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Abstract. Malaria remains a major public health challenge in Sub-Saharan Africa, especially in Northern Benin,

where seasonal variations drive transmission. The success of prevention and treatment depends on community

compliance, which is influenced by public risk perception and social attitudes. Despite the widespread imple-

mentation of preventive interventions, malaria transmission persists at alarming levels in many regions. Existing

mathematical models have often overlooked the role of population opinions and behavioral responses in shap-

ing the effectiveness of these interventions. To address this gap, we extended a mathematical model integrating

malaria transmission dynamics with an opinion dynamics framework. The study was conducted across four Benin

districts, using five years (2019–2023) of real-world malaria surveillance data from the National Malaria Control

Program. Behavioral data were derived from the 2022 Malaria Behavior Survey. The model was calibrated using

nonlinear least squares estimation techniques. Analytical results confirm the positivity and boundedness of the

model, and a disease-free periodic solution was established. The control reproduction number (Rc) was computed

using the monodromy matrix method. The numerical analysis revealed that increased the percentage of favorable

adherence to prophylactic measures results in a slight but consistent decrease in malaria incidence. Specifically, in

Bantè, when partial adherence rose from 52% to 100%, the effective reproduction number decreased by 82.75%.

Furthermore, we also note that a higher baseline influence rate (Ω0) contributed to a substantial reduction in ef-

fective reproduction number. In Sinendé, increasing Ω0 from 0.05 to 50 reduced malaria incidence by 17.65%.
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The findings highlight that incorporating population behaviors and opinions into disease modeling enhances the

effectiveness of public health strategies for sustainable malaria control in endemic areas.

Keywords: seasonality; malaria transmission; preventive measures; opinion dynamics; control reproduction num-

ber.
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1. INTRODUCTION

Malaria is an ancient disease that continues to cause harm to humans. It remains a major

public health issue in low and middle-income countries, with control and elimination being

top priorities in areas where it is widespread. This disease poses significant health and socio-

economic challenges, affecting an estimated 3.2 billion people worldwide who are at risk of

infection [1]. Despite the interventions implemented to control this disease, malaria continues

to harm humanity. According to the World Health Organization (WHO), an estimated 249 mil-

lion malaria cases and about 608,000 deaths occurred globally in 2022, representing a slight

increase compared with 2021. The WHO African Region remains the most affected, account-

ing for around 94% of global cases and 95% of deaths. Despite this high burden, mortality

among children under five has declined substantially over the past two decades, from more than

90% of malaria deaths in 2000 to about 78% in 2022 [1]. Since 2000, the Roll Back Malaria

campaign has significantly enhanced intervention coverage and the expansion of effective treat-

ments across Sub-Saharan Africa, achieving unprecedented levels of success [2]. The Global

Technical Strategy for Malaria 2016–2030 (GTS) the World Health Organization (WHO) has

established new objectives, targeting a reduction in global malaria incidence and mortality rates

by at least 90%, and aiming for the elimination of the disease in at least ten countries by 2020,

20 countries by 2025, and 30 countries by 2030 [3].

Malaria is a communicable disease primarily found in tropical and subtropical regions,

caused by the Plasmodium protozoan parasites [4]. The disease is transmitted to humans

through the bite of infected mosquitoes. When such a mosquito bites a healthy individual,

it transmits the Plasmodium parasite. To control vector-borne diseases like malaria represents

a significant global public health challenge in the twenty-first century [4]. Vector control is a
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crucial element in the efforts to control and eliminate malaria. The ability of vectors to trans-

mit parasites and their susceptibility to control measures differ among mosquito species and

are affected by local environmental conditions. Several measures are implemented to prevent

malaria, including the use of insecticide-treated nets (ITNs) and indoor residual spraying (IRS).

Insecticide-treated nets (ITNs) are categorized into two types: long-lasting insecticidal nets

(LLINs), which have insecticide embedded into the fibers during manufacturing for extended

effectiveness and standard insecticide-treated nets (ITNs), which require re-impregnation with

insecticides every six months [5]. Indoor residual spraying (IRS) involves applying insecticides

to the interior walls of homes to kill mosquitoes that come into contact with these surfaces [5].

Among these measures, insecticide-treated nets (ITNs) appear to be the most effective preven-

tive measure against malaria transmission [5]. The use of long-lasting insecticide-treated nets

and indoor residual spraying has helped reduce the burden of malaria in sub-Saharan Africa [4].

Mathematical models have been crucial in clarifying disease transmission dynamics, sim-

plifying complex biological information, and enabling predictions for lesser-known scenarios.

Epidemiologists extensively use these models to forecast malaria epidemics and guide eradica-

tion strategies [6, 7]. Combining multiple modeling approaches, rather than relying on a single

model, is believed to improve long-term malaria control and elimination efforts [7].

Beyond biological and climatic factors, human behavior and public opinion profoundly in-

fluence malaria control outcomes. Thus, in addition to account for preventive measures, it is

crucial to incorporate the opinions and behaviors of the population when modeling the im-

pact of these measures on malaria transmission. The opinions and behaviors of the population

have often been overlooked in previous studies. A mathematical model that accounts for these

factors may yield different results than models ignoring them, highlighting the importance of

understanding how public opinions and behaviors influence malaria prevention, transmission,

and morbidity [8]. Recent studies have investigated how opinions affect disease spread and

herd immunity [9, 10, 11]. Most of this research focuses on vaccination, a specific type of

prophylactic behavior. Other preventive actions, such as hand washing, wearing face masks, or

maintaining social distancing, differ because they require frequent and repeated engagement; for

instance, hands must be washed after contact with potentially contaminated surfaces, and face
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masks should be worn daily [12]. Consequently, opinion dynamics around vaccination differ

from those around other preventive behaviors. Understanding the interactions between opin-

ions, behaviors, and disease spread is therefore essential. Models combining opinion dynamics

with seasonal compartmental frameworks provide valuable insights, though challenges remain

due to assumptions and simplifications in representing population behavior [13, 14]. Many epi-

demic models focus on vaccination opinions [15, 16, 17], which have consistently raised safety

and usage debates [18], while opinions on other preventive measures have received less atten-

tion despite their direct effects on transmission dynamics and attitudes toward vaccination [12].

Recent models integrating disease, economic factors, and opinion dynamics allow more realis-

tic simulations of health beliefs, public health decisions, and disease progression [19, 20, 21].

Most models use simplified frameworks such as SIS [20, 22, 23], SIR [12, 19, 24], or SEIV [25].

