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Abstract: In this study, we examine an eco-epidemiological prey-predator model that incorporates hunting
cooperation, fear, and anti-predator behavior including linear harvest. There are two subclasses of prey: susceptible
and diseased. We investigate thorough mathematical analysis, including the presence and stability of equilibria, the
boundedness of the model, and the existence and uniqueness of solutions. The conditions under which local bifurcation
could occur near the equilibrium points were discovered. Numerical simulations were run to validate the model's long-
term behavior and comprehend the impact of the model's main parameters. The purpose is to demonstrate the analytical
findings numerically and study the impact of changing the parameters on the dynamical behavior of the system, and
control settings are determined by numerical simulations using MATLAB, R2021a.
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1. INTRODUCTION

Models that include diseases in ecological communities are referred to as eco-epidemiological
models [1]. Anderson and May presented the first eco-epidemiological model that included an
infectious illness in prey [2]. Subsequently, eco-epidemiological models involving several
biological components were created and studied by several researchers [3—10].

The interaction between prey and predators cannot be adequately described by direct predation
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alone, according to certain evolutionary scientists and theoretical ecologists; the cost of fear must
also be considered. The first mathematical model incorporating the fear effect in a two-species
predator-prey model was introduced by Wang et al. in 2016. Prey populations may shift their
grazing zones to safer locations out of fear of predation, giving up places where they could get the
maximum intake rates. They might become more vigilant and change how they reproduce [11].
Many researchers have incorporated cooperation items into the modeling of functional responses
for predation rates since cooperation between species of the same species is widespread in nature.
These include cooperative hunting, where wolves hunt together against larger creatures [14], lions
pursue quicker animals [12—13], and numerous academics have examined the importance of
hunting collaboration [15—-17]. Pal et al. [18] recently examined how predator-prey dynamics can
be impacted by cooperation and fear effects in a predator-prey model with hunting cooperation
among predators and the fear put on the prey population. Numerous scholars have examined the
eco-epidemiological relationship between hunting collaboration and fear [17, 19-21].
However, a research of prey-predator interactions to prevent prey extinctions was presented [22],
using anti-predator behavior as a means of protecting prey from predation pressure. When the prey
feels threatened, it naturally responds with anti-predator behavior at the expense of specific bodily
parts. To protect themselves from predators, lizards, for instance, may let go of their tails. The
spines on fish and insects keep birds and predators from eating them. Different types of anti-
predator behaviors in different prey species have been researched by numerous behavioral
ecologists [23-25]. Prey animals display inducible defense, which is characterized as protective
actions acquired from previous attacks, when a predator is present. Chemicals in various parts of
the prey's body are triggered by inducible defense to create new structures or cleverly fend off
predators.
Furthermore, [26] investigated the relationship between predator hunting and prey anti-predator
behavior in the environment and used a stochastic predator-prey model that includes hunting
cooperation and fear effects.
Conversely, harvesting is an important and regular event. Fishermen frequently use harvesting
because ecosystems are essentially regenerative. In a capitalized hunting system with two
interacting species, scientists are examining the capture of either prey or predator species, or both.
Numerous different techniques for harvesting have been used. Some employ nonlinear harvesting

[27-29], while others use continuous threshold harvesting, proportional harvesting, and constant
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harvesting [30—32]. The impact of fear and harvesting in a prey-predator paradigm with sickness
on the prey was proposed by Ibrahim and Naji [33]. They discovered that while fear causes the
system to stabilize, sickness and harvesting lead to the extinction of one or more species.
A general prey-predator model that included fear, harvest, cooperative hunting, anti-predator, and
approach was developed based on the previous studies. Both susceptible and diseased prey made
up a significant portion of the prey population. Predators are said to consume both healthy and sick

prey because they can't tell the difference.

2. MODEL FORMULATION

The model includes three main species indicated as S(t),I(t),and Y (t) which represented
the densities at time t for the susceptible prey, Infected prey and predators, respectively. The
mathematical model can be formulated according to the following assumptions

e The predators feed on their prey on the Lotka-Volterra functional response; without the
predator, prey numbers increase logistically.

e Fear effect from the predation causes decrease in the growth rate with constant fear rate.

e The disease is meant for dissemination within the prey species, the infected prey competing
for resources and being genetically inherited, the predator makes no distinction between
infected and susceptible prey; it consumes both.

e As the predator has a hunting cooperation capability, it will successfully acquire prey.
therefore, the predator population's attack rate, a; > 0, can be increased by the
cooperation term to become (c; +a,Y) , where a, = 0, denotes the predator
cooperation in hunting.

e Harvesting is imposed on susceptible prey and predator populations by an external force.

e Prey has an anti-predator ability that decreases predation.

Consequently, the subsequent system of nonlinear first-order differential equations may

characterize the dynamics of the specified eco-epidemiological system

das S+1

L= (1 - T) S —(c; + a,Y)SY — BSI — q1E1S = g1(S,1,Y),

j—; = BSI — c,1Y — dyI = g,(S,1,Y), : (1)
% = el(cl + a1Y)SY + 82C21Y - sz - aZSY - qZEZY = g3(S, I, Y)

where S(0) =S, >0, I(0)=1,=0, and Y(0) =Y, =0 indicates the initial point of the



W.M. ALWAN, H.A. SATAR
system (1), with every parameter positive and described in Table 1.

