imposed on susceptible prey and predator populations by an external force. 

• Prey has an anti-predator ability that decreases predation.  

Consequently, the subsequent system of nonlinear first-order differential equations may 

characterize the dynamics of the specified eco-epidemiological system 

    
𝑑𝑆

𝑑𝑇
=

𝑟

1+𝛼𝑌
(1 −

𝑆+𝐼

𝑘
) 𝑆 − (𝑐1 + 𝑎1𝑌)𝑆𝑌 − 𝛽𝑆𝐼 − 𝑞1𝐸1𝑆 = 𝑔1(𝑆, 𝐼, 𝑌),   

 
𝑑𝐼

𝑑𝑇
= 𝛽𝑆𝐼 − 𝑐2𝐼𝑌 − 𝑑1𝐼 = 𝑔2(𝑆, 𝐼, 𝑌),                                                         

      
𝑑𝑌

𝑑𝑇
= 𝑒1(𝑐1 + 𝑎1𝑌)𝑆𝑌 + 𝑒2𝑐2𝐼𝑌 − 𝑑2𝑌 − 𝑎2𝑆𝑌 − 𝑞2𝐸2𝑌 = 𝑔3(𝑆, 𝐼, 𝑌)  

,           (1) 

where  𝑆(0) = 𝑆0 ≥ 0 , 𝐼(0) = 𝐼0 ≥ 0 , and 𝑌(0) = 𝑌0 ≥ 0  indicates the initial point of the 
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system (1), with every parameter positive and described in Table 1. 

Table 1: The description of the model parameters 

Parameters  Description 

𝑟 The intrinsic growth rate of the prey. 

𝑘 Environmental carrying capacity 

𝛼 Fear level  

𝑐1 the consumption rate by the predator 

𝑎1 The rate of hunting cooperation  

𝑒1 The conversion rate of devouring susceptible prey by predator 

𝑒2 The conversion rate of devouring infected prey by predator. 

 𝑎2 The rate of anti-predator 

𝛽 The rate of infection  

𝑑1 The mortality rate of infected prey  

𝑑2 The mortality rate of predator   

𝑞1𝐸1 The harvesting catchability constant and the effort rate of  susceptible prey 

𝑞2𝐸2 The harvesting catchability constant and the effort rate of  predator 

 

Therefore, system (2) has the following domain 

               Ω = {(𝑆, 𝐼, 𝑌) ∈ 𝑅3, 𝑆 ≥ 0, 𝐼 ≥ 0, 𝑌 ≥ 0}.|  

System (1) has a continuous interaction function with  a continuous partial derivatives, and hence 

the solution exists and is unique. Moreover, in order to guarantees the convergent of the solution 

to an attractor, the solution of system (1) is proved to be uniformly bounded as shown in the 

following theorem.  

Theorem 1. Solutions of system (1) starting in ℝ+
3  , are uniformly bounded under the prey’s 

survival condition 

                      𝑟 > 𝑞1𝐸1                                              (2) 

Proof. From the susceptible prey equation in system (1) yields that  

                
𝑑𝑆

𝑑𝑡
≤ 𝑟 (1 −

𝑆

𝑘
) 𝑆 − 𝑞1𝐸1𝑆,  

Then direct computation leads to  𝑆 ≤
𝐾(𝑟−𝑞1𝐸1)

𝑟
 

Now, define the function 𝑊2 (𝑡)  =  𝑆 (𝑡)  + 𝐼 (𝑡)  + 𝑌(𝑡), Differentiating the function 𝑊2 (𝑡), 

yields  
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𝑑𝑊2

𝑑𝑇
≤ 2(𝑟 − 𝑞1𝐸1)𝑆 − 𝜌1𝑊2. 

Therefore,  

               
𝑑𝑊2

𝑑𝑇
+ 𝜌1𝑊2 ≤ 𝜌2, 

where 𝜌1 = 𝑚𝑖𝑛{𝑟 − 𝑞1𝐸1, 𝑑1, 𝑑2 + 𝑞2𝐸2} 

Then, according to the above differential inequality, direct computation shows that for 𝑡 → ∞, it 

is obtained  

             𝑊2(𝑡) ≤
𝜌2

𝜌1
= 𝜇,  

where 𝜇 =
2𝐾(𝑟−𝑞1𝐸1)2

𝑟
. 

Thus, the solutions of system (1) in the region Ω are uniformly bounded. 

 

3. EQUILIBRIUM POINTS AND THEIR LOCAL STABILITY ANALYSIS 

     In this section, the existence of non-negative equilibria is examined, and the stability of 

these critical points is established. The non-negative equilibrium points are determined as 

follows  

• The trivial equilibrium point (𝑇𝐸𝑃), 𝑃̂0 = (0,0,0), always exists 

• The axial equilibrium point (𝐴𝐸𝑃), 𝑃̌1 = (𝑆̌, 0,0) , where 𝑆̌ =
𝐾(𝑟−𝑞1𝐸1)

𝑟
, which exists 

under condition (2).  

• The free  predator equilibrium point (𝐹𝑃𝐸𝑃), 𝑃̅2 = (𝑆,̅ 𝐼,̅ 0), where    

            𝑆̅ =
𝑑1

𝛽
,  𝐼 ̅ =

𝐾𝛽(𝑟−𝐸1𝑞1)−𝑟𝑑1

𝛽(𝑟+𝐾𝛽)
,  exists provided that 

                 
𝑟𝑑1

𝛽
< (𝑟 − 𝐸1𝑞1)                                              (3) 

• The  free infected prey equilibrium point (𝐹𝐼𝑃𝐸𝑃),𝑃̃3 = (𝑆̃, 0. 𝑌̃) 

                   𝑆̃ =
𝑑2+𝑞2𝐸2

𝑒1(𝑐1+𝑎1𝑌̂)−𝑎2
, 

while 𝑌̃ represents a positive root for the equation            

                              𝛿4𝑌̃
4 + 𝛿3𝑌̃

3 + 𝛿2𝑌̃
2 + 𝛿1𝑌̃ + 𝛿0 = 0,              (4) 

with 

             𝛿4 =  𝑘𝑎1
2𝑒1𝛼  > 0,       

             𝛿3 =  𝐾𝑒1𝑎1
2 + 𝐾𝑎1𝛼(𝑒1𝑐1 − 𝑎2) + 𝐾𝑒1𝑎1𝑐1𝛼, 

             𝛿2 = 𝐾𝑐1(𝑒1𝑎1 + 𝛼) + 𝐾𝑎1(𝑒1𝑐1 − 𝑎2), 
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             𝛿1 = 𝐾𝑞1𝐸1𝛼 + 𝐾𝑐1(𝑒1𝑐1 − 𝑎2) − 𝐾𝑟𝑒1𝑎1,     

             𝛿0 =  𝐾𝑞1𝐸1 + 𝑟(𝑞2𝐸2+𝑑2) − 𝐾𝑟(𝑒1𝑐1 − 𝑎2). 

By “Descartes rule of signs”, equation (4) has one positive root under the conditions 

                𝛿0 < 0.                                                (5a) 

                  𝑒1𝑐1 > 𝑎2.                                                (5b) 

• The interior equilibrium point (𝐼𝐸𝑃), 𝑃4
∗ = (𝑆∗, 𝐼∗, 𝑌∗), where  

   𝑆∗ =
𝑐2𝑌∗+𝑑1

𝛽
,                                  

      𝐼∗ =
𝛽(𝐾𝑟−𝐾𝑌∗2

𝑎1−𝐾𝑌∗3
𝛼𝑎1−𝐾𝑌∗𝑐1−𝐾𝑌∗2

𝛼𝑐1−𝐾𝑒1𝑞1−𝐾𝑌∗𝛼𝑒1𝑞1)−𝑟(𝑌∗𝑐2+𝑑1)

(𝑟+𝐾𝛽(1+𝛼𝑌∗))
, 

while 𝑌∗ is a positive root of the following  

      𝐷3𝑌
∗3 + 𝐷2𝑌

∗2 + 𝐷1𝑌
∗ + 𝐷0 = 0,                                         (6a) 

 where 

             𝐷3 = 𝐾𝛼𝛽𝑎1𝑐2(𝑒2 − 𝑒1). 

             𝐷2 = 𝐾𝛽𝑎1𝑐2(𝑒2 − 𝑒1) − 𝑟𝑎1𝑒1𝑐2 + 𝐾𝛼𝛽𝑐1𝑐2(𝑒2 − 𝑒1) − 𝐾𝛼𝛽𝑎1𝑒1𝑑1 

              𝐷1 = 𝐾𝑆∗𝛼𝛽2𝑎2 − 𝑟𝑒1𝑐1𝑐2 − 𝐾𝛽𝑒1𝑐1𝑐2 + 𝐾𝛽𝑒2𝑐1𝑐2 + 𝑟𝑒2𝑐2
2 − 𝑟𝑎1𝑒1𝑑1 −

                        𝐾𝛽𝑎1𝑒1𝑑1 − 𝐾𝛼𝛽𝑒1𝑐1𝑑1 + 𝐾𝛼𝛽2𝑑2 + 𝐾𝛼𝛽𝑒2𝑐2𝐸1𝑞1 + 𝐾𝛼𝛽2𝐸2𝑞2 . 