However, existing malaria models rarely integrate behavioral or opinion dynamics, potentially

underestimating the social drivers of disease transmission.

This study aims to fill this gap by examining how public opinions and behaviors influence

malaria prevention methods, transmission, and disease burden. The main objective of this study

is to model the impact of the population’s opinions and behaviors regarding malaria prevention

measures on malaria transmission and burden in 4 selected districts ( Bembèrèkè, Nikki, N’Dali,

and Sinendé) in the northern part of Benin. Specifically, we (i) assessed the impacts of the initial

distribution of behaviors on malaria transmission and burden and (ii) examined the impacts of

the nature of behavioral responses on malaria transmission and burden.

2. METHODS

Model formulation

We extend the model developed by [26] to account for opinion dynamics using an attitude spec-

trum [27]. The model considers two populations: human and mosquito populations. The human

population is divided into susceptible humans (S), exposed humans (Eh), infectious humans

(with minor symptoms, Iuh, asymptomatic, Iah and symptomatic, Ish individuals), hospitalized

humans (Hh) and recovered humans (Rh). The mosquito population is divided into susceptible

mosquitoes (Sm), exposed mosquitoes (Em), and infectious mosquitoes (Im). So, at time t, the
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total population of humans is

Nh(t) = S(t)+Eh(t)+ Iuh(t)+ Iah(t)+ Ish(t)+Hh(t)+Rh(t).

For the simplicity of the model, we assume that opinion dynamics only occur within the

susceptible human population each split into three groups, characterized by a given attitude in

the attitude spectrum:

(1) E= {−1;0;1}.

Let’s consider Si as a susceptible human population with attitude i, for any i ∈ E. For in-

stance, S−1 are susceptible humans with high levels of prophylactic preventive attitudes (those

who use insecticide-treated bed-Nets (ITNs) and indoor residual spraying or other preventive

methods), S1 are susceptible humans with a low level of prophylactic preventive attitudes and S0

are susceptible humans with intermediate prophylactic preventive attitudes. Therefore, at time

t, the population of susceptible humans is given by: S(t) = ∑i∈E Si(t).

Using the approach by [12], implemented by [28] on COVID-19 dynamics, we introduce the

rate Ωi at which a susceptible individual, Si influences the rest of the susceptible population,

which is called the influence function. We suppose the influence function Ωi depends on the

prevalence of the disease at time t:

P(t) =
Iah(t)+ Iuh(t)+ Ish(t)+Hh(t)

Nh(t)
.

Then, Ωi(t) = Ωi(P̃(t)), where, P̃(t) the estimate of P(t) reported by the mass media and Ωi can

be Linear or Saturating or fixed order saturating or Reverse-order Saturating defined on [0,1].

In the model developed by [12], the population is divided into four attitude groups,

S−2,S−1,S1,S2, each associated with an influence function ωi(I), which depends on the dis-

ease prevalence I(t). The simplication considered in section (1) leads to: i = −1 (individuals

with strong prophylactic attitudes), i = 0 (individuals with intermediate prophylactic attitudes),

and i = 1 (individuals with weak or no prophylactic attitudes).

This simplification is based on the assumption that the group i = 0 in the model represents a

behavioral average of the two intermediate groups (S−1 and S1) in the original Tyson framework.

This allows for a more interpretable and context-appropriate representation of behavior in our
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study population. We adapted the influence functions developed by [12] to account for the three

attitude groups considered (Table 1).

TABLE 1. Four types of influence functions Ωi(y) adapted to our three-group

framework.

Ωi(y) Linear Saturating Fixed-order Saturating Reverse-order Saturating

i =−1 Ω0

(
1+

1
2

Ωmaxy
)

Ω0

(
1+

1
2

Ωmax
y

m+ y

)
Ω0

(
1+

1
2

Ωmax
y

m+ y

)
Ω0

(
1+Ωmax

y
m+ y

)

i = 0 Ω0

(
1+

Ωmax−1
4

y
)

Ω0

(
1+

Ωmax−1
4

y
m+ y

)
Ω0

(
1+

Ωmax−1
4

y
m+ y

)
Ω0

(
1+

Ωmax−1
2

y
m+ y

)

i = 1 Ω0

(
1− 1

2
y
)

Ω0

(
1− 1

2
y

m+ y

)
Ω0

(
1− 1

2
y

m+ y

)
Ω0

(
1+

y
m+ y

)

For the Reverse-order saturating case, we adopt as the baseline in this study, the mathematical

formulation is given by:

(2) Ωi(y) =



Ω0

[
1+Ωmax

y
m+ y

]
, if i =−1,

Ω0

[
1+

(Ωmax−1)
2

y
m+ y

]
, if i = 0,

Ω0

[
1− y

m+ y

]
, if i = 1,

where Ω0 ( Ω0 ≥ 0) is the baseline influence rate representing the influence in the absence of

disease, Ωmax ( Ωmax ≥ 1) is the maximum influence level for highly prophylactic individuals,

describing the highest level of behavioral influence exerted by highly prophylactic individuals

when disease awareness is at its peak, and m ( m≥ 0) is a half-saturation constant, indicating the

level of perceived disease prevalence at which the influence rate reaches half of its maximum.

In the rest of the study, we consider all four types of influence functions to investigate how

the nature of behavioral response affects the disease transmission dynamics.

In the susceptible human group, when an Si individual influences S j individual, the attitude

of the influenced individual is updated in one of the following ways:

• the individual S j moves one step towards i (S j→ S0) if j =−i with j 6= 0, and keep its

opinion if j = i.
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• the individual S j moves one step towards i (S0→ Si) if j = 0 and i =±1.

Changes of opinions and prophylactic attitudes in the susceptible human population are ex-

pressed by the rate χ(i, j)(t) (i→ j), which are defined as follows:

χ(−1,0)(t) =
Ω0(t)S0(t)+Ω1(t)S1(t)

Nh(t)
,(3)

χ(0,−1)(t) =
Ω−1(t)S−1(t)

Nh(t)
,(4)

χ(0,1)(t) =
Ω1(t)S1(t)

Nh(t)
,(5)

χ(1,0)(t) =
Ω0(t)S0(t)+Ω−1(t)S−1(t)

Nh(t)
.(6)

The specific forces of infection λ−1h, λ0h and λ1h for susceptible humans, S−1, S0 and S1

respectively are given by:

λ−1h(t) =
ψ2βbhIm

Nh
,λ0h(t) =

ψβbhIm

Nh
and λ1h(t) =

βbhIm

Nh
,

where bh, the rate at which a bite from infectious mosquitoes on susceptible humans will lead

to infection of humans, β , the mosquito biting rate and the parameter ψ (0≤ ψ ≤ 1) reflecting

the reduction in the force of infection due to prophylactic attitudes. Thus, the force of infection

for the human population is given by the average:

(7) λ̄h(t) =
1

S(t) ∑
i∈E

Si(t)λih(t).