Table 1: The description of the model parameters

Parameters Description
r The intrinsic growth rate of the prey.
k Environmental carrying capacity
a Fear level
c the consumption rate by the predator
a; The rate of hunting cooperation
ey The conversion rate of devouring susceptible prey by predator
e, The conversion rate of devouring infected prey by predator.
a, The rate of anti-predator
B The rate of infection
d, The mortality rate of infected prey
d, The mortality rate of predator
q1E; The harvesting catchability constant and the effort rate of susceptible prey
q.E, The harvesting catchability constant and the effort rate of predator

Therefore, system (2) has the following domain
Q={(S,LY)ER?S=>0,1=0,Y =0}

System (1) has a continuous interaction function with a continuous partial derivatives, and hence
the solution exists and is unique. Moreover, in order to guarantees the convergent of the solution
to an attractor, the solution of system (1) is proved to be uniformly bounded as shown in the
following theorem.
Theorem 1. Solutions of system (1) starting in R3, are uniformly bounded under the prey’s
survival condition

r>qE; (2)
Proof. From the susceptible prey equation in system (1) yields that

§Sr(1—£)5—q11515,

K(r—q,E1)

Then direct computation leads to S < "

Now, define the function W, (t) = S (t) + 1 (t) + Y(t), Differentiating the function W, (t),
yields
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daw,

o = 2(r — q1E1)S — p1W.

Therefore,

aw.
d_Tz + p1 W, < ps,

where p; = min{r — q1E;,dy,d, + q;:E,}
Then, according to the above differential inequality, direct computation shows that for t — oo, it

1s obtained
W,(t) <2 =y,
P1

2K (r—q1E1)?

where y = -

Thus, the solutions of system (1) in the region () are uniformly bounded.

3. EQUILIBRIUM POINTS AND THEIR LOCAL STABILITY ANALYSIS

In this section, the existence of non-negative equilibria is examined, and the stability of
these critical points is established. The non-negative equilibrium points are determined as
follows

e The trivial equilibrium point (TEP), P, = (0,0,0), always exists
e The axial equilibrium point (AEP), P, = (S,0,0), where S = m, which exists
under condition (2).

e The free predator equilibrium point (FPEP), P, = (S,1,0), where

S = dy = KB(r—E q1)-7rdq

5’ Br+KE) exists provided that

2 <~ Eaqr) 3)

e The free infected prey equilibrium point (FIPEP),P; = (§5,0.Y)

dz+qzE;
e (ci+aV)—ay’

S =
while Y represents a positive root for the equation
S, V% + 6853 +6,V2+6,Y+6,=0, (4)
with
84 = ka’?eja >0,
83 = Keja? + Ka,a(ejc; — ay) + Keja ¢ q,

62 = KCl(elal + CZ) + Kal(elcl - az),
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61 = KquEia + Kci(e;c; — ay) — Kreqay,
8o = Kq,E1 +1(q2Eo1d,) — Kr(eicr — ay).
By “Descartes rule of signs”, equation (4) has one positive root under the conditions
6y < 0. (5a)
e,c1 > a. (5b)
e The interior equilibrium point (IEP), P; = (S§*,1*,Y*), where

S* _ Czy*+d1
= —B ,

I = ,B(Kr—KY*Zal—KY*3aa1—KY*cl—KY*Zacl—Kelql—KY*aelql)—r(Y*cz+d1)
- s

(r+KB(1+ay*))
while Y* is a positive root of the following
D;Y*3 + D,Y*2 + D;Y* + D, = 0, (6a)
where
D; = Kafa,cy(e; — eq).
D, = KBayc,(e; — e1) —raseic; + Kafeicy(e; — e) — Kafaseid,;
D, = KS*afB?a, —rejcic, — KBejcic, + KBeycicp + 1e,c2 —raje dy —
KBa,e;d; — Kafe,c;d; + Kap?d, + KaBe,c,E1q; + KaB?E,q, .
Dy = rBd, + KB%d, + KBe,cyE1q, + TBE,q, + KB2E,q, + vS*Ba, + KS*f?%a, —
KrBe,c, —rejc;dy — Kfejcidq +reycydy
So by “Descartes’ rule of sign”, equation (6a) has a unique positive root and hence, system (1) has

a unique [EP if one of the following sets of conditions

e, > e
D, <0 } (6b)
D,>00R D; <0
Or else:
e, <e
Dy >0 ] (6¢)
D, <0 OR D; >0

Now, to establish the local stability, the Jacobain matrix (JM) of system (1) about (S,I,Y)
J = (Wij)3xs (7
where