    𝐷0 = 𝑟𝛽𝑑2 + 𝐾𝛽2𝑑2 + 𝐾𝛽𝑒2𝑐2𝐸1𝑞1 + 𝑟𝛽𝐸2𝑞2 + 𝐾𝛽2𝐸2𝑞2 + 𝑟𝑆∗𝛽𝑎2 + 𝐾𝑆∗𝛽2𝑎2 −

                         𝐾𝑟𝛽𝑒2𝑐2 − 𝑟𝑒1𝑐1𝑑1 − 𝐾𝛽𝑒1𝑐1𝑑1 + 𝑟𝑒2𝑐2𝑑1 

So by “Descartes’ rule of sign”, equation (6a) has a unique positive root and hence, system (1) has 

a unique 𝐼𝐸𝑃 if one of the following sets of conditions 

 

𝑒2 > 𝑒1

𝐷0 < 0
𝐷2 > 0  𝑂𝑅  𝐷1 < 0

}                                   (6b) 

Or else: 

 

𝑒2 < 𝑒1

𝐷0 > 0
𝐷2 < 0  𝑂𝑅  𝐷1 > 0

}                                   (6c) 

Now, to establish the local stability, the Jacobain matrix (𝐽𝑀) of system (1) about  (𝑆, 𝐼, 𝑌)                                      

                  𝐽 = (𝑢𝑖𝑗)3×3,                                    (7)  

where 

𝑢11 =
−𝑟𝑆

𝐾(1+𝛼𝑌)
+

𝑟

1+𝛼𝑌
−

𝑟𝑆

𝐾(1+𝛼𝑌)
−

𝑟𝐼

𝐾(1+𝛼𝑌)
− (𝑐1 + 𝑎1𝑌)𝑌 − 𝛽𝐼 − 𝑞1𝐸1, 
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𝑢12 = −(
𝑟

𝐾(1+𝛼𝑌)
+ 𝛽)𝑆,  𝑢13 = (

−𝑟𝛼

(1+𝛼𝑌)2
+

𝑟𝐾𝛼𝑆

(𝐾(1+𝛼𝑌))2
+

𝑟𝐾𝛼𝐼

(𝐾(1+𝛼𝑌))2
− 𝑐1 − 2𝑎1𝑌) 𝑆, 

𝑢21 = 𝛽𝐼; 𝑢22 = 𝛽𝑆 − 𝑐2𝑌 − 𝑑1;  𝑢23 = −𝑐2𝐼, 

 𝑢31 = (𝑒1(𝑐1 + 𝑎1𝑌) − 𝑎2)𝑌; 𝑢32 = 𝑒2𝑐2𝑌,  

 𝑢33 = 𝑒1𝑎1𝑆𝑌 + 𝑒1(𝑐1 + 𝑎1𝑌)𝑆 + 𝑒2𝑐2𝐼 −  𝑑2 − 𝑎2𝑆 − 𝑞2𝐸2.     

It is clear that the system (1) has 𝐽𝑀 at EEP, 𝑃̂0 = (0,0,0) specified by 

              𝐽(𝑃̂0) = [

𝑟 − 𝑞1𝐸1 0 0
0 −𝑑1 0
0 0 −𝑑2 − 𝑞2𝐸2

].                         (8a) 

The eigenvalues of 𝐽(𝑃̂0)  are 𝜆01 = 𝑟 − 𝑞1𝐸1, 𝜆02 = −𝑑1 < 0, 𝜆03 = −𝑑2 − 𝑞2𝐸2 < 0 .   

Therefore, 𝑃̂0 is locally asymptotically stable (𝐿𝐴𝑆) under the condition 

                   𝑟 < 𝑞1𝐸1                                                (8b) 

The 𝐽𝑀 at 𝐴𝐸𝑃, 𝑃̌1 = (𝑆̌, 0,0), is determent by 

      𝐽(𝑃̌1) = [

−(𝑟 − 𝑞1𝐸1) −(
𝑟

𝐾
+ 𝛽)𝑆̌ (−𝑟𝛼 +

𝑟𝛼𝑆̌

𝐾
− 𝑐1)𝑆̌

0 𝛽𝑆̌ − 𝑑1 0

0 0 𝑒1𝑐1𝑆̌ − 𝑑2 − 𝑎2𝑆̌ − 𝑞2𝐸2

]                (9a) 

Therefore, the eigenvalues of 𝐽(𝑃̌1)  are 𝜆11 = −(𝑟 − 𝑞1𝐸1) ; 𝜆12 = 𝛽𝑆̌ − 𝑑1, 𝜆13 = 𝑒1𝑐1𝑆̌ −

𝑑2 − 𝑎2𝑆̌ − 𝑞2𝐸2.               

Hence, all the eigenvalues are negative, and 𝑃̌1is LAS under the condition (2) and the following 

conditions                       

                    𝑒1𝑐1𝑆̃ < 𝑑2 + 𝑎2𝑆̃ + 𝑞2𝐸2                                 (9b) 

      𝛽𝑆̃ < 𝑑1.                                             (9c) 

The 𝐽𝑀 at 𝐹𝑃𝐸𝑃,  𝑃̅2 = (𝑆̅, 𝐼,̅ 0), is determined 

𝐽(𝑃̅2) = [

−
𝑟𝑆̅

𝑘
      − (

𝑟

𝐾
+ 𝛽) 𝑆̅ (−𝑟𝛼 +

𝑟𝛼𝑆̅

𝐾
+

𝑟𝛼𝑖̅

𝐾
− 𝑐1)𝑆̅

𝛽𝐼 ̅ 0 −𝑐2𝐼 ̅

0 0 𝑒1𝑐1𝑆̅ − 𝑎2𝑆̅ − 𝑒2𝑐2𝐼 ̅ − 𝑑2 − 𝑞2𝐸2

].           (10) 

The characteristic equation of 𝐽(𝑃2) is 

 (𝜆2
2 − 𝑇1𝜆2 + 𝐷1)(𝑒1𝑐1𝑆̅ − 𝑎2𝑆̅ − 𝑒2𝑐2𝐼 ̅ − 𝑑2 − 𝑞2𝐸2) = 0              (10a) 

where 

       𝐷1 = (
𝑟𝑆̅

𝐾
+ 𝛽)𝛽𝐼𝑆̅̅ > 0          

              𝑇1 = −
𝑟𝑆̅

𝐾
< 0                                               
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Obviously, 𝑇1 < 0 and 𝐷1 > 0. Therefore, the eigenvalues are written as 

           𝜆21 =
𝑇1

2
+

1

2
√𝑇1

2 − 4𝐷1;  𝜆22 =
𝑇1

2
−

1

2
√𝑇1

2 − 4𝐷1;  

𝜆23 = 𝑒1𝑐1𝑆̅ + 𝑒2𝑐2𝐼 ̅ − 𝑑2 − 𝑎2𝑆̅ − 𝑞2𝐸2. 

Therefore, the eigenvalues 𝜆21 and 𝜆22 have negative real parts, and then 𝑃̅2 is LAS under the 

condition 

       𝑒1𝑐1𝑆̅ + 𝑒2𝑐2𝐼 ̅ < 𝑑2 + 𝑎2𝑆̅ + 𝑞2𝐸2                                        (10b) 

The 𝐽𝑀 at 𝐼𝐸𝑃,  𝑃̃3 = (𝑆̃, 0, 𝑌̃)  is determine 

𝐽(𝑃̃3) = [

−
𝑟𝑆̃

𝐾(1+𝛼𝑌̃)
−(

𝑟𝑆̃

𝐾(1+𝛼𝑌̃)
+ 𝛽) 𝑆̃ (−

𝑟𝛼

(1+𝛼𝑌̃)2
+

𝑟𝛼𝑆̃

𝐾(1+𝛼𝑌̃)2
− 𝑐1 − 2𝑎1𝑌̃)𝑆̃

0 𝛽𝑆̃ − 𝑑1 0

(𝑒1𝑐1 + 𝑒1𝑎1𝑌̃ − 𝑎2)𝑌̃ 𝑒2𝑐2𝑌̃ 𝑒1𝑎1𝑆̃𝑌̃

]. 

Hence, the characteristic equation of 𝐽(𝑃̃3) is given by 

        (𝜆3
2 − 𝑇2𝜆3 + 𝐷2)(𝛽𝑆̃ − 𝑑1) = 0                                       (11a) 

where,   

           𝑇2 =
−𝑟𝑆̃

𝐾(1+𝛼𝑌̃)
+ 𝑒1𝑎1𝑆̃𝑌̃        

          𝐷2 = (−
𝑟𝛼

(1+𝛼𝑌̃)2
+

𝑟𝛼𝑆̂

𝐾(1+𝛼𝑌̃)2
− 𝑐1 − 2𝑎1𝑌̃)(𝑒1𝑐1 + 𝑒1𝑎1𝑌̃ − 𝑎2)𝑆̃𝑌̃.   