The force of infection for mosquitoes, λhm is given by:

(8) λhm(t) =
β

(
paIah(t)+ puIuh(t)+ psIsh(t)

)
Nh(t)

,

where pa, pu, and ps are the probabilities that a bite from susceptible mosquitoes on infec-

tious humans (asymptomatic individuals, infectious humans with minor symptoms, and asymp-

tomatic individuals, respectively) leads to the infection of mosquitoes.

The biting rate β is given by:

(9) β =
EIR

n0 · pm
,
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where, EIR is the entomological inoculation rate, n0 is the mosquito-to-human density ratio

(n0 =
Nm
Nh

), and pm is the proportion of mosquitoes infected by the parasite.

Seasonality is incorporated by allowing the birth rate of mosquitoes (b) to fluctuate period-

ically over time. Following the approach in [26], we assume that b(t) varies sinusoidally with

period T :

(10) b(t) = b0

(
1+α1 sin

(
2π

12
(t− tmax +3)

))
,

where α1 is the amplitude of the seasonal variation (0 ≤ α1 ≤ 1), tmax is the peak month of

the rainfall, and b0 is the baseline value of the mosquito birth rate. Therefore, the number of

newborn mosquitoes is given by:

(11) Λm(t) = Nm×b(t)

The flowchart of the model is presented in Figure 1, and the description of model parameters

and state variables are presented in Table 2 and Table 3, respectively.
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FIGURE 1. Susceptible humans (S) are divided into three classes according to their prophy-

lactic preventive attitude; the indice i ∈ {−1,0,1} indicate the level of prophylactic preventive

attitude (i = −1 is the high level of prophylactic preventive attitude, i = 1 is the low level of

prophylactic preventive attitude and i = 0 is the level of partial prophylactic preventive attitude);

Eh, Iah, Iuh, Ish, Hh, Rh, Sm, Em, Im are respectively exposed humans, Asymptomatic humans,

Infectious with minor symptoms, Symptomatic humans, Humans under treatment, Recovered

humans, Susceptible mosquitoes, Exposed mosquitoes and Infectious mosquitoes.



PUBLIC OPINION AND PREVENTIVE PRACTICES ON MALARIA TRANSMISSION 9

TABLE 2. Definition of state variables of the model

State variables Description

S−1 Susceptible humans with high level of prophylactic preventive attitude

S0 Susceptible humans with a middle level of prophylactic preventive attitude

S1 Susceptible humans with a low level of prophylactic preventive attitude

Eh Exposed humans

Iuh Infectious humans with minor symptoms

Iah Asymptomatic humans

Ish Symptomatic humans

Hh Hospitalized humans

Rh Recovered humans

Sm Susceptible mosquitoes

Em Exposed mosquitoes

Im Infectious mosquitoes

Ordinary differential equations

Using the flowchart of the model framework (Figure 1) and the above description, we obtain

the following Ordinary Differential Equations (ODEs) of the model:

Ṡ−1 = Λh + p1ωhRh +χ(0,−1)S0−
(
µh +λ−1h +χ(−1,0)

)
S−1,(12a)

Ṡ0 = 0.5(1− p1)ωhRh +χ(1,0)S1 +χ(−1,0)S−1−
(
µh +λ0h +χ(0,−1)+χ(0,1)

)
S0,(12b)

Ṡ1 = 0.5(1− p1)ωhRh +χ(0,1)S0−
(
µh +λ1h +χ(1,0)

)
S1,(12c)

Ėh = λ−1hS−1 +λ0hS0 +λ1hS1− (µh +αh)Eh,(12d)

İuh = π1αhρEh +κλmh(t)Iah−
(

ε2γT +(1− ε2)γ0 +µh

)
Iuh,(12e)

İah = αh(1−ρ)Eh +(1− ε1)γ0Ish +(1− ε2)γ0Iuh− (γa +κλmh(t)+µh)Iah,(12f)
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İsh = αhρ(1−π1)Eh−
(

ε1ζsh +(1− ε1)γ0 +µh +δsh

)
Ish,(12g)

Ḣh = ε1ζshIsh−
(

δh + γT +µh

)
Hh,(12h)

Ṙh = γaIah + γT Hh + ε2γT Iuh− (ωh +µh)Rh,(12i)

Ṡm = Λm(t)− (µm +λhm(t))Sm,(12j)

Ėm = λhm(t)Sm− (µm +αm)Em,(12k)

İm = αmEm−µmIm.(12l)

The initial conditions

Si (0)≥ 0, for any i ∈ E, Eh (0)≥ 0, Iah (0)≥ 0, Iuh (0)≥ 0, Ish (0)≥ 0, Hh (0)≥ 0, Rh (0)≥

0,

Sm (0)≥ 0, Em (0)≥ 0, Im (0)≥ 0 .

TABLE 3. Definition of the parameters

Parameters Description Unit

Λh Number of newborn humans in susceptible humans

S−1

month−1

µh Natural death rate in humans month−1

σh Moving rate from exposed to infectious humans (Iuh

or Iah or Ish)

month−1

ρ Probability of symptomatic infection dimensionless

π1 Proportion of uncomplicated malaria %

β Biting rate of mosquitoes in susceptible human popu-

lation

mosquito/human

bh Probability of disease transmission from mosquitoes

to humans

dimensionless

δsh Mortality rate of severe malaria month−1

δh Mortality rate of hospitalized malaria cases month−1

γa Recovery rate for asymptomatic humans, Iah month−1
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γT Recovery rate for hospitalized humans, Hh month−1

ε1 Treatment access coverage for severe malaria %

ε2 Treatment access coverage for uncomplicated malaria %

ζsh Admission rate to hospital for severe malaria month−1

ωh Waning rate of acquired immunity after recovery month−1

b(t) Time-dependent mosquito birth rate mosquito·month−1

αm Progression rate from exposed to infectious

mosquitoes

month−1

µm Mosquito mortality rate month−1

EIR Entomological inoculation rate mosquito/human

ψ Percentage reduction of biting rate due to prophylac-

tic attitude

%

α1 Amplitude of seasonal variation dimensionless

m Half-saturation constant dimensionless

Ω0 Baseline influence rate month−1

Ωmax Maximum influence strength month−1

p1 Proportion of people adhering to prophylactic mea-

sures

%

Data source and study period

The four districts in the northern and central parts of Benin (Bantè, Dassa, Sinendé, and