) T TS rl
Uin = K(1+aY) + 1+ay K(1+aYy) K(i+tay) (1 + a1 Y)Y = Bl — a1 Ey,




DYNAMIC OF A PREY-PREDATOR MODEL WITH DISEASE IN PREY

r -ra rKasS rKal
U1z = =gy TAS, s = ((1+aY)2 K(+an))? T Kasar)2 17 ZalY) S,
Upy = BI; Uy = BS — oY —dy; Uz = —Cal,
uz; = (e1(cr + 1Y) — ax)Y; uz; = e3¢5,
Uzz = e,a,SY + e (¢ + a.Y)S + eyl — dy — a,S — quEs.
It is clear that the system (1) has /M at EEP, P, = (0,0,0) specified by
T — qlEl O O
J(By) = 0 —d, 0 : (8a)
0 0 —d,—qyE,

The eigenvalues of J(P,) are Ag; =7 — quE1, Aoy = —d; < 0,Ag3 = —dy — q2E, <O .
Therefore, P, is locally asymptotically stable (LAS) under the condition
r < q.E; (8b)
The JM at AEP, 151 = (§, 0,0), is determent by
« $ <
| -wE) GRS (ratTo—o)S
J(P) = 0 BS —d, 0 (9a)
O 0 €1C1.Sv' - dz - azsv - q2E2

Therefore, the eigenvalues of ](ﬁl) are A1 = —(r—quE1); A1, = BS —dy, A3 = e1¢,S —
d, — a,S — q,E,.

Hence, all the eigenvalues are negative, and P,is LAS under the condition (2) and the following

conditions
e,c;S < d, + a,S + q,E, (9b)
BS < d,. (%9¢)
The /M at FPEP, P, = (S,1,0), is determined
- —(=+p8)S —ra+ "L 4§
J(P) = 5; (16 ﬁ) | K_CZI-K Y . (10)
0 0 1618 — a,S — eyl —dy, — quE,

The characteristic equation of J(P,) is
(/1% - T1/12 + Dl)(elclg_ az.ST_ 62C21__ d2 - QZEZ) =0 (IOa)
where
rS =5
D, = (7+ﬁ)ﬁls >0

T1:_%<0
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Obviously, T; < 0 and D; > 0. Therefore, the eigenvalues are written as

T 1 T, 1
A21 :71+5\/T12—4D15 A22 :;1—5\/7112 — 4Dy;

Ayz = e;¢1S + eycol — dy — a,S — quE,.
Therefore, the eigenvalues A,; and A,, have negative real parts, and then P, is LAS under the
condition
e1c1S + e,cl < dy + ayS + q,E, (10b)
The /M at IEP, P; = (§, 0, 17) is determine

r$ rS ~ ra ra$ ~. =
_ T K(1+ab) N (K(1+a17) + ﬁ) S (= (1+a¥)? + K+ar)z 17 2a,Y)S
J(Ps) = 0 BS —d, 0
(elcl + elal - az)Y 826‘2? elalgy
Hence, the characteristic equation of J(P;) is given by
(A3 —TyA3 + D)(BS—dy) =0 (11a)
where,
—r§ o~
TZ = m elalSY
ra ras ~ ~ o~
D, = (— rar)? + KGtal? c1 —2a,Y)(e ¢ + e1aY — ay)SY.

Obviously, T, < 0and D, > 0. Therefore, the eigenvalues are written as

131=%+ JT,% — 4D,; ,132_———\/T2 —4D,;and, 133 = BS —d,

Direct computation shows that the eigenvalues A3; and A3, have negative real parts if

r$

e,a;SY < Rira?) (11b)
(— (1:;’;)2 = (lrfj?)z — ¢, —2a,7)(esc, + 10,7 — a,)S7 > 0 (11c)
while the third eigenvalue 435 is negative if
BS < d, (11d)
Finally, the /M atthe IEP, P, = (S*,I",Y") is
J(P) = [q] 13x3 (12a)
where
-rs*
a1 = o) Gz = ~ G + S
a1 = ((14:;:*)2 K(1Tfof;*)2 K(liaaj;*)z —a- 2a1Y*) 5%
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az1 = BI"; az; = 0;a33 = =317
a3, = (e;c; +e1a Y —ay)Y™; a3, = eyc,Y'; aizs = eja; S*Y”

The corresponding characteristic equation

A3+ CiA2+ CA,+C3=0, (12b)
where
€, = —(ai; — az;)
C, = [—a1,a3, + (a11a33 — ajzas;) — as3a3,]
Cs = [a1z(a33a3; — a31a33) + azz(ajzaz, — aj aszs)]
with

A= C,C, — C3
= —(a1; + azz)(aiiazs — ajzas;) + ajp(agias, + azsas,)
+ a3z, (azsazs + ajzaz;)
The characteristic equation (12b), according to the “Routh-Hurwitz criterion”, has three
eigenvalues with negative real portions if the following conditions are met parts if C; > 0, C3 >
0, and A= C,C, — C3Moreover, the “Routh-Hurwitz requirements” are satisfied if the conditions
given in the following theorem hold.

Theorem 3. The IEP of system (1) is LAS if the following conditions are met.