Obviously,  𝑇2 < 0 and 𝐷2 > 0. Therefore, the eigenvalues are written as 

           𝜆31 =
𝑇2

2
+

1

2
√𝑇2

2 − 4𝐷2;  𝜆32 =
𝑇2

2
−

1

2
√𝑇2

2 − 4𝐷2; and , 𝜆33 = 𝛽𝑆̃ − 𝑑1  

Direct computation shows that the eigenvalues 𝜆31 and 𝜆32 have negative real parts if  

               𝑒1𝑎1𝑆̃𝑌̃ <
𝑟𝑆̃

𝐾(1+𝛼𝑌̃)
                                           (11b) 

(−
𝑟𝛼

(1+𝛼𝑌̃)2
+

𝑟𝛼𝑆̃

𝐾(1+𝛼𝑌̃)2
− 𝑐1 − 2𝑎1𝑌̃)(𝑒1𝑐1 + 𝑒1𝑎1𝑌̃ − 𝑎2)𝑆̃𝑌̃ > 0                     (11c) 

while the third eigenvalue 𝜆33 is negative if 

                 𝛽𝑆̃ < 𝑑1                                                   (11d) 

 Finally, the 𝐽𝑀 at the 𝐼𝐸𝑃, 𝑃4
∗ = (𝑆∗, 𝐼∗, 𝑌∗) is  

               𝐽(𝑃4
∗) = [𝑎𝑖𝑗

∗ ]3×3                                             (12a) 

where 

 𝑎11
∗ =

−𝑟𝑆∗

𝐾(1+𝛼𝑌∗)
;  𝑎12

∗ = −(
𝑟𝑆∗

𝐾(1+𝛼𝑌∗)
+ 𝛽)𝑆∗ 

  𝑎13
∗ = (

−𝑟𝛼

(1+𝛼𝑌∗)2
+

𝑟𝛼𝑆∗

𝐾(1+𝛼𝑌∗)2
+

𝑟𝛼𝐼∗

𝐾(1+𝛼𝑌∗)2
− 𝑐1 − 2𝑎1𝑌

∗) 𝑆∗;    
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               𝑎21
∗ = 𝛽𝐼∗;  𝑎22

∗ = 0; 𝑎23
∗ = −𝑐2𝐼

∗; 

               𝑎31
∗ = (𝑒1𝑐1 + 𝑒1𝑎1𝑌

∗ − 𝑎2)𝑌
∗;  𝑎32

∗ = 𝑒2𝑐2𝑌
∗;  𝑎33

∗ = 𝑒1𝑎1𝑆
∗𝑌∗ 

The corresponding characteristic equation  

             𝜆4
3 + 𝐶1𝜆4

2 + 𝐶2𝜆4 + 𝐶3 = 0,                                       (12b)                                              

where  

              𝐶1 = −(𝑎11
∗ − 𝑎33

∗ ) 

              𝐶2 = [−𝑎12
∗ 𝑎21

∗ + (𝑎11
∗ 𝑎33

∗ − 𝑎13
∗ 𝑎31

∗ ) − 𝑎23
∗ 𝑎32

∗ ] 

              𝐶3 = [𝑎12
∗ (𝑎23

∗ 𝑎31
∗ − 𝑎21

∗ 𝑎33
∗ ) + 𝑎32

∗ (𝑎13
∗ 𝑎21

∗ − 𝑎11
∗ 𝑎23

∗ )] 

with 

    ∆= 𝐶1𝐶2 − 𝐶3

= −(𝑎11
∗ + 𝑎33

∗ )(𝑎11
∗ 𝑎33

∗ − 𝑎13
∗ 𝑎31

∗ ) + 𝑎12
∗ (𝑎11

∗ 𝑎21
∗ + 𝑎23

∗ 𝑎31
∗ )

+ 𝑎32
∗ (𝑎23

∗ 𝑎33
∗ + 𝑎13

∗ 𝑎21
∗ ) 

The characteristic equation (12b), according to the “Routh-Hurwitz criterion”, has three 

eigenvalues with negative real portions if the following conditions are met parts if 𝐶1 > 0, 𝐶3 >

0, and ∆= 𝐶1𝐶2 − 𝐶3Moreover, the “Routh-Hurwitz requirements” are satisfied if the conditions 

given in the following theorem hold. 

Theorem 3. The 𝐼𝐸𝑃 of system (1) is LAS if the following conditions are met. 

       
−𝑟𝑆∗

𝐾(1+𝛼𝑌∗)
+ 𝑒1𝑎1𝑆

∗𝑌∗ < 0                                              (13a) 

          𝑎11
∗ 𝑎33

∗ − 𝑎13
∗ 𝑎31

∗ > 0                                              (13b) 

   
−𝑟𝛼

(1+𝛼𝑌∗)2
+

𝑟𝛼𝑆∗

𝐾(1+𝛼𝑌∗)2
+

𝑟𝛼𝐼∗

𝐾(1+𝛼𝑌∗)2
− 𝑐1 − 2𝑎1𝑌

∗ < 0                               (13c) 

            𝑒1𝑐1 + 𝑒1𝑎1𝑌
∗ > 𝑎2                                              (13d) 

       𝑎12
∗ (𝑎23

∗ 𝑎31
∗ − 𝑎21

∗ 𝑎33
∗ ) + 𝑎32

∗ (𝑎13
∗ 𝑎21

∗ − 𝑎11
∗ 𝑎23

∗ ) > 0                          (13e) 

Proof. Assuming 𝐶1 > 0 , 𝐶3 > 0 , and Δ > 0, the roots of the Jacobian matrix 𝐽(𝑎𝑖𝑗
∗ )  are 

considered to comprise negative real parts according to the "Routh-Hurwitz criterion". The 

satisfaction of the "Routh–Hurwitz criterion" requirements is guaranteed by conditions (13a)-(13e), 

as demonstrated by direct computation.  

 

4. GLOBAL STABILITY ANALYSIS  

     In this part, the global stability of system (1) is studied as shown in the next theorems, 

through applying suitable Lyapunov functions. The basin of attraction of a trajectory to the 
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dynamical system can be described as the state space or a particular region in it, depending on the 

state variables of 𝑡. 

Theorem 4. The TEP, 𝑃̂0 = (0,0,0), is a LAS, then it is globally asymptotically stable (G.AS). 

Proof. We choose a suitable function about 𝑃̂0 as  

 𝜇0 = 𝑆 + 𝐼 + 𝑌, where 𝜇0  is a 𝐶1 function, which is a positive definite real-valued function, 

then we have 

𝑑𝜇0

𝑑𝑇
= 

𝑟𝑆

1+𝛼𝑌
− (𝑐1 + 𝑎1𝑌)𝑆𝑌 − 𝑞1𝐸1𝑆 − 𝑐2𝐼𝑌 − 𝑑1𝐼 + 𝑒1(𝑐1 + 𝑎1𝑌)𝑆𝑌 + 𝑒2𝑐2𝐼𝑌 −

𝑑2𝑌 − 𝑞2𝐸2𝑌, 

Further simplification leads to the following 

𝑑𝜇0

𝑑𝑇
≤ −(𝑞1𝐸1 − 𝑟)𝑆 − 𝑑1𝐼 − (𝑑2 − 𝑞2𝐸2)𝑌. 

So, the function 
𝑑𝜇0

𝑑𝑡
 is negative definite due to the above given condition (8b). Thus 𝑃̂0 is G.AS. 