Tchaourou) were considered for this study due to the availability of the data (Figure 5). This

study relied on secondary data obtained from the National Malaria Control Program (PNLP)

of Benin. The data consist of monthly records of malaria cases and deaths (Figure 6). These

were the most complete monthly records available from the PNLP, covering a five-year period

from January 2019 to December 2023. In addition to malaria case and death data, this study

incorporated opinion data extracted from [29], reporting the proportion of individuals adhering

to malaria preventive measures in each of the selected districts. Specifically, adherence (p1) was

75.6% in the Central zone districts (Bantè, and Dassa) and 52.9% in the Northern zone districts
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( Sinendé, and Tchaourou). The total population used for each district is from the Yearbook of

Civil Status Statistics in Benin 2022 [30].

3. RESULTS

3.1. Analytical results

Positivity and Boundedness of the Model Solutions

To ensure that the model is mathematically and biologically well-posed, we prove in this section

that the solutions of the system remain positive and bounded for all t ≥ 0, provided that the

initial conditions are non-negative.

Let the state vector be denoted by:

X(t) = (S−1(t),S0(t),S1(t),Eh(t), Iuh(t), Iah(t), Ish(t),Hh(t),Rh(t),Sm(t),Em(t), Im(t)).

We show that for all t ≥ 0, X(t) ∈ R12
+ , and the total human and mosquito populations are

bounded.

Positivity of the solutions

We first show that the compartments remain positive for all t ≥ 0.

Let us consider the equation for S−1(t): Ṡ−1 = Λh + p1ωhRh + χ(0,−1)S0− (µh + λ−1,h +

χ(−1,0))S−1.

This can be written as: Ṡ−1 ≥−B(t)S−1, where B(t) = µh +λ−1,h +χ(−1,0).

Using Gronwall’s inequality, we get:

S−1(t)≥ S−1(0)exp
(
−
∫ t

0
B(s)ds

)
≥ 0.

Hence, S−1(t)≥ 0 for all t ≥ 0, provided that S−1(0)≥ 0.

Similarly, the equations for S0 and S1 can be written in the form:

Ṡi(t)≥−Bi(t)Si(t),

which implies S0(t),S1(t)≥ 0 for all t ≥ 0.

The exposed compartment Eh satisfies:

Ėh = λ−1,hS−1 +λ0,hS0 +λ1,hS1− (µh +σh)Eh ≥−(µh +σh)Eh.

Thus, Eh(t)≥ 0.
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All other compartments Iuh, Iah, Ish,Hh,Rh follow similar forms: ẋ(t)≥−B(t)x(t) which en-

sures their positivity.

Now, consider the mosquito compartments. The susceptible mosquito equation is:

Ṡm = Λm(t)− (µm +λhm)Sm ≥−(µm +λhm)Sm.

So Sm(t)≥ 0.

The equations for Em and Im are:

Ėm = λhmSm− (µm +αm)Em, İm = αmEm−µmIm.

By similar reasoning, Em(t), Im(t)≥ 0.

Boundedness of the solutions

Let the total human population be: Nh(t) = S−1 +S0 +S1 +Eh + Iuh + Iah + Ish +Hh +Rh.

Then,

Ṅh = Λh−µhNh−δshIsh−δhHh ≤ Λh−µhNh.

Applying Gronwall’s inequality, we obtain:

Nh(t)≤
Λh

µh
+

(
Nh(0)−

Λh

µh

)
e−µht ⇒ lim

t→∞
Nh(t)≤

Λh

µh
.

Similarly, let:

Nm(t) = Sm +Em + Im.

Then, Ṅm = Λm(t)−µmNm ≤ Λmax
m −µmNm where Λmax

m = supt≥0 Λm(t).

It follows that:

Nm(t)≤
Λmax

m
µm

+

(
Nm(0)−

Λmax
m
µm

)
e−µmt ⇒ lim

t→∞
Nm(t)≤

Λmax
m
µm

.

Then, Nh(t)≤ Λh
µh
, Nm(t)≤ Λmax

m
µm

. Therefore, all state variables are bounded.

Disease-free periodic solution

To determine the existence of a disease-free periodic solution (X0), we set the rate of change for

each compartment to zero, assuming there is no infection within the population. At the DFE,

all infectious compartments and the derivative of all state variables are zero, denoted as Then,

the disease-free periodic solution X0 of the model (12a)-(12l) is expressed as:(
E0

h , I
0
uh, I

0
ah, I

0
sh,H

0
h ,E

0
m, I

0
m,S

0
−1,S

0
0,S

0
1,R

0
h,S

0
m(t)

)
=
(
0,0,0,0,0,0,0,S0

−1,S
0
0,S

0
1,0,S

0
m(t)

)
,
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where S0
m(t) is the solution of the differential equation:

(13) Ṡ0
m(t) = Λm(t)−µmS0

m(t),

and S0
−1,S

0
0,S

0
1 are the solution of the following system:

(14)



Λh−

(
µh +

Ω0S0
1

N0
h

)
S0
−1 = 0,

2Ω0S0
1S0
−1

N0
h

−µhS0
0 = 0,

−

(
µh +

Ω0S0
−1

N0
h

)
S0

1 = 0.

Since Λm is periodic with period T , then the equation (13) has a T -periodic solution defined

by:

(15) S0
m(t) =

[
Sm(0)+

∫ t

0
Λm(r)erµm dr

]
e−tµm ,

where

Sm(0) =
∫ T

0 Λm(r)erµm dr
etµm −1

.

Then, the total population of humans and mosquitoes at X0 is given respectively by

N0
h = S0

−1 +S0
0 +S0

1 = S0
h, N0

m = S0
m.

After solving the system of equation 14, we now have:

(16)



S0
−1 =

Λh

µh
,

S0
0 = 0,

S0
1 = 0.