—rS*

Krary TaaSY <0 (13a)
aj;Q33 — Ay3a3, >0 (13b)
-ra rasS* ral* .
(1+ay"? | K(+ar?? ' K(+ay?? €1 —2a,Y" <0 (13¢)
ec1 +eja Y > a, (13d)
ajp(azzaz; — aziasz) + azy(ajzaz; —ajazs) >0 (13¢)

Proof. Assuming C; >0, C3 >0, and A > 0, the roots of the Jacobian matrix J(a;;) are

considered to comprise negative real parts according to the "Routh-Hurwitz criterion". The
satisfaction of the "Routh—Hurwitz criterion" requirements is guaranteed by conditions (13a)-(13e),

as demonstrated by direct computation.

4. GLOBAL STABILITY ANALYSIS
In this part, the global stability of system (1) is studied as shown in the next theorems,

through applying suitable Lyapunov functions. The basin of attraction of a trajectory to the
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dynamical system can be described as the state space or a particular region in it, depending on the
state variables of t.
Theorem 4. The TEP, P, = (0,0,0), is a LAS, then it is globally asymptotically stable (G.AS).
Proof. We choose a suitable function about P, as

o =S+ 1+Y,where u, isa C! function, which is a positive definite real-valued function,

then we have

% = % —(c;1 + a.Y)SY — q1E1S — ;1Y — diI + e;(cy + a,Y)SY + eyc,IY —
d,Y — qE>Y,
Further simplification leads to the following

d
ﬁ < —(qE1 —1)S — dil — (d; — q2E2)Y.

So, the function % is negative definite due to the above given condition (8b). Thus P, is G.AS.

Theorem 5. The AEP, ﬁl = (5’ , 0,0) is a LAS, then it is G.AS if the following conditions are met

ras?

(c; + a; WS +ras < caram T d, + q,E, (14a)
BS+= < dy (14b)
1:Zu +a, <°2 (14c)

Proof. We choose a suitable function about P; as
Uy = (S —-S$—Sin %) + I+ Y, where p; is C' function, which is a positive definite real-

valued function, then we have

duy r(5—§)2 raSI N raS] N raS SY raS?y rSI
dT KA +aY) 14aY 14+aY KA+aY) KA+a¥) KA+aY)
rS1 < -
+ m — (¢, + a.Y)SY + (¢, + a,Y)SY + BSI — ¢, 1Y — d4 1

+e.(c; + a1 Y)SY + eyc,lY — a,SY — dy,Y — quE,Y
Further simplification leads to the following

N

% ras? ra ras
ras + K(1+au)] Y= [1+au Tk + az] SY.

So, the function % is negative definite under the conditions (14a)-(14c). Thus P; is G.AS.
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Theorem 6. The FPEP, P, = (5,1,0) is a LAS, then it is G.AS if the following conditions are

met

ra$S

rares S+ D (15a)

col + (ci + ap)S < dp + qzE, +

%(§+1‘) <a,+ (15b)

T
(1+aw)

Proof. We choose a suitable function about P, as
= 5,8 = e
= (S—S—Sln§)+ (I—I—Iln;_)-i- Y,

where p, is C! function, which is a positive definite real-valued function, then

du, raSY r S—572+ raSSY raS?Y
dT ~  14+aY K(+aY) K(1+aY) K@ +aY)
r S—SU-D+ ralSY raSIY (e + a,1)SY
K(1 + aY) K1+aY) K(+ay) 7%

+ (C1 + a1Y)§Y - ﬁ(S - 5)(1 - I_) - Czly + Czl_Y + 81(C1 + CL1Y)SY + 32C21Y
—dZY—CZzSY—quzY

Further simplification leads to the following

%<_ 2r (S_S—.)z_[ r _&S_ral__l_az]sy_[d2+q2E2—C21_—(C1+a1ll)§+

dT —  K(Q+auw) (1+auw) K K
rasS? raSI r =2
K(1+ap) K(1+au)] - K(1+ap) (I - I) ’

So, the function % is negative definite under the conditions (15a)-(15b). Thus P, is G.AS.

Theorem 7. The basin of attraction of FIPEP,P; = (§5,0.Y) satisfies the following conditions,
when PjisaLAS

r Bq

a > ? (163)

By > (16b)

d, > pS+= (16¢)
e,c,Y > e cou +cy (16d)

Proof. We choose a suitable function about P; as

—(S §-3§1 S)+1+(Y_Y)2
‘Ll3— ng 2

where p; is C! function, which is a positive definite real-valued function, then we have
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dus (s— 5)[—1”0((1/ -Y) B r(s-95) N raS(Y — 17) rl

— (a1t a, (Y + 7)Y —¥) = BI]

dT AA KA KAA KA
+ [BIS — 1Y —dy 1]+ (Y = V) [eyS(cs + a, (Y + V) (Y = T)
+ 81Y(C1 + a1Y)(S - 5) + 92C21 - dz(Y - Y) - aZS(Y - Y) - CZZY(S - S~)
- quz(Y - Y)]
Therefore, we obtain
dus _—r =\ 2
ar ka5
r raS
|Gt (e +ay(Y +7))—eP(c; +aly) + a l (s-38)(v -7)