Theorem 5. The AEP, 𝑃̌1 = (𝑆̌, 0,0) is a LAS, then it is G.AS if the following conditions are met      

 (𝑐1 + 𝑎1μ)𝑆̌ + 𝑟𝛼𝑆̌ <
𝑟𝛼𝑆̌2

𝐾(1+𝛼𝜇)
+ 𝑑2 + 𝑞2𝐸2                                       (14a) 

          𝛽𝑆̌ +
𝑟𝑆̌

𝑘
< 𝑑1                                                      (14b) 

        
𝑟𝛼

1+𝛼𝜇
+ 𝑎2 <

𝑟𝛼𝑆̌

𝐾
                                                      (14c)                         

Proof. We choose a suitable function about 𝑃̌1 as  

𝜇1 = (𝑆 − 𝑆̌ − 𝑆̌ 𝑙𝑛
𝑆

𝑆̌
) +  𝐼 +  𝑌, , where 𝜇1   is 𝐶1  function, which is a positive definite real-

valued function, then we have 

𝑑𝜇1

𝑑𝑇
= −

𝑟(𝑆 − 𝑆̌)
2

𝐾(1 + 𝛼𝑌)
−

𝑟𝛼𝑆𝐼

1 + 𝛼𝑌
+

𝑟𝛼𝑆𝐼̌

1 + 𝛼𝑌
+

𝑟𝛼𝑆 ̌𝑆𝑌

𝐾(1 + 𝛼𝑌)
−

𝑟𝛼𝑆̌2𝑌

𝐾(1 + 𝛼𝑌)
−

𝑟𝑆𝐼

𝐾(1 + 𝛼𝑌)

+
𝑟𝑆 ̌𝐼

𝐾(1 + 𝛼𝑌)
− (𝑐1 + 𝑎1𝑌)𝑆𝑌 + (𝑐1 + 𝑎1𝑌)𝑆̌𝑌 + 𝛽𝑆𝐼̌ − 𝑐2𝐼𝑌 − 𝑑1𝐼

+ 𝑒1(𝑐1 + 𝑎1𝑌)𝑆𝑌 + 𝑒2𝑐2𝐼𝑌 − 𝑎2𝑆𝑌 − 𝑑2𝑌 − 𝑞2𝐸2𝑌 

Further simplification leads to the following 

             
𝑑𝜇1

𝑑𝑇
≤ −

𝑟

𝐾(1+𝛼𝑌)
(𝑆 − 𝑆̌)

2
− [𝑑1 − 𝛽𝑆̌ −

𝑟𝑆̌

𝑘
] 𝐼 − [𝑑2 + 𝑞2𝐸2 − (𝑐1 + 𝑎1𝜇)𝑆̌ −

𝑟𝛼𝑆̌ +
𝑟𝛼𝑆̌2

𝐾(1+𝛼𝜇)
] 𝑌 − [

𝑟𝛼

1+𝛼𝜇
−

𝑟𝛼𝑆̌

𝐾
+ 𝑎2] 𝑆𝑌. 

So, the function 
𝑑𝜇1

𝑑𝑇
 is negative definite under the conditions (14a)-(14c). Thus 𝑃̌1 is G.AS. 
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Theorem 6. The 𝐹𝑃𝐸𝑃, 𝑃̅2 = (𝑆,̅ 𝐼,̅ 0) is a LAS, then it is G.AS if the following conditions are 

met 

  𝑐2𝐼 ̅ + (𝑐1 + 𝑎1𝜇)𝑆̅ < 𝑑2 + 𝑞2𝐸2 +
𝑟𝛼𝑆̅

𝐾(1+𝛼𝜇)
(𝑆̅ + 𝐼)̅                               (15a)                                 

         
𝑟𝛼

𝑘
(𝑆̅ + 𝐼)̅ < 𝑎2 +

𝑟

(1+𝛼𝜇)
                                              (15b) 

Proof. We choose a suitable function about 𝑃̅2 as 

𝜇2 = (𝑆 − 𝑆̅ − 𝑆̅ 𝑙𝑛
𝑆

𝑆̅
) + (𝐼 − 𝐼 ̅ − 𝐼 ̅ 𝑙𝑛

𝐼

𝐼
)̅ +  𝑌 ,  

where μ2  is C1 function, which is a positive definite real-valued function, then  

𝑑𝜇2

𝑑𝑇
= −  

𝑟𝛼𝑆𝑌

1 + 𝛼𝑌
−

𝑟

𝐾(1 + 𝛼𝑌)
(𝑆 − 𝑆̅)2 +

𝑟𝛼𝑆̅𝑆𝑌

𝐾(1 + 𝛼𝑌)
−

𝑟𝛼𝑆̅2𝑌

𝐾(1 + 𝛼𝑌)

−
𝑟

𝐾(1 + 𝛼𝑌)
(𝑆 − 𝑆̅)(𝐼 − 𝐼)̅ +

𝑟𝛼𝐼𝑆̅𝑌

𝐾(1 + 𝛼𝑌)
−

𝑟𝛼𝑆̅𝐼𝑌̅

𝐾(1 + 𝛼𝑌)
− (𝑐1 + 𝑎1𝑌)𝑆𝑌

+ (𝑐1 + 𝑎1𝑌)𝑆̅𝑌 − 𝛽(𝑆 − 𝑆̅)(𝐼 − 𝐼)̅ − 𝑐2𝐼𝑌 + 𝑐2𝐼𝑌̅ + 𝑒1(𝑐1 + 𝑎1𝑌 )𝑆𝑌 + 𝑒2𝑐2𝐼𝑌

− 𝑑2𝑌 − 𝑎2𝑆𝑌 − 𝑞2𝐸2𝑌 

Further simplification leads to the following 

𝑑𝜇2

𝑑𝑇
≤ −

2𝑟

𝐾(1+𝛼𝜇)
(𝑆 − 𝑆̅)2 − [

𝑟

(1+𝛼𝜇)
−

𝑟𝛼𝑆̅

𝐾
−

𝑟𝛼𝐼̅

𝐾
+ 𝑎2] 𝑆𝑌 − [𝑑2 + 𝑞2𝐸2 − 𝑐2𝐼 ̅ − (𝑐1 + 𝑎1𝜇)𝑆̅ +

𝑟𝛼𝑆̅2

𝐾(1+𝛼𝜇)
+

𝑟𝛼𝑆̅𝐼̅

𝐾(1+𝛼𝜇)
] 𝑌 −

𝑟

𝐾(1+𝛼𝜇)
(𝐼 − 𝐼)̅2. 

So, the function 
𝑑𝜇2

𝑑𝑇
 is negative definite under the conditions (15a)-(15b). Thus 𝑃̅2 is G.AS. 

Theorem 7. The basin of attraction of 𝐹𝐼𝑃𝐸𝑃, 𝑃̃3 = (𝑆̃, 0. 𝑌̃) satisfies the following conditions, 

when 𝑃̃3 is a LAS 

   
𝑟

𝐾𝐴
>

𝐵1

2
                                                (16a) 

    𝐵2 >
𝐵1

2
                                               (16b) 

      𝑑1 > 𝛽𝑆̃ +
𝑟𝑆̃

𝐾𝐴
                                           (16c) 

    𝑒2𝑐2𝑌̃ > 𝑒2𝑐2𝜇 + 𝑐2                                        (16d) 

Proof. We choose a suitable function about 𝑃̃3 as 

𝜇3 = (𝑆 − 𝑆̃ − 𝑆̃ 𝑙𝑛
𝑆

𝑆̃
) + 𝐼 +

(𝑌 − 𝑌̃)2

2
 

where μ3  is C1 function, which is a positive definite real-valued function, then we have 
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𝑑𝜇3

𝑑𝑇
= (𝑆 − 𝑆̃)[

−𝑟𝛼(𝑌 − 𝑌̃)

𝐴𝐴̃
−

𝑟(𝑆 − 𝑆̃)

𝐾𝐴
+

𝑟𝛼𝑆̃(𝑌 − 𝑌̃)

𝐾𝐴𝐴̃
−

𝑟𝐼

𝐾𝐴
− (𝑐1 + 𝑎1(𝑌 + 𝑌̃)(𝑌 − 𝑌̃) − 𝛽𝐼]

+ [𝛽𝐼𝑆 − 𝑐2𝐼𝑌 − 𝑑1𝐼] + (𝑌 − 𝑌̃)[𝑒1𝑆(𝑐1 + 𝑎1(𝑌 + 𝑌̃)(𝑌 − 𝑌̃)

+ 𝑒1𝑌̃(𝑐1 + 𝑎1𝑌̃)(𝑆 − 𝑆̃) + 𝑒2𝑐2𝐼 − 𝑑2(𝑌 − 𝑌̃) − 𝑎2𝑆(𝑌 − 𝑌̃) − 𝑎2𝑌̃(𝑆 − 𝑆̃)

− 𝑞2𝐸2(𝑌 − 𝑌̃)] 

Therefore, we obtain 

𝑑𝜇3

𝑑𝑇
=

−𝑟

𝐾𝐴
(𝑆 − 𝑆̃)

2

− [
𝑟

𝐾𝐴
−

𝑟𝛼𝑆̃

𝐾𝐴𝐴̃
+ (𝑐1 + 𝑎1(𝑌 + 𝑌̃)) − 𝑒1𝑌̃(𝑐1 + 𝑎𝑌̃1) + 𝑎2𝑌̃] (𝑆 − 𝑆̃)(𝑌 − 𝑌̃)

− [𝑞2𝐸2 + 𝑑2 − 𝑒1𝑆 (𝑐1 + 𝑎1(𝑌 + 𝑌̃)) + 𝑎2𝑆] (𝑌 − 𝑌̃)
2
− [𝑑1 − 𝛽𝑆̃ −

𝑟𝑆̃

𝐾𝐴
] 𝐼

− [𝑒2𝑐2𝑌̃ − 𝑒2𝑐2𝑌 − 𝑐2]𝐼𝑌 

Therefore, we obtain 

,
𝑑𝜇3

𝑑𝑡
< − [

𝑟

𝐾𝐴
−

𝐵1

2
] (𝑆 − 𝑆̃)