Control and Effective Reproduction Numbers

We define the key epidemiological metric associated with system (12a)–(12l), defined as the

control reproduction number Rc. Several methods have been developed to compute this thresh-

old quantity, notably the next-generation matrix approach for autonomous systems [31] and
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its extensions to periodic or non-autonomous models [32]. In the present study, we apply this

framework to our non-autonomous malaria model to determine the conditions under which the

disease can persist or die out. Therefore, the system (12a) – (12l) can be rewritten as:

Ẋ(t) = ( f (t)− v(t))X(t), where, X(t) = (Eh(t), Iuh(t), Iah(t), Ish(t),Hh(t),Em(t), Im(t)), and

f (t) =



λ−1hS−1 +λ0hS0 +λ1hS1

0

0

0

0

λhm(t)Sm

0


,

v(t) =



(µh +αh)Eh

−παhρEh−κλmh(t)Iah +(ε2γT +(1− ε2)γ0 +µh) Iuh

−αh(1−ρ)Eh− (1− ε1)γ0Ish− (1− ε2)γ0Iuh +(γa +κλmh(t)+µh)Iah

−αhρ(1−π)Eh +(ε1ζsh +(1− ε1)γ0 +µh +δsh) Ish

−ε1ζshIsh +(δh + γT +µh)Hh

(µm +αm)Em

−αmEm +µmIm


.

Let set F(t) =
(

∂ f (t)
∂X(t)

)
and V (t) =

(
∂v(t)
∂X(t)

)
the Jacobian matrix of f (t) and v(t) at X0.

Then, we have:

F(t) =



0 0 0 0 0 0 y

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0
β puS0

m

N0
h

β paS0
m

N0
h

β psS0
m

N0
h

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



,
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where y =
βbh(S0

1 +ψS0
0 +ψ2S0

−1)

N0
h

= βbhψ2, and

V (t)=



µh +αh 0 0 0 0 0 0

−π1αhρ x1 0 0 0 0 0

−αh(1−ρ) −(1− ε2)γ0 µh + γa −(1− ε1)γ0 0 0 0

−αhρ(1−π1) 0 0 x2 0 0 0

0 0 0 −ε1ζsh µh + γT +δh 0 0

0 0 0 0 0 µm(t)+αm 0

0 0 0 0 0 −αm µm(t)


,

where x1 = ε2γT +(1− ε2)γ0 +µh and x2 = µh + ε1ζsh +(1− ε1)γ0 +δsh.

Let CT be an ordered Banach space of all T –periodic functions from R to R and C+
T the

positive cone(
C+

T = {g ∈CT/g(t)≥ 0, t ∈ R}
)
. Let Γ(s) = (Eh(s), Iuh(s), Iah(s), Ish(s),Hh(s),Em(s), Im(s))

′

be the initial distribution of the infected population introduced at time s. Then, F(s)Γ(s) is the

distribution of newly infected individuals caused by the infected individuals introduced at time

s. Therefore, Y (t,s)F(s)Γ(s) is the distribution of the infected individuals newly infected at

time s and remained in infection compartments at time t, where Y (t,s) is the evolution operator

solution of the following linear system:

dY (t,s)
dt

=−V (t)Y (t,s), t ≥ s, Y (s,s) = I7.

Hence, the distribution of the accumulated value of new infections at time t caused by the

infected individuals introduced at time s is given by:

ψ(t) =
∫ t

−∞

Y (t,s)F(s)Γ(s)ds.

By setting q = t− s, we have:

ψ(t) =
∫

∞

0
Y (t, t−q)F(t−q)Γ(t−q)dq.

According to [33, 34, 35], the basic reproduction number R0 of the model (12a) – (12j) is the

spectral radius of the next-generation operator L : CT −→CT given by:

(LΓ)(t) =
∫

∞

0
Y (t, t−q)F(t−q)Γ(t−q)dq.
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It follows that the spectral radius of the next-generation operator L is not easy to find. There-

fore, to find the control reproduction number of the model, we will use the monodromy matrix

method as in [34, 35].

Let W (t,λ ) be the evolution operator of the T –periodic system:

dW
dt

=

(
1
λ

F(t)−V (t)
)

W, where t ∈ R and λ > 0.

According to Theorem 3.1 in [36], the control reproduction number of the model is the unique

solution λ of the equation

ρ(W (t,λ )) = 1,

where ρ(W (t,λ )) is the spectral radius of the matrix W (t,λ ). Therefore, the model’s control

reproduction number Rc will be found numerically such that ρ(W (t,Rc)) = 1.

Using the numerical method, we followed the following algorithm (E) to compute the control

reproduction number of the model.

The effective reproduction number R f of the model is defined as:

R f (t) = R0×
S−1(t)+S0(t)+S1(t)

Nh(t)
,

where R0 represents the basic reproduction number, that is, the reproduction number in the

absence of any control measures.

3.2. Numerical analyses

This section presents the numerical analysis based on the number of malaria cases collected

from January 2019 to December 2023, covering 4 districts in Benin: Bantè, Dassa, Sinendé,

and Tchaourou. These data were obtained from the National Malaria Control Program of

Benin(PNLP) and serve as the empirical basis for the simulations and evaluations conducted

in this study. The parameters extracted from the literature are summarized in Table 4.

The trends in malaria cases and deaths for each district are illustrated through graphs

provided in the appendix (Figure 6), offering a visual overview of the temporal dynamics over

the five years.
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Parameter estimation

The estimation of model parameters was performed using both values extracted from the liter-

ature and values obtained through numerical calibration based on the real-world malaria data

described earlier. The following parameters were estimated (Table 5) using the observed data

on malaria cases: δsh, α1, ψ , ε , m, Ωmax, EIR and ζsh. The model was numerically solved us-

ing the MATLAB function ode45, which integrates systems of ordinary differential equations

(ODEs). The estimation process was carried out using the non-linear least squares method, a

widely used technique for minimizing the difference between model outputs and observed data.

This technique was implemented in MATLAB using the fminsearchbnd function, which

extends fminsearch by allowing bounded minimization of multivariable functions.