> = ~ S
- [qZE2 +d; —e,S (c1 +a, (Y + Y)) + azS] (v -7)" - [d1 —BS— Ir(_AlI

— [eyc,V — e,c,Y — ¢, ]IY

Therefore, we obtain

%< —[é—%] (5—§)2—[BZ—%] (Y_Y)Z_[dl—ﬁg—;—i]l—[ezcsz—ezczlf—
c,]1Y.

r

where A=1+aV,S=1+a¥,B, = [H_%i;-l_ (C1 +a, (Y + 17)) —e,¥(c; +al) +

a,Y Jand B, = [q,E, +dy — ;S (01 +a,(Y + 17)) + a,S]

So, in the region that meets condition (16a- 16d) is negative definite. Hence P; is G.AS.

Theorem 8. The basin of attraction of IEP,P, = (S *, I",Y") satisfies the following conditions,
when P, is LAS

m > — (17a)

* B
(dy = c2¥" = Bu) > m 4+ (17b)
By >t 42 (17¢)

Proof. We choose a suitable function about P, as

LS\ (=1 (Y —Y9)?
u4—(S—S—Sln§)+ St

where p; is C! function, which is a positive definite real-valued function, then we have
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dus, T . r ) raS* * i *
= =S (V=Y = (S =8) = (Y = Y) =2 (I = 1)
I*
T SR GRS OIS ORYIGED)

+(U=I)BU-I")=BI"S—=S)+cI(Y =Y )+, Y (U-T)—d(I-1")]
+ Y =-Y)[eY'(ci + a1 Y)(S—=5)+eS(cp +a; (Y +Y) (Y —Y7)
Feycl(Y =Y") + ey, YU —1")—dy(Y —Y") —a,S(Y —Y)

—aY* (S —57) — qE,(Y = Y7)].

Then further simplification leads to the following.

duy -r
— T < — (S = $*)2
dr — KA(S 9
r raS* . ral® i i i
- AA*+KAA*+(C1+a1(Y+Y)—KAA*—ely(C1+CL1Y)+CL2Y (S

S -V — ;—; (S =S =TI") + ¢y (I + e,Y)(I — (Y = Y*)

—[dy — V" = BSIU - I*)Z — [q2E; + a; + dy — eyl — e,e45(cq
+a,(Y+ Y)Y — Y*)?

Therefore, we obtain

duy -r
— T < — (S — ¢*)2
dr — KA(S 59
LTS et a (YY) eV (et aY) +a,r| (S
aa T xan Tlatal Kkaar P taTd %2
—r
—-S)Y-Y) —ﬁ(S —S)YU-I")+c,(I+e,Y)YU—-TI")(Y -Y7)
—[dy — V" = BSIU = I")? = [q.E; + ay + d; — eyc] — e,6,5(¢y
+a,(Y+ Y)Y - Y*)?
Hence
dpy r B3 12 * r By *\2 By
sl - | - er - ps) - = -1y - [Bs - -
B *
f](Y—Y )?
where A*'=1+4+aY" B = A;* +;ZA* +(c;+a, (Y +Y7) —I:ZA* —eY'(c; +a.Y") +

azy*, B4 = Cz([ + ezy*), BS = QZEZ + az + dz - 92CZI - 62615(61 + al(Y + Y*)]

4

. . . dpy . : .
Therefore, in the region that meets the conditions (17a)-(17c¢), then d—”t is negative- definite.

Hence, P, isa G.A.S.
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5. BIFURCATION ANALYSIS
The analysis of changing the parameter values on the dynamic of the system (1) is investigated in
this section. Now, to compute the second derivative of the JM system (1), rewrite it in the vector

form as follows
Z—f =G(X),withX = (S,,Y)"and G = (Sg1,192, Yf3)"
Let V = (vq,v,,v3)T be any nonzero vector. Thus, system (1)'s second directional derivatives
can be expressed as
D*G(V,V) = [mj]3x1 (18)
where

T [r(1 + a¥)?v? + Svs[-ra(l + aV)v, + (r(d — K + 5))a? + K(1 +

-2
11 ™ k(1+av)3
a¥)ia))vs]+ (1 + aV)v [(1+ aY)(r + KB + KBaY)v, + (r(—1 + k — 2S)a + k(1 +
a¥)?(2a,Y + ¢;))vs).
Ty = 2(Bv1 — €1V3)V,.
T3 = 2(—a,v; + e;c,v, + el((ZalY +c)v, + a15v3))v3.

So, the third directional derivative for system (1) is given by

DGV, V,V) = oy, ., (19)
where
011 = % [ra(1+ Ya)?vi + rSa?vs[—(1 + a¥)v, + (I — K + S)avs] + (1 +
aV)vy[ra(l+Ya)v, — (r(I — K + 25)a? + K(1 + a¥)3a;)vs]].
g, = 0.

031 = 6a161v1v32.
Theorem 9. The system (1) at P, undergoes a transcritical bifurcation (TB) when r = q,E; =

r.