2
− [𝐵2 −

𝐵1

2
] (𝑌 − 𝑌̃)

2
− [𝑑1 − 𝛽𝑆̃ −

𝑟𝑆̃

𝐾𝐴
] 𝐼 − [𝑒2𝑐2𝑌̃ − 𝑒2𝑐2𝑌 −

                   𝑐2]𝐼𝑌. 

where 𝐴 = 1 + 𝛼𝑌, 𝑆̃ = 1 + α𝑌̃, 𝐵1 = [
𝑟

𝐾𝐴
−

𝑟𝛼𝑆̃

𝐾𝐴𝐴̃
+ (𝑐1 + 𝑎1(𝑌 + 𝑌̃)) − 𝑒1𝑌̃(𝑐1 + 𝑎𝑌̃1) +

𝑎2𝑌̃ ]and  𝐵2 = [𝑞2𝐸2 + 𝑑2 − 𝑒1𝑆 (𝑐1 + 𝑎1(𝑌 + 𝑌̃)) + 𝑎2𝑆] 

So, in the region that meets condition (16a-16d), 
𝑑𝜇3

𝑑𝑇
 is negative definite. Hence 𝑃̃3 is G.AS. 

Theorem 8. The basin of attraction of 𝐼𝐸𝑃, 𝑃4
∗ = (𝑆∗, 𝐼∗, 𝑌∗) satisfies the following conditions, 

when 𝑃4
∗ is LAS 

                
𝑟

2𝐾𝐴
>

𝐵3

2
                                                  (17a) 

        (𝑑1 − 𝑐2𝑌
∗ − 𝛽𝜇) >

𝑟

2𝐾𝐴
+

𝐵4

2
                                         (17b) 

           𝐵5 >
𝐵4

2
+

𝐵3

2
                                                   (17c) 

Proof. We choose a suitable function about 𝑃4
∗ as 

𝜇4 = (𝑆 − 𝑆∗ − 𝑆∗ 𝑙𝑛
𝑆

𝑆∗
) +

(𝐼 − 𝐼∗)2

2
+

(𝑌 − 𝑌∗)2

2
 

where μ3  is C1 function, which is a positive definite real-valued function, then we have 
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𝑑𝜇4

𝑑𝑇
= (𝑆 − 𝑆∗)[

−𝑟

𝐴𝐴∗
(𝑌 − 𝑌∗) −

𝑟

𝐾𝐴
(𝑆 − 𝑆∗) −

𝑟𝛼𝑆∗

𝐾𝐴𝐴∗
(𝑌 − 𝑌∗) −

𝑟

𝐾𝐴
(𝐼 − 𝐼∗)

+
𝑟𝛼𝐼∗

𝐾𝐴𝐴∗
(𝑌 − 𝑌∗) − (𝑐1 + 𝑎1(𝑌 + 𝑌∗))(𝑌 − 𝑌∗) − 𝛽(𝐼 − 𝐼∗)]

+ (𝐼 − 𝐼∗)[𝛽(𝐼 − 𝐼∗) − 𝛽𝐼∗(𝑆 − 𝑆∗) + 𝑐2𝐼(𝑌 − 𝑌∗) + 𝑐2𝑌
∗(𝐼 − 𝐼∗) − 𝑑1(𝐼 − 𝐼∗)]

+ (𝑌 − 𝑌∗)[𝑒1𝑌
∗(𝑐1 + 𝑎1𝑌

∗)(𝑆 − 𝑆∗) + 𝑒1𝑆(𝑐1 + 𝑎1(𝑌 + 𝑌∗))(𝑌 − 𝑌∗)

+ 𝑒2𝑐2𝐼(𝑌 − 𝑌∗) + 𝑒2𝑐2𝑌
∗(𝐼 − 𝐼∗) − 𝑑2(𝑌 − 𝑌∗) − 𝑎2𝑆(𝑌 − 𝑌∗)

− 𝑎2𝑌
∗(𝑆 − 𝑆∗) − 𝑞2𝐸2(𝑌 − 𝑌∗)]. 

Then further simplification leads to the following. 

𝑑𝜇4

𝑑𝑇
≤  

−𝑟

𝐾𝐴
(𝑆 − 𝑆∗)2

− [
𝑟

𝐴𝐴∗
+

𝑟𝛼𝑆∗

𝐾𝐴𝐴∗
+ (𝑐1 + 𝑎1(𝑌 + 𝑌∗) −

𝑟𝛼𝐼∗

𝐾𝐴𝐴∗
− 𝑒1𝑌

∗(𝑐1 + 𝑎1𝑌
∗) + 𝑎2𝑌

∗] (𝑆

− 𝑆∗)(𝑌 − 𝑌∗) −
−𝑟

𝐾𝐴
(𝑆 − 𝑆∗)(𝐼 − 𝐼∗) + 𝑐2(𝐼 + 𝑒2𝑌

∗)(𝐼 − 𝐼∗)(𝑌 − 𝑌∗)

− [𝑑1 − 𝑐2𝑌
∗ − 𝛽𝑆](𝐼 − 𝐼∗)2 − [𝑞2𝐸2 + 𝑎2 + 𝑑2 − 𝑒2𝑐2I − 𝑒2𝑒1𝑆(𝑐1

+ 𝑎1(𝑌 + 𝑌∗)](𝑌 − 𝑌∗)2 

Therefore, we obtain 

𝑑𝜇4

𝑑𝑇
≤  

−𝑟

𝐾𝐴
(𝑆 − 𝑆∗)2

− [
𝑟

𝐴𝐴∗
+

𝑟𝛼𝑆∗

𝐾𝐴𝐴∗
+ (𝑐1 + 𝑎1(𝑌 + 𝑌∗) −

𝑟𝛼𝐼∗

𝐾𝐴𝐴∗
− 𝑒1𝑌

∗(𝑐1 + 𝑎1𝑌
∗) + 𝑎2𝑌

∗] (𝑆

− 𝑆∗)(𝑌 − 𝑌∗) −
−𝑟

𝐾𝐴
(𝑆 − 𝑆∗)(𝐼 − 𝐼∗) + 𝑐2(𝐼 + 𝑒2𝑌

∗)(𝐼 − 𝐼∗)(𝑌 − 𝑌∗)

− [𝑑1 − 𝑐2𝑌
∗ − 𝛽𝑆](𝐼 − 𝐼∗)2 − [𝑞2𝐸2 + 𝑎2 + 𝑑2 − 𝑒2𝑐2I − 𝑒2𝑒1𝑆(𝑐1

+ 𝑎1(𝑌 + 𝑌∗)](𝑌 − 𝑌∗)2 

Hence  

   
𝑑𝜇4

𝑑𝑇
≤ − [

𝑟

2𝐾𝐴
−

𝐵3

2
] (𝑆 − 𝑆∗)2 − [(𝑑1 − 𝑐2𝑌

∗ − 𝛽𝑆) −
𝑟

2𝐾𝐴
−

𝐵4

2
] (𝐼 − 𝐼∗)2 − [𝐵5 −

𝐵4

2
−

                             
𝐵3

2
](𝑌 − 𝑌∗)2 

where 𝐴∗ = 1 + 𝛼𝑌∗, 𝐵3 =
𝑟

𝐴𝐴∗
+

𝑟𝛼𝑆∗

𝐾𝐴𝐴∗
+ (𝑐1 + 𝑎1(𝑌 + 𝑌∗) −

𝑟𝛼𝐼∗

𝐾𝐴𝐴∗
− 𝑒1𝑌

∗(𝑐1 + 𝑎1𝑌
∗) +

𝑎2𝑌
∗, 𝐵4 = 𝑐2(𝐼 + 𝑒2𝑌

∗), 𝐵5 = 𝑞2𝐸2 + 𝑎2 + 𝑑2 − 𝑒2𝑐2I − 𝑒2𝑒1𝑆(𝑐1 + 𝑎1(𝑌 + 𝑌∗)] 

Therefore, in the region that meets the conditions (17a)-(17c), then 
𝑑𝜇4

𝑑𝑡
  is negative- definite. 