To assess the accuracy of the parameter estimates, we computed the Root Mean Squared

Error (RMSE), defined as:

RMSE =

√
1
n

n

∑
i=1

(
yobs

i − ypre
i
)2
,

where yobs
i and ypre

i are the observed and predicted values, respectively, and n is the number

of time points. A smaller RMSE value indicates better model performance and more accurate

parameter estimation [37]. To avoid local minima and improve robustness, initial parameter val-

ues were simulated in 100 different sets from predefined intervals using the MATLAB function

datasample. The combination of nonlinear least squares optimization, repeated sampling,

and RMSE-based evaluation provides a sound and widely adopted framework for parameter

estimation in infectious disease modeling [38, 39]. The curves showing the results of the model

calibration for each of the 4 study districts are presented in Figure 7. From this figure, for each

location, the monthly reported malaria cases (blue circles) are plotted alongside the predicted

values obtained from the calibrated model (red line), covering the period from January 2019 to

December 2023.
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TABLE 4. Parameter values extracted from the literature

Parameters Baseline Value Used Range Unit Source

µh 0.0079 – month−1 Calculated from

[40]

bh 0.0031 – month−1 Calculated from

[40]

π1 0.5 [0–1] % Assumed

κ 0.5 [0–1] % Assumed

ρ 0.5 [0–1] % Assumed

γ0 0.168 [0.042–0.51] month−1 [41]

γa 0.1065 [0.042–0.51] month−1 [41]

αh 3 [2.01–6] month−1 [41]

γT 1.216 [0–6] month−1 [42]

ωh 0.0304 [0.00165–0.33] month−1 [41]

ε1 0.3993 [0–1] % Computed from [1]

ε2 0.3993 [0–1] % Computed from [1]

pu 0.03 [0.0072–0.64] dimensionless [42]

pa 0.03 [0.0072–0.64] dimensionless [42]

ps 0.4 [0.072–0.64] dimensionless [42]

ζsh 0.0042 [0–2.5] month−1 Computed from

[42]

n0 10 [5–30] mosquito/human Assumed

pm 0.05 [0–1] dimensionless Assumed

Λm0 3.9542 [0.06–6000] mosquito·month−1 [42]

bm 0.1 [0.01–0.27] dimensionless [41]

αm 3.04 [0.87–9.9] month−1 [41]

µm 1.689 [1–3.03] month−1 [41]

Λh = Population×bh.
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TABLE 5. Parameter estimates and root mean square error (RMSE) across dis-

tricts

Parameters Bantè Dassa Sinendé Tchaourou

δsh 0.001 [0.000–0.003] 0.000 [0.000–0.002] 0.005 [0.000–0.012] 0.043 [0.039–0.047]

α1 0.958 [0.916–1.000] 1.000 [0.978–1.022] 0.999 [0.847–1] 0.898 [0.833–0.963]

ψ 0.479 [0.398–0.559] 0.967 [0.857–1.000] 0.569 [0.367–0.772] 0.335 [0.191–0.479]

ε 0.102 [0.093–0.110] 0.178 [0.156–0.201] 0.494 [0.434–0.554] 0.380 [0.319–0.441]

m 155.622 [141.453–169.792] 101.507 [89.166–113.849] 20.902 [10.872–30.932] 14.884 [1.456–28.313]

Ωmax 59.886 [52.961–66.811] 6.182 [0.000–12.781] 19.616 [0.000–43.858] 16.231 [9.481–22.981]

EIR 99.708 [96.817–102.599] 98.254 [94.856–101.653] 17.886 [1.753–34.018] 35.032 [18.622–51.443]

ζsh 0.027 [0.025–0.029] 0.102 [0.076–0.129] 0.980 [0.976–0.984] 0.980 [0.979–0.981]

RMSE 10381 4702 8840 26376

Effect of percentage reduction of force of infection on the control reproduction number

The figures 8a–8d illustrate how the control reproduction number Rc varies as a function of the

percentage reduction of force of infection of the parameter, ψ , which represents the multipli-

cation factor to reduce the infection risk among individuals who adopt preventive measures.

For each district, Rc is plotted across a range of ψ values from 0 (full reduction: no infection

occurs meaning that all individuals adopt perfect prophylactic behavior) to 1 (no reduction: no

change in behavior meaning that the probability of infection remains the same as b0), with the

critical threshold Rc = 1 marked by a red dashed line. A smaller value of ψ leads to a greater

reduction in disease transmission. A larger ψ (closer to 1) means that protective measures are

less effective and the transmission rate remains relatively high.

The analysis of the figures shows a strong inverse relationship between ψ and Rc: as indi-

viduals adopt more effective prophylactic behavior, the control reproduction number decreases.

This finding implies that improving adherence to vector control measures, specifically ITNs

and topical repellents, may lead to meaningful reductions in malaria transmission at the com-

munity level. Across most districts, the red threshold line at Rc = 1 is crossed when ψ reaches

a certain value, indicating the minimum level of prophylactic effectiveness required to con-

trol the outbreak. Notable differences are observed among districts. The districts are grouped

into two distinct categories based on the level of effectiveness required: three districts (Bantè,
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Dassa, and Sinendé) require the highest effectiveness, with a ψ value of 0.08, 0.12 and 0.16

respectively. This means that a reduction of at least 92%, 88% and 84% respectively in the

probability of infection, respectively, is required to stop the epidemic, highlighting the intensity

of baseline transmission in these areas. Conversely, Tchaourou requires the lowest effectiveness

(ψ = 0.4), implying that a reduction of 60% is sufficient to manage the disease. These differ-

ential thresholds provide specific performance targets for optimizing prophylactic interventions

in each community.

Impact of the initial proportion of favorable prophylactic attitudes on effective reproduction

number across districts

The figures 2a–2d show the trends of the effective reproduction number from January 2019

to December 2023 across the four districts under five levels of favorable prophylactic opinion

percentages (p1).

Data from all districts show a clear trend: as the proportion of adherence to prophylactic

measures increases, the effective reproduction number decreases over time. Specifically, for

each level of favorable adherence, the effective reproduction number tends to decrease as the

proportion of favorable adherent individuals increases. The districts show greater reductions,

particularly for increased adherence (52% to 100%). Bantè and Dassa stand out with the most

pronounced decline, with a decrease in R f (t) from 2.9 to 0.5 (a reduction of nearly 82.75%),

highlighting the significant impact of behavioral interventions in areas of maximum transmis-

sion. These results confirm that adherence is universally effective, but that its marginal effect is

amplified in regions with high epidemic dynamics.

Effect of opinions and influence on malaria clinical cases

The figures 3a–3d show the impact of opinion dynamics and influence on malaria transmission

across the 4 districts. Based on these figures, across all districts, we remark that when there is

no opinion, we see that the number of malaria clinical cases increases, and the epidemic takes

longer to reach its peak. In this scenario, the number of cases is amplified, and the overall

transmission remains high over an extended period. This means that without any collective

belief or behavioral change in the population, the disease spreads more easily and for a longer

duration, leading to a delayed response to the outbreak. In contrast, when opinion is present,
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individuals are more likely to adopt preventive behaviors. This leads to a faster peak, indicating

that the disease is controlled more quickly. As a result, the epidemic does not last as long, and

the community can implement intervention strategies at a more opportune time, making it easier

to manage the spread of the disease.