Proof. It is easy to verify the JM of the model (1) at P, with 7 =r*, we get

0 O 0
Jo =] (Py,r*) =10 —d; 0
0 0 —d; — q:E;

Thus A5, =0, A5, = —d; and Aj; = —d, — q2E, , represent the eigenvalues for J;.
Let Vo = (vo1, Vo2, Vo3)T represents the eigenvector associated with A3, = 0.

Then direct computation gives that V, = (v, 0,0)7, where (vy; # 0) any real number.
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Let ¥y = (Yo1, W02, Wo3)T represent the eigenvalues for A%, = 0 for the J3T.
Then, the direct computation gives that ¥, = (44, 0,0)7, where (15, # 0) any real number.
Accordingly, the following is obtained

G S+I
=G, = (1+ - (1==2),0,0)" = ¥7[G(Py, 7] = 0.
Hence, the system (1) at P, has no saddle-node bifurcation (S.NB).

NOW, lIUg'[DGr(Po, r*)Vo] = 17011!)01 0

Moreover, ¥ [D G(Po,r )(VO, VO)] v01l/)01 # 0. by “Sotomayor theorem”[27], system (1)
undergoes a Transcritical Bifurcation (T.B) at the P,.
Theorem 10. The system (1) at P; undergoes a T.B when £ = ?1 =B

Proof. The /M at at Pl,we get
*\ & S &
_ —r=@E) —G+BIS (-ra+E—c)s
=] (P,B") = 0 0 0
0 0 —d; — qzE;
Thus, Aj; = —(r —q,E;), A1, =0 and Aj; = —d, — q,E, , represent the eigenvalues for Jj.

Let V; = (v11, V12, v13)7 represents the eigenvector associated with A5, = 0, Then direct

computation gives that V; = (101, v15,0)", where (v;, # 0) with 7, = —da12 <0.
11

Let ¥; = (Y11, P12, P13)T represent the eigenvalues for Ag; = 0 for the J§T, Then, the direct
computation gives that ¥; = (0,14,,0)7, where (11, # 0).

Accordingly, the following is obtained
BG _
ap

Hence, the system (1) at P; has no saddle-node bifurcation (S.NB).
Now, we have  ¥T[DG, (P, B*)V,| = 2814015112 # 0

= Gg = (=SI,S1,0)" = ¥T[Gg (P, )] = 0.

Moreover, ] [D2G(Py, B*)(V1, V1)] = 28°7,v,2 # 0. system (1) undergoes a T.B at the P;.

Theorem 11. The system (1) at P,undergoes a T.B when a, = elcls_ezczgl_dz_qﬁz =a,”
provided that the following condition is hold
€,CrT3 + €107, + a1§ * a,T, (20)

Otherwise it has a P.B.
Proof. The JM atat P,, we get
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rS (rS B N raS N ral__l_ X5
~ —— —(= -ra+—+—+¢
J2=]"(Pya;") = k k ko k = C_li']
BI 0 —c,8 J3x3
0 0 0

Therefore, the eigenvalues of J*(P,,a,*) are determined as

T+ /T12—401 T,— /T12—401 47
—— an
> 2

20 =5 Ayy = 3 = 0 where T;and D,are given in (10a).
Let V, = (a1, Vg2, V23)T represents the eigenvector associated with A5; = 0, Then direct
computation gives that V, = (T,v,3,T3V53, Va3)7, where (v,3 # 0) any real number with 7, =

—0az3 Q33011—021013

>0 and 1, =

azy 12021

Let ¥, = (Y51, ¥22,P23)T represent the eigenvalues for A5; = 0 for the J;7. Then, the direct

computation gives that ¥, = (0,0,1,3)7, where (1,3 # 0).

Accordingly, the following is obtained

G - N
— =G,, =(0,0,-SY)" = ¥I[G,, (P a,")]=0.

da,
Hence, the system (1) at P, has no saddle-node bifurcation (S.NB).
Now, we have ‘zUZT[DGa2 (P,, az*)VZ] = —Svy31,3 # 0
Moreover, YT [D2G(P,, a,*)(V,, V)] = 20,3053(—ayT, + e50,75 + 64017, + a;S). Then the
system (1) undergoes a T.B at the P, under the condition (20).
However, violating condition (20) leads to WI[D3G(P,,a,*)(Vy, Vo, Vo) = 6a,e,1,v35; # 0.
Hence system (1) undergoes a P.B.
Theorem 12. The system (1) at P; undergoes a T.B when the parameter d; = S =4d;"
provided that the following condition hold
Bty # 175 21)
Proof. The M at at P;, we get
]ék = ]*(ﬁ& d1*)

rS rS dy . —ra rakS o
_ k(1 +aY) k(1+aY) S k(l + ay) (k(l n a?))
0 0 0
(e1cq + e1a,Y —ay)Y eyc,¥ e,a;SY

- [dif]3><3

Therefore, the eigenvalues of | *(Pg, az*) are determined as
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T+ /T22—4D2 T,— /T22—4D2
A3y =— — and A3

. , A3z = » = 0 where T,and D,are given in (11a).
Let V3 = (v31,V35,V33)7 represents the eigenvector associated with A5, = 0, Then direct

computation gives that Vs = (1435, V32, TsV32)T, where (v3, # 0) any real number with 7, =

G13032— Q12033 G12031— Q11032
——=—=—=and Ty =—7—-—"—
a110a33— A13031 a110a33— A13431

Let W3 = (Y31,¥32,P33)T represent the eigenvalues for A5, = 0 for the J;T. Then, the direct
computation gives that ¥5; = (0,135, 0)T, where (13, # 0) any real number.