Hence, 𝑃4
∗ is a G.A.S.   
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5. BIFURCATION ANALYSIS 

The analysis of changing the parameter values on the dynamic of the system (1) is investigated in 

this section. Now, to compute the second derivative of the JM system (1), rewrite it in the vector 

form as follows 

, ,  
𝑑𝑋

𝑑𝑡
= 𝐺(𝑋),with 𝑋 = (𝑆, 𝐼, 𝑌)𝑇and 𝐺 =  (𝑆𝑔1, 𝐼𝑔2, 𝑌𝑓3)

𝑇 

Let 𝑉 = (𝑣1, 𝑣2, 𝑣3)
𝑇 be any nonzero vector. Thus, system (1)'s second directional derivatives 

can be expressed as  

      𝐷2𝐺(𝑉, 𝑉) = [𝜋𝑖𝑗]3×1                                (18) 

where  

𝜋11 =
−2

𝐾(1+𝛼𝑌)3
[𝑟(1 + 𝛼𝑌)2𝑣1

2 + 𝑆𝑣3[−𝑟𝛼(1 + 𝛼𝑌)𝑣2 + (𝑟(𝐼 − 𝐾 + 𝑆))𝛼2 + 𝐾(1 +

𝛼𝑌)3𝑎1)𝑣3] + (1 + 𝛼𝑌)𝑣1[(1 + 𝛼𝑌)(𝑟 + 𝐾𝛽 + 𝐾𝛽𝛼𝑌)𝑣2 + (𝑟(−𝐼 + 𝑘 − 2𝑆)𝛼 + 𝑘(1 +

𝛼𝑌)2(2𝑎1𝑌 + 𝑐1))𝑣3]. 

𝜋21 = 2(𝛽𝑣1 − 𝑐1𝑣3)𝑣2. 

𝜋31 = 2(−𝑎2𝑣1 + 𝑒2𝑐2𝑣2 + 𝑒1((2𝑎1𝑌 + 𝑐1)𝑣1 + 𝑎1𝑆𝑣3))𝑣3. 

So, the third directional derivative for system (1) is given by 

     𝐷3𝐺(𝑉, 𝑉, 𝑉) = [𝜎𝑖𝑗]3×1
,                                         (19) 

where 

𝜎11 =
6𝑣3

𝐾(1+𝑌𝛼)4
[𝑟𝛼(1 + 𝑌𝛼)2𝑣1

2 + 𝑟𝑆𝛼2𝑣3[−(1 + 𝛼𝑌)𝑣2 + (𝐼 − 𝐾 + 𝑆)𝛼𝑣3] + (1 +

           𝛼𝑌)𝑣1[𝑟𝛼(1 + 𝑌𝛼)𝑣2 − (𝑟(𝐼 − 𝐾 + 2𝑆)𝛼2 + 𝐾(1 + 𝛼𝑌)3𝑎1)𝑣3]]. 

𝜎21 = 0. 

𝜎31 = 6𝑎1𝑒1𝑣1𝑣3
2. 

Theorem 9. The system (1) at 𝑃̂0 undergoes a transcritical bifurcation (TB) when 𝑟 = 𝑞1𝐸1 =

𝑟∗. 

Proof. It is easy to verify the 𝐽𝑀 of the model (1) at 𝑃̂0 with  𝑟 = 𝑟∗, we get  

            𝐽0
∗ = 𝐽∗(𝑃0, 𝑟

∗) = [
0 0 0
0 −𝑑1 0
0 0 −𝑑2 − 𝑞2𝐸2

] 

Thus 𝜆01
∗ = 0, 𝜆02

∗ = −𝑑1 and 𝜆03
∗ = −𝑑2 − 𝑞2𝐸2 , represent the eigenvalues for 𝐽0

∗.   

Let 𝑉0 = (𝑣01, 𝑣02, 𝑣03)
𝑇 represents the eigenvector associated with 𝜆01

∗ = 0.  

Then direct computation gives that  𝑉0 = (𝑣01, 0,0)𝑇, where (𝑣01 ≠ 0) any real number. 
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Let 𝛹0 = (𝜓01, 𝜓02, 𝜓03)
𝑇 represent the eigenvalues for 𝜆01

∗ = 0 for the 𝐽0
∗𝑇 . 

Then, the direct computation gives that  𝛹0 = (𝜓01, 0,0)𝑇, where (𝜓01 ≠ 0) any real number. 

Accordingly, the following is obtained  

𝜕𝐺

𝜕𝑟
= 𝐺𝑟 = (

𝑆

1+𝛼𝑌
(1 −

𝑆+𝐼

𝑘
),0,0)𝑇 ⇒ 𝛹0

𝑇[𝐺𝑟(𝑃̂0, 𝑟
∗)] = 0. 

Hence, the system (1) at 𝑃̂0 has no saddle-node bifurcation (S.NB). 

Now,    𝛹0
𝑇[𝐷𝐺𝑟(𝑃̂0, 𝑟

∗)𝑉0] = 𝑣01𝜓01 ≠ 0 

Moreover,𝛹0
𝑇[𝐷2𝐺(𝑃̂0, 𝑟

∗)(𝑉0, 𝑉0)] =
−2𝑟∗

𝑘
𝑣01

2 𝜓01 ≠ 0. by “Sotomayor theorem”[27], system (1) 

undergoes a Transcritical Bifurcation (T.B) at the 𝑃̂0. 

Theorem 10. The system (1) at 𝑃̌1 undergoes a T.B when  𝛽 =
𝑑1

𝑆̌
= 𝛽∗. 

Proof. The 𝐽𝑀 at at 𝑃̌1,we get             

𝐽1
∗ = 𝐽∗( 𝑃̌1, 𝛽

∗) = [
−(𝑟 − 𝑞1𝐸1) −(

𝑟

𝐾
+ 𝛽∗)𝑆̌ (−𝑟𝛼 +

𝑟𝛼𝑆̌

𝐾
− 𝑐1)𝑆̌

0 0 0
0 0 −𝑑2 − 𝑞2𝐸2

]. 

Thus,  𝜆11
∗ = −(𝑟 − 𝑞1𝐸1), 𝜆12

∗ = 0 and 𝜆13
∗ = −𝑑2 − 𝑞2𝐸2 , represent the eigenvalues for 𝐽1

∗. 

Let 𝑉1 = (𝑣11, 𝑣12, 𝑣13)
𝑇   represents the eigenvector associated with  𝜆12

∗ = 0 , Then direct 

computation gives that 𝑉1 = (𝜏1𝑣12, 𝑣12, 0)𝑇, where (𝑣12 ≠ 0) with 𝜏1 =
−𝑎̌12

𝑎̌11
< 0. 

Let 𝛹1 = (𝜓11, 𝜓12, 𝜓13)
𝑇 represent the eigenvalues for 𝜆01

∗ = 0 for the 𝐽0
∗𝑇, Then, the direct 

computation gives that  𝛹1 = (0, 𝜓12, 0)𝑇, where (𝜓12 ≠ 0). 

Accordingly, the following is obtained  

𝜕𝐺

𝜕𝛽
= 𝐺𝛽 = (−𝑆𝐼, 𝑆𝐼, 0)𝑇 ⇒ 𝛹1

𝑇[𝐺𝛽(𝑃̌1, 𝛽
∗)] = 0. 

Hence, the system (1) at 𝑃̌1 has no saddle-node bifurcation (S.NB). 

Now, we have   𝛹1
𝑇[𝐷𝐺𝑟(𝑃̌1, 𝛽

∗)𝑉0] = 2𝑆̌𝜏1𝑣12𝜓12 ≠ 0 

Moreover,𝛹1
𝑇[𝐷2𝐺(𝑃̌1, 𝛽

∗)(𝑉1, 𝑉1)] = 2𝛽∗𝜏1𝑣1
2 ≠ 0.  system (1) undergoes a T.B at the 𝑃̌1. 

Theorem 11. The system (1) at 𝑃̅2 undergoes a T.B when  𝑎2 =
𝑒1𝑐1𝑆̅−𝑒2𝑐2𝐼−̅𝑑2−𝑞2𝐸2

𝑆̅
= 𝑎2

∗ 

provided that the following condition is hold 

       𝑒2𝑐2𝜏3 + 𝑒1𝑐1𝜏2 + 𝑎1𝑆̅ ≠ 𝑎2𝜏2                                            (20) 

Otherwise it has a P.B. 

Proof. The 𝐽𝑀 at at 𝑃̅2, we get               
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 𝐽2
∗ = 𝐽∗(𝑃̅2, 𝑎2

∗) = [
−

𝑟𝑆̅

𝑘
−(

𝑟𝑆̅

𝑘
+ 𝛽) (−𝑟𝛼 +

𝑟𝛼𝑆̅

𝑘
+

𝑟𝛼𝐼 ̅

𝑘
+ 𝑐1)𝑆̅

𝛽𝐼 ̅ 0 −𝑐2𝑆̅

0 0 0

] = [𝑎̅𝑖𝑗]3×3
 

Therefore, the eigenvalues  of 𝐽∗(𝑃̅2, 𝑎2
∗) are determined as  

𝜆21 =
𝑇1+√𝑇1

2−4𝐷1

2
 , 𝜆22 =

𝑇1−√𝑇1
2−4𝐷1

2
 and 𝜆23

∗ = 0 where 𝑇1and 𝐷1are given in (10a). 