For instance, in the absence of public opinion, the number of malaria clinical cases in Dassa

(Figure 3b) is around 3,600. When public opinion is present but without, the number of clinical

cases decreases to around 1,600. This indicates that without public opinion, the epidemic pro-

gresses more slowly, and cases accumulate over a prolonged period. In contrast, when public

opinion is present, the epidemic reaches its peak much earlier, in september 2019. The curve

shows a sharp increase, but the peak is much lower compared to the “no opinion” scenario. The

presence of public opinion accelerates the adoption of preventive behaviors, enabling quicker

control and reducing the overall burden of the epidemic.

In addition, when public opinion is present but there is no influencing mechanism (red curve),

the epidemic evolves in the same way as in the scenario without public opinion, although the

number of clinical cases is slightly lower. This shows that even if individuals have opinions,

without social influence, the adoption of preventive measures is slower. The epidemic reaches

its peak in a delayed manner, and the control remains difficult. When social influence is intro-

duced, we observe a significant change in the trends. The curve blue represents the presence

of influence and show that the peak occurs earlier, and the overall number of clinical cases is

substantially reduced. This indicates that social influence helps individuals adopt preventive

behaviors more rapidly, leading to faster epidemic control.

Impact of the minimum Influence Rate Ω0 on Effective Reproduction Number Across districts

The figures 4a– 4d show the effect of varying the minimum influence rate Ω0 on effective

reproduction number (2019–2023) in the four study districts. They reveal a clear negative re-

lationship between the minimum influence rate Ω0 and the effective reproduction number. As

Ω0 increases from 0.05 to 50, the effective reproduction number consistently decreases across

all districts. This result highlights the importance of a strong underlying social influence, even

in the absence of a visible disease burden. A higher Ω0 means that protective opinions circulate

more actively at all times, which encourages the continuous adoption of preventive behaviors.
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The seasonal pattern of malaria transmission remains evident in all scenarios, but the amplitude

of the peaks is noticeably reduced at higher Ω0 values.

(A) (B)

(C) (D)

FIGURE 2. Effective Reproduction Number under various prophylaxis adher-

ence levels across the four districts

(A) (B)

(C) (D)

FIGURE 3. Malaria cases under various opinion and influence across the four

districts
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(A) (B)

(C) (D)

FIGURE 4. Effective reproduction number trends under varying minimum influ-

ence rate (Ω0) across the four study districts

4. DISCUSSION

This study developed a seasonal malaria transmission model integrating public opinion and

preventive behavior to quantify how social influence affects disease outcomes across 4 Beninese

districts. Analytical results established positivity and boundedness, while numerical analyses

revealed that opinion-driven adherence to preventive measures substantially reduced malaria

incidence.

The simulations showed that as the level of favorable adherence to preventive measures in-

creased, the effective reproduction number decreased consistently, highlighting the critical role

of individual behavior in transmission dynamics. Simulation results showed also that the ab-

sence of protective opinions in the population led to higher and more sustained levels of malaria

incidence across all districts. In contrast, when protective opinions were present at the begin-

ning of the simulation, there was a clear reduction in both the size and frequency of malaria

peaks. This confirms the significant contribution of opinion presence to the collective adoption

of preventive behaviors. The model also accounted for how individuals influence one another

based on their opinion type through influence function. This influence function was designed
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to reflect the varying capacity of each group to affect others, with individuals who strongly

prophylactic exerting the greatest influence. This structure, in which highly prophylactic in-

dividuals exert the greatest influence, follows the theoretical foundations proposed by [12]. It

also aligns with a mechanism of opinion amplification whereby individuals with entrenched

opinions tend to exert a stronger persuasive effect [27]. In addition, [28] supports the idea that

pre-existing protective opinions can significantly alter epidemic trajectories, even in the absence

of strong institutional interventions. The spread of awareness and information also plays a cru-

cial role. This result is consistent with [43], who showed that awareness about an epidemic

can spread through a population and modify individual behavior, potentially reducing transmis-

sion. In the present study, the behavioral changes driven by opinion diffusion had a similar

effect, suggesting that even informal or peer-driven communication can lead to meaningful epi-

demiological outcomes. Furthermore, the results resonate with the work of [44], who modeled

the co-dynamics of fear and disease. They demonstrated that perceived risk can lead individu-

als to withdraw from potential exposure, thereby reducing contact rates. Although the present

model does not explicitly include fear, it captures the idea that perceived prevalence modulates

behavior via opinion dynamics. Overall, these findings underscore the importance of incor-

porating social and behavioral components into epidemic models. Encouraging the spread of

protective opinions through targeted communication or community-based interventions could

enhance malaria prevention strategies, particularly in settings with limited access to medical

infrastructure.

The behavioural response to prevention strategies was further examined through one key pa-

rameter of the influence function: the minimum influence rate (Ω0). This parameter reflect how

influence circulates in the population under normal conditions. Simulation results showed that

higher values of Ω0 were consistently associated with lower malaria incidence across all dis-

tricts. This indicates that even in the absence of disease, a strong underlying influence structure

promotes the adoption of protective behaviours. These findings align with [43], who empha-

sized that awareness can spread through social networks and lead to behavioral changes, even

before the visible rise of infection. Similarly, [45] reported that perceived risk alone can lead to
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significant behavioral adjustments in response to potential pandemics. As supported by [27], in-

dividuals with entrenched opinions are often more persuasive, especially within local networks.

Therefore, strengthening the voice of committed individuals can significantly impact collective

behaviour and reduce disease transmission. This echoes the importance of empowering com-

munity leaders or role models in public health campaigns. These findings reflect the insights of

[44], who showed that delays in behavioural adaptation to fear or risk perception can amplify

epidemic outcomes. Interestingly, the effects of each parameter varied slightly across districts,

reflecting differences in initial conditions or transmission intensity. However, the overall trends

remained consistent. These results also align with [28], who highlighted the importance of

heterogeneity in behavioural dynamics and their consequences for regional epidemic control.

Together, these findings emphasize that behavioural parameters are not only model components

but also key levers for public health action. Interventions aimed at boosting baseline influence,

empowering committed voices, and reducing behavioural inertia can have a measurable effect

on malaria control. Despite the simplicity of the model, these insights offer valuable guidance

for designing social and behavioural interventions that complement medical strategies.