Accordingly, the following is obtained

G P, d,”
a_dl = Gd1 = (O, =1, O)T = l‘Ug[Gﬁ(P:g’dl )] =0.

Hence, the system (1) atP; has no S.NB. Now, we have

l1”3T[DG(111 (ﬁ3:d1*)V3] = V33, # 0,
Moreover, ¥1[D2G(Ps, dy")(Vs, V)| = 2v35932(BT4 — ¢175). Then the system (1) undergoes a
T.B at the P; under the condition (21).
However, violating condition (21) leads to ¥J [D3G(Ps, d;")(Vs, V5, V3)| = 0. Hence system (1)
at P;has no P.B.

* * * * *
ai12(az1033—033031) _

* % PR P
(aizaz;-aj;a33) ¥

Theorem 13. The system (1) at P, undergoes a S.NB when e, =

e, provided that

Mq1Tg + Mp1Tg + 31 # 0 (22)
Proof. The JM of the system (2) at P, , we get

Ja=J"(Ps,e3) = [a;j]3x3-

Therefore, if put C3 = 0 at e, = e; in equation (12b). Hence the characteristic equation has a
Zero root.
Let V, = (41, Vap, Va3)T represents the eigenvector associated with A}, = 0, Then direct
computation gives that V, = (TgVs3, T7Va3, Va3)”, Where (v43 # 0) any real number with 74 =
a11a33 —Az A3

— a*
—2 >0 and 1, = e
az1 Aq2 21

Let ¥, = (Y41, a2, Pa3)T represent the eigenvalues for A, = 0 for the J;T. Then, the direct
computation gives that W, = (TgWs3, ToWas, Wa3)', where (P,3 # 0) any real number with
ai,a3z; — aip a3

p— a*
Tg=—2>0 and 719 = 2
aiz QA1 A1
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Accordingly, the following is obtained

aG * * * *
— = G,, = (0,0,c,IV)T, = W[ |G, (Pi,e3)] = coI"Y*hyz # 0

de,
Hence, S.NB takes place near P,.
Clearly, straightforward computation shows that
W, [D2G (P}, e3)(Vy, V)] = (m11Tg + 1 Tg + T31)VazPss # 0, under the condition (22), and

hence the system (1) undergoes a S.NB near P, but neither T.B nor P.B can occur.

6. NUMERICAL SIMULATIONS

It is well known that the natural environment's interaction between prey and predator is one
of mutual constraint and control. To further understand the dynamic connection between prey and
predator, numerical simulations of the model (1) will be run to demonstrate some complicated
dynamic behaviors. For simplicity, we set the parameter values as follows
r=2; a,=0.1;, K=20; ¢c, =0.75; a; = 0.05; b =0.25; q; = 0.5; E; = 2;
¢, =0.75;d, =0.1; e, = 0.5; e, = 0.6;d, = 0.1; a, = 0.05;q, = 0.5; E, = 2. (23)
It is obtained that the system (1) asymptotically approaches the IEP under set (23), as shown in
Figure (1).

() (b)

b = =3 S =

Populations
£

~ by w

=

208 360 406 300
Time

Figure 1. Using the set (23) with different initial points, the system(1) solutions convergesto P,;=

(1.79, 1.10, 0.46) (a) 3D Phaseplot. (b) Solutions as a function of time.

Moreover, the impact of the varying parameter 1 is studied numerically on the dynamic of the
system (1), and it is noted that for r > 2.3, the system approaches to FIPEP, for r < 1.7 the
system (1) approaches to FPEP, while r < 1, the solution approaches to TEP, as illustrated Fig.
(2). It is noted that system (1) approaches to IEP of the system (1) for r € [1.8,2.2], as showed
in Fig. (1).
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Time
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Figure 2. The trajectories of system (1) using parameter values (23) with different value r (a)
Trajectories approach P; = (3.14,0,0.96) for r =23 .(b) Time series for 7 =2.3 .
(c)Trajectories approach P, = 0.49,1.44,0) for r = 1.5 (d) b) Time series for r = 1.5. (e)

Trajectories approach to P, = (0,0,0) for r = 0.5.(f) time series for r = 0.5.

Using data (23), the effect of varying the parameters K on the dynamic of the system (1) is
numerically studied., it is observed that for K € [0.9,11], the system approaches to FPEP, for
K < 0.8, the system (1) approaches to FIPEP, while K > 52, the system (1) approaches to
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periodic dynamics in 3D, as illustrated Fig. (2). It is noted that system (1) approaches to IEP of
the system (1) for K € [12,51], as showed in Fig.(1).