Let 𝑉2 = (𝑣21, 𝑣22, 𝑣23)
𝑇   represents the eigenvector associated with  𝜆23

∗ = 0 , Then direct 

computation gives that 𝑉2 = (𝜏2𝑣23, 𝜏3𝑣23, 𝑣23)
𝑇, where (𝑣23 ≠ 0) any real number with 𝜏2 =

−𝑎̅23

𝑎̅21
> 0 and  𝜏2 =

𝑎̅23𝑎̅11−𝑎̅21𝑎̅13

𝑎̅12𝑎̅21
 

Let 𝛹2 = (𝜓21, 𝜓22, 𝜓23)
𝑇 represent the eigenvalues for 𝜆23

∗ = 0 for the 𝐽2
∗𝑇 . Then, the direct 

computation gives that  𝛹2 = (0, 0, 𝜓23)
𝑇, where (𝜓23 ≠ 0). 

Accordingly, the following is obtained  

 
𝜕𝐺

𝜕𝑎2
= 𝐺𝑎2

= (0,0, −𝑆𝑌)𝑇 ⇒   𝛹2
𝑇[𝐺𝑎2

(𝑃̅2, 𝑎2
∗)] = 0. 

Hence, the system (1) at 𝑃̅2 has no saddle-node bifurcation (S.NB). 

Now, we have   𝛹2
𝑇[𝐷𝐺𝑎2

(𝑃̅2, 𝑎2
∗)𝑉2] = −𝑆̅𝑣23𝜓23 ≠ 0 

Moreover, 𝛹2
𝑇[𝐷2𝐺(𝑃̅2, 𝑎2

∗)(𝑉2, 𝑉2)] = 2𝑣23𝜓23(−𝑎2𝜏2 + 𝑒2𝑐2𝜏3 + 𝑒1𝑐1𝜏2 + 𝑎1𝑆̅).  Then the 

system (1) undergoes a T.B at the 𝑃̅2 under the condition (20). 

However, violating condition (20) leads to 𝛹2
𝑇[𝐷3𝐺(𝑃̅2, 𝑎2

∗)(𝑉2, 𝑉2, 𝑉2)] = 6𝑎1𝑒1𝜏2𝑣23
3 ≠ 0 . 

Hence system (1) undergoes a P.B. 

Theorem 12. The system (1) at 𝑃̃3   undergoes a T.B when the parameter  𝑑1 = 𝛽𝑆̃ = 𝑑1
∗
 

provided that the following condition hold  

                      𝛽𝜏4 ≠ 𝑐1𝜏5                                             (21) 

Proof. The 𝐽𝑀 at at 𝑃̃3, we get             

 𝐽3
∗ = 𝐽∗(𝑃̃3, 𝑑1

∗)

=

[
 
 
 
 −

𝑟𝑆̂

𝑘(1 + 𝛼𝑌̂)
−(

𝑟𝑆̂

𝑘(1 + 𝛼𝑌̂)
+

𝑑1

𝑆̂
)𝑆̂ (

−𝑟𝛼

𝑘(1 + 𝛼𝑌̂)
2 +

𝑟𝛼𝑘𝑆̂

(𝑘(1 + 𝛼𝑌̂))
2 + 𝑐1 − 2𝑎1𝑌̂)𝑆̂

0 0 0
(𝑒1𝑐1 + 𝑒1𝑎1𝑌̂ − 𝑎2)𝑌̂ 𝑒2𝑐2𝑌̂ 𝑒1𝑎1𝑆̂𝑌̂ ]

 
 
 
 

= [𝑎̃𝑖𝑗]3×3
 

Therefore, the eigenvalues of 𝐽∗(𝑃̃3, 𝑎2
∗) are determined as  
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𝜆31 =
𝑇2+√𝑇2

2−4𝐷2

2
 , 𝜆33 =

𝑇2−√𝑇2
2−4𝐷2

2
 and 𝜆32

∗ = 0 where 𝑇2and 𝐷2are given in (11a). 

Let 𝑉3 = (𝑣31, 𝑣32, 𝑣33)
𝑇   represents the eigenvector associated with  𝜆32

∗ = 0 , Then direct 

computation gives that 𝑉3 = (𝜏4𝑣32, 𝑣32, 𝜏5𝑣32)
𝑇, where (𝑣32 ≠ 0) any real number with 𝜏4 =

𝑎̃13𝑎̃32− 𝑎̃12𝑎̃33

𝑎̃11𝑎̃33− 𝑎̃13𝑎̃31
 and  𝜏5 =

𝑎̃12𝑎̃31− 𝑎̃11𝑎̃32

𝑎̃11𝑎̃33− 𝑎̃13𝑎̃31
 

Let 𝛹3 = (𝜓31, 𝜓32, 𝜓33)
𝑇 represent the eigenvalues for 𝜆32

∗ = 0 for the 𝐽3
∗𝑇 . Then, the direct 

computation gives that  𝛹3 = (0, 𝜓32, 0)𝑇, where (𝜓32 ≠ 0)  any real number. 

Accordingly, the following is obtained  

𝜕𝐺

𝜕𝑑1
= 𝐺𝑑1

= (0,−𝐼, 0)𝑇 ⇒   𝛹3
𝑇[𝐺𝛽(𝑃̃3, 𝑑1

∗)] = 0. 

Hence, the system (1) at𝑃̃3 has no S.NB. Now, we have    

              𝛹3
𝑇[𝐷𝐺𝑑1

(𝑃̃3, 𝑑1
∗)𝑉3] = 𝑣32𝜓32 ≠ 0,  

Moreover, 𝛹3
𝑇[𝐷2𝐺(𝑃̃3, 𝑑1

∗)(𝑉3, 𝑉3)] = 2𝑣32𝜓32(𝛽𝜏4 − 𝑐1𝜏5). Then the system (1) undergoes a 

T.B at the 𝑃̃3 under the condition (21). 

However, violating condition (21) leads to 𝛹3
𝑇[𝐷3𝐺(𝑃̃3, 𝑑1

∗)(𝑉3, 𝑉3, 𝑉3)] = 0. Hence system (1) 

at 𝑃̃3has no P.B. 

Theorem 13. The system (1) at 𝑃4
∗  undergoes a S.NB when 𝑒2 =

𝑎12
∗ (𝑎21

∗ 𝑎33
∗ −𝑎23

∗ 𝑎31
∗ )

(𝑎13
∗ 𝑎21

∗ −𝑎11
∗ 𝑎23

∗ ) 𝑐2𝑌∗ =

𝑒2
∗, provided that 

                    𝜋11𝜏8 + 𝜋21𝜏9 + 𝜋31 ≠ 0                                   (22) 

Proof. The JM of the system (2) at 𝑃4
∗ , we get 

𝐽4
∗ = 𝐽∗(𝑃4

∗, 𝑒2
∗) = [𝑎𝑖𝑗

∗ ]3×3. 

Therefore, if put 𝐶3 = 0 at 𝑒2 = 𝑒2
∗ in equation (12b). Hence the characteristic equation has a 

zero root. 

Let 𝑉4 = (𝑣41, 𝑣42, 𝑣43)
𝑇  represents the eigenvector associated with  𝜆42

∗ = 0 , Then direct 

computation gives that 𝑉4 = (𝜏6𝑣43, 𝜏7𝑣43, 𝑣43)
𝑇, where (𝑣43 ≠ 0) any real number with 𝜏6 =

 − 𝑎23
∗  

  𝑎21
∗ > 0 and  𝜏7 =

 𝑎11
∗ 𝑎23

∗  −𝑎21
∗  𝑎13

∗  

 𝑎12
∗  𝑎21

∗  

Let 𝛹4 = (𝜓41, 𝜓42, 𝜓43)
𝑇 represent the eigenvalues for 𝜆42

∗ = 0 for the 𝐽4
∗𝑇 . Then, the direct 

computation gives that  𝛹4 = (𝜏8𝜓43, 𝜏9𝜓43, 𝜓43)
𝑇 , where (𝜓43 ≠ 0)   any real number with 

𝜏8 =
 − 𝑎32

∗  

  𝑎12
∗ > 0 and  𝜏9 =

 𝑎11
∗ 𝑎32

∗  − 𝑎12
∗  𝑎31

∗

 𝑎12
∗  𝑎21

∗  
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Accordingly, the following is obtained  

𝜕𝐺

𝜕𝑒2
= 𝐺𝑒2

= (0,0, 𝑐2𝐼𝑌)𝑇, ⇒ 𝛹4
𝑇[𝐺𝑒2

(𝑃4
∗, 𝑒2

∗)] = 𝑐2𝐼
∗𝑌∗𝜓43 ≠ 0  

Hence, S.NB takes place near 𝑃4
∗. 

Clearly, straightforward computation shows that 

 𝛹4
𝑇[𝐷2𝐺(𝑃4

∗, 𝑒2
∗)(𝑉4, 𝑉4)] = (𝜋11𝜏8 + 𝜋21𝜏9 + 𝜋31)𝑣43𝜓43 ≠ 0, under the condition (22), and 

hence the system (1) undergoes a S.NB near 𝑃4
∗ but neither T.B nor P.B can occur. 

6. NUMERICAL SIMULATIONS 

     It is well known that the natural environment's interaction between prey and predator is one 

of mutual constraint and control. To further understand the dynamic connection between prey and 

predator, numerical simulations of the model (1) will be run to demonstrate some complicated 

dynamic behaviors. For simplicity, we set the parameter values as follows   

𝑟 = 2; 𝑎0 = 0.1;  𝐾 = 20; 𝑐1 = 0.75; 𝑎1 = 0.05;  𝑏 = 0.25; 𝑞1 = 0.5; 𝐸1 = 2; 

𝑐2 = 0.75; 𝑑1 = 0.1; 𝑒1 = 0.5; 𝑒2 = 0.6; 𝑑2 = 0.1; 𝑎2 = 0.05; 𝑞2 = 0.5; 𝐸2 = 2.          (23) 

It is obtained that the system (1) asymptotically approaches the 𝐼𝐸𝑃 under set (23), as shown in 

Figure (1). 

 

Figure 1. Using the set (23) with different initial points, the system(1) solutions converges to  𝑃4
∗= 

(1.79, 1.10, 0.46) (a) 3D Phaseplot. (b) Solutions as a function of time. 

 

Moreover, the impact of the varying parameter   𝑟 is studied numerically on the dynamic of the 

system (1), and it is noted that for 𝑟 ≥ 2.3, the system approaches to 𝐹𝐼𝑃𝐸𝑃, for 𝑟 ≤ 1.7 the 

system (1) approaches to 𝐹𝑃𝐸𝑃, while 𝑟 < 1, the solution approaches to 𝑇𝐸𝑃, as illustrated Fig. 

(2). It is noted that system (1) approaches to 𝐼𝐸𝑃 of the system (1) for 𝑟 ∈ [1.8,2.2], as showed 

in Fig. (1). 
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Figure 2. The trajectories of system (1) using parameter values (23) with different value 𝑟 (a) 

Trajectories approach 𝑃̃3 = (3.14,0,0.96)  for 𝑟 = 2.3 .(b) Time series for 𝑟 = 2.3 . 

(c)Trajectories approach 𝑃̅2 = 0.49,1.44,0)  for 𝑟 = 1.5  (d) b) Time series for 𝑟 = 1.5 .  (e) 

Trajectories approach to 𝑃̂0 = (0,0,0) for  𝑟 = 0.5.(f) time series for 𝑟 = 0.5.  

 

Using data (23), the effect of varying the parameters 𝐾  on the dynamic of the system (1) is 

numerically studied., it is observed that for 𝐾 ∈ [0.9,11], the system approaches to 𝐹𝑃𝐸𝑃, for 

𝐾 ≤ 0.8 , the system (1) approaches to 𝐹𝐼𝑃𝐸𝑃 , while 𝐾 ≥ 52 , the system (1) approaches to 
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periodic dynamics in 3D, as illustrated Fig. (2). It is noted that system (1) approaches to 𝐼𝐸𝑃 of 

the system (1) for 𝐾 ∈ [12,51], as showed in Fig.(1). 

 

 

 

Figure 3. The trajectories of system (1) using parameter values (23) with different values for 𝐾. 

(a) Trajectories approach 𝑃̅2 = (0.40,1.79,0)  for 𝐾 = 8 . (b) Time series for 𝐾 = 8 . 

(c)Trajectories approach 𝑃̌1 = (0.39,0,0)  for 𝐾 = 0.5  (d) Time series for 𝐾 = 0.5 .  (e) 

Periodic dynamics in ℛ+
3  for 𝐾 = 55.. (f) Time series for 𝐾 = 55.  

Moreover, it is observed that for 𝛼, it observed that when 𝛼 ≥ 0.3, that system (1) approaches to 

periodic dynamics in 3D and when 𝛼 < 0.3 , as illustrated in Fig. (3). Otherwise, the system 

approaches to 𝐼𝐸𝑃 as showed in Fig. (1). 
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Figure 4. The trajectories of system (1) using parameter values (23) with different value 𝛼. (a) 

Periodic dynamics in ℛ+
3  for 𝛼 = 0.3.(b) Time series for 𝛼 = 0.3. 

It is observed that varying the parameters 𝑎1and 𝑎2 has a similar effect as that shown with varying 

𝛼. 

The analysis of the impact of varying the parameter 𝛽 on the system's (1) dynamics reveals that 

it approaches 𝐹𝑃𝐸𝑃  when 𝛽 ≥ 0.35.  Also, it approaches 𝐹𝐼𝑃𝐸𝑃 , when 𝛽 ≤ 0.19 , as 

illustrated in Fig.(4). While the system (1) approaches to 𝐼𝐸𝑃 for 𝛽 ∈ [0.2,0.34], as showed in 

Fig. (1). 

 

Figure 5. The trajectories of system (1) using parameter values (23) with different values for 𝛽. 
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(a) Trajectories approach 𝑃̅2 = (0.19,1.63,0)  for 𝛽 = 0.5 . (b) Time series for 𝛽 = 0.5 . 

(c)Trajectories approach 𝑃̃3 = (3.20,0,0.72) for 𝛽 = 0.1 (d) Time series for 𝛽 = 0.1.   

It noted that changing the parameters 𝑞1, 𝑞2, 𝐸1, and 𝐸2 has a similar impact as that shown with 

varying 𝛽. 

On the other hand, for the parameter 𝑐2, the system (1) approaches 𝐹𝑃𝐸𝑃 when  𝑐2 ≤ 0.58, as 

illustrated in Fig.(5). Otherwise, the system approaches 𝐼𝐸𝑃 as showed in Fig.(1). 

 

Figure 6. The trajectories of system (1) using parameter values (23) with different value 𝑐2. (a) 

Trajectories approach 𝑃̅2 = (0.39,2.27,0) for 𝑐2 = 0.5. (b) Time series for 𝑐2 = 0.5. 

Now, the impact of parameter 𝑑1 , the system (1) approaches 𝐹𝐼𝑃𝐸𝑃  when  𝑑1 ≥ 0.27 , as 

illustrated in Fig. (6). Otherwise, the system approaches 𝐼𝐸𝑃 as showed in Fig. (1). 

 

Figure 7. The trajectories of system (1) using parameter values (23) with different values for 𝑑1. 

(a) Trajectories approach 𝑃̃3 = (3.20,0,0.72) for 𝑑1 = 0.27. (b) Time series for 𝑑1 = 0.27. 

In Fig. (7), the influence of varying the parameter 𝑒1 is shown at a selected value. It is noted that 

for 𝑒1 ≥ 0.58 , the system (1) approaches 𝐹𝐼𝑃𝐸𝑃 , and when 𝑒1 ≤ 0.35 , the system (1) 

approaches periodic dynamics in 3D, as illustrated in Fig. (7). While when 𝑒1 ∈ [0.36,0.57], the 

system approaches 𝐼𝐸𝑃 as showed in Fig. (1). 
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Figure 8. The trajectories of system (1) using parameter values (23) with different values for 𝑒1. 

(a)Trajectories approach 𝑃̃3 = (2.59,0,0.78)  for 𝑒1 = 0.6 . (b) Time series for 𝑒1 = 0.6 . (c) 

Periodic dynamics in ℛ+
3  for 𝑒1 = 0.1.,(d) Time series for 𝑒1 = 0.1. 

Finally, the effect of varying the parameter 𝑑2 on the system’s dynamic shows when 𝑑2 ≥ 0.4 , 

the system (1) approaches 𝐹𝑃𝐸𝑃  when  𝑑2 ≥ 0.4 , as illustrated in Fig. (9). Otherwise, the 

system approaches to 𝐼𝐸𝑃 as showed in Fig. (1). 

 

Figure 9. The trajectories of system (1) using parameter values (23) with different value 𝑑2. (a) 

Trajectories approach 𝑃̅2 = (0.40,2.74,0) for 𝑑2 = 0.4.(b) Time series for 𝑑2 = 0.4. 
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7. CONCLUSIONS 

Predicting and controlling environmental dynamics requires an understanding of the intricate 

interaction between hunting cooperation, anti-predator behavior, Fear and harvest in eco-

epidemiological models include disease in prey.  

This paper proposes an eco-epidemiological model consisting of prey-predator system that 

includes the role of fear from predation, hunting cooperation, fear and anti-predator on the dynamic 

of a prey-predator model with disease in prey. The proposed model’s solution characteristics are 

studied. All of the biologically feasible EPs have been found. the local and global stability 

requirements for each equilibrium point are determined. It was established what was needed for 

local bifurcation to happen. Lastly, using an approximated data set, the system’s overall dynamical 

behavior is numerically analyzed to comprehend and validate the theoretical findings and 

investigate the impact of changing a parameter on the system’s dynamics. Then the obtained 

numerical solutions are drawn numerically to obtain different phase portraits with the help of the 

MATLAB R2021a program. 
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