(1) )

Populations
-y

(™

a 200 408 600 806 1008
Time

(d)

Popularions
-

a 200 404 600 806 1000
Time

i5

o

Populatinns

j

14 26 40 60 80 160

Figure 3. The trajectories of system (1) using parameter values (23) with different values for K.
(a) Trajectories approach P, = (0.40,1.79,0) for K =8 . (b) Time series for K =8 .
(c)Trajectories approach P; = (0.39,0,0) for K = 0.5 (d) Time series for K =0.5. (e)
Periodic dynamics in R3 for K = 55.. (f) Time series for K = 55.

Moreover, it is observed that for a, it observed that when a > 0.3, that system (1) approaches to
periodic dynamics in 3D and when a < 0.3, as illustrated in Fig. (3). Otherwise, the system

approaches to IEP as showed in Fig. (1).
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(a) (b)
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Figure 4. The trajectories of system (1) using parameter values (23) with different value «a. (a)
Periodic dynamics in R3 for a = 0.3.(b) Time series for a = 0.3.

It is observed that varying the parameters a;and a, has a similar effect as that shown with varying
a.

The analysis of the impact of varying the parameter  on the system's (1) dynamics reveals that
it approaches FPEP when [ > 0.35. Also, it approaches FIPEP, when [ <0.19, as
illustrated in Fig.(4). While the system (1) approaches to [EP for € [0.2,0.34], as showed in

Fig. (1).
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Figure 5. The trajectories of system (1) using parameter values (23) with different values for .
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(a) Trajectories approach P, = (0.19,1.63,0) for B =0.5. (b) Time series for f =0.5.
(c)Trajectories approach P; = (3.20,0,0.72) for B = 0.1 (d) Time series for f = 0.1.

It noted that changing the parameters g4, q,, E1,and E, has a similar impact as that shown with
varying f3.

On the other hand, for the parameter c,, the system (1) approaches FPEP when ¢, < 0.58, as
illustrated in Fig.(5). Otherwise, the system approaches IEP as showed in Fig.(1).

(b)

Populations
o

e

¢ 200 460 608 800 1000
Time

Figure 6. The trajectories of system (1) using parameter values (23) with different value c,. (a)

Trajectories approach P, = (0.39,2.27,0) for ¢, = 0.5. (b) Time series for ¢, = 0.5.

Now, the impact of parameter d;, the system (1) approaches FIPEP when d; = 0.27, as
illustrated in Fig. (6). Otherwise, the system approaches IEP as showed in Fig. (1).

() (b)

= £ 1 = L3
T T T

Populations
o

¢ 100 200 306 {00 506
Time

Figure 7. The trajectories of system (1) using parameter values (23) with different values for d;.
(a) Trajectories approach P; = (3.20,0,0.72) for d; = 0.27. (b) Time series for d; = 0.27.

In Fig. (7), the influence of varying the parameter e; is shown at a selected value. It is noted that
for e; = 0.58, the system (1) approaches FIPEP, and when e; < 0.35, the system (1)
approaches periodic dynamics in 3D, as illustrated in Fig. (7). While when e; € [0.36,0.57], the
system approaches [EP as showed in Fig. (1).
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(a)

Populations
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*
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Figure 8. The trajectories of system (1) using parameter values (23) with different values for e;.
(a)Trajectories approach P; = (2.59,0,0.78) for e; = 0.6. (b) Time series for e; = 0.6. (c)
Periodic dynamics in R3 for e; = 0.1. (d) Time series for e; = 0.1.

Finally, the effect of varying the parameter d, on the system’s dynamic shows when d, > 0.4 ,
the system (1) approaches FPEP when d, > 0.4, as illustrated in Fig. (9). Otherwise, the
system approaches to IEP as showed in Fig. (1).

(@) (b)

Paopalations

408 6h0 806 16006
Time

Figure 9. The trajectories of system (1) using parameter values (23) with different value d,. (a)

Trajectories approach P, = (0.40,2.74,0) for d, = 0.4.(b) Time series for d, = 0.4.
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7. CONCLUSIONS

Predicting and controlling environmental dynamics requires an understanding of the intricate
interaction between hunting cooperation, anti-predator behavior, Fear and harvest in eco-
epidemiological models include disease in prey.

This paper proposes an eco-epidemiological model consisting of prey-predator system that
includes the role of fear from predation, hunting cooperation, fear and anti-predator on the dynamic
of a prey-predator model with disease in prey. The proposed model’s solution characteristics are
studied. All of the biologically feasible EPs have been found. the local and global stability
requirements for each equilibrium point are determined. It was established what was needed for
local bifurcation to happen. Lastly, using an approximated data set, the system’s overall dynamical
behavior is numerically analyzed to comprehend and validate the theoretical findings and
investigate the impact of changing a parameter on the system’s dynamics. Then the obtained
numerical solutions are drawn numerically to obtain different phase portraits with the help of the

MATLAB R2021a program.
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