Public health programs could benefit from leveraging community leaders and peer networks

to promote sustained prophylactic behaviour, especially in high-risk or resource-limited set-

tings. Future research could explore more complex network-based influence structures or inte-

grate mobile data and real-time behavioural tracking. Such efforts would further enhance our

capacity to model and control malaria transmission through a multidisciplinary lens that bridges

epidemiology, sociology, and public health policy.

Despite the strengths of the study, some limitations must be acknowledged. The analysis was

limited to four districts in Northern and Central Benin due to data availability. As a result, the

findings may not fully represent the situation across the entire country. Future research could

include more districts or adopt a spatial modeling approach to capture regional differences more

accurately. Some parameters were assumed to remain constant over time and across locations.

While this was necessary for model calibration, it does not reflect the potential influence of

environmental or socio-economic variations. Future models could incorporate time-varying or

climate-dependent parameters such as rainfall or temperature. Although the model integrates
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public opinion, it does not include certain key interventions such as Seasonal Malaria Chemo-

prevention (SMC) or vaccination, mainly due to the lack of reliable data in the study areas.

Including these strategies in future work could improve the model’s relevance for guiding con-

trol programs. The model also does not account for challenges like drug resistance, unequal

access to care, or climate change, which can affect malaria dynamics. Addressing these aspects

in future studies would help build more effective and realistic tools for malaria control.

5. CONCLUSION

This study investigated the impact of population opinions and behavioural responses towards

malaria prevention methods on the transmission dynamics and burden of malaria in four dis-

tricts of Benin. By coupling the classical malaria transmission model with an opinion dynamics

framework, this research aimed to provide a more holistic understanding of how individual

attitudes and social influence mechanisms affect disease propagation. The results confirmed

that opinions and behaviours are key determinants in shaping malaria transmission patterns.

In particular, the initial distribution of prophylactic behaviours significantly influenced disease

outcomes, with a higher initial proportion of favorable prophylactic individuals leading to a

substantial reduction in malaria incidence. Moreover, the presence of opinion dynamics and in-

fluence consistently showed a mitigating effect on the disease spread, underscoring the power of

social interactions in shaping health outcomes. This study emphasizes the impact of behavioral

parameter such as minimum influence rate (Ω0) on population responsiveness to the epidemic.

High values of Ω0 are associated with reduced transmission. These results confirm the impor-

tance of risk perception and social influence in behavioral adaptation, as spotlighted in previous

work. One of the major contributions of this study lies in the contextualized application of an

opinion-epidemic model to malaria, a vector-borne disease, in a sub-Saharan African setting,

thus extending the work carried out on other diseases such as COVID-19.
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APPENDICES

APPENDIX A. STUDY AREA MAP DISPLAYING THE 4 SELECTED DISTRICTS IN BENIN

FIGURE 5. Study area map displaying the 4 selected districts in Benin

APPENDIX B. MONTHLY MALARIA DATA BY DISTRICT (2019–2023)

(A) (B)

(C) (D)

FIGURE 6. Malaria Cases and Deaths by Month in the Study districts

(2019–2023).
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APPENDIX C. MODEL VALIDATION THROUGH PREDICTION OF MALARIA CASES
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FIGURE 7. Evolution trend of the Malaria monthly cases for each District
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FIGURE 8. Control reproduction number Rc against ψ for each district
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APPENDIX E. ALGORITHME TO COMPUTE THE CONTROL REPRODUCTION NUMBER

Rc

• For any value of λ , the matrix W (T,λ ) is determined numerically with MATLAB’s

ode45 solver for ordinary differential equations.

• The spectral radius of the matrix W (T,λ ) is calculated using the Matlab function

max(abs(eig(W(T,lambda)))).

• Let h(λ ) = ρ(W (T,λ ))− 1, the zero of the function h, which represents the control

reproduction number Rc, is numerically found using the Matlab function fzero.

APPENDIX F. TOTAL POPULATION FOR EACH DISTRICT

TABLE 6. Total population for each district

District Population

Bantè 131874

Dassa 137954

Sinendé 112792

Tchaourou 274546
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Sub-Saharan Africa Advanced Consortium for Biostatistics (SSACAB) Phase II.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.



PUBLIC OPINION AND PREVENTIVE PRACTICES ON MALARIA TRANSMISSION 31

REFERENCES

[1] World Health Organization, WHO World Malaria Report 2023, (2023). https://www.who.int/teams/global-m

alaria-programme/reports/world-malaria-report-2023.

[2] S. Bhatt, D.J. Weiss, E. Cameron, D. Bisanzio, B. Mappin, et al., The Effect of Malaria Control on Plasmod-

ium Falciparum in Africa Between 2000 and 2015, Nature 526 (2015), 207–211. https://doi.org/10.1038/na

ture15535.

[3] World Health Organization, Global technical strategy for malaria 2016-2030, (2015). https://www.who.int/

docs/default-source/documents/global-technical-strategy-for-malaria-2016-2030.pdf.

[4] T.A. Tizifa, A.N. Kabaghe, R.S. McCann, H. van den Berg, M. Van Vugt, et al., Prevention Efforts for

Malaria, Curr. Trop. Med. Rep. 5 (2018), 41–50. https://doi.org/10.1007/s40475-018-0133-y.

[5] K. Wangdi, L. Furuya-Kanamori, J. Clark, J.J. Barendregt, M.L. Gatton, et al., Comparative Effectiveness

of Malaria Prevention Measures: A Systematic Review and Network Meta-Analysis, Parasites Vectors 11

(2018), 210. https://doi.org/10.1186/s13071-018-2783-y.

[6] R.M. Anderson, R.M. May, Infectious Diseases of Humans, Oxford University Press, (1991).

[7] The malERA Consultative Group on Modeling, A Research Agenda for Malaria Eradication: Modeling,

PLoS Med. 8 (2011), e1000403. https://doi.org/10.1371/journal.pmed.1000403.

[8] S. Mandal, R.R. Sarkar, S. Sinha, Mathematical Models of Malaria - A Review, Malar. J. 10 (2011), 202.

https://doi.org/10.1186/1475-2875-10-202.

[9] L.G. Alvarez-Zuzek, C.E. La Rocca, J.R. Iglesias, L.A. Braunstein, Epidemic Spreading in Multiplex

Networks Influenced by Opinion Exchanges on Vaccination, PLOS ONE 12 (2017), e0186492. https:

//doi.org/10.1371/journal.pone.0186492.

[10] S. Xia, J. Liu, A Computational Approach to Characterizing the Impact of Social Influence on Individuals’

Vaccination Decision Making, PLoS ONE 8 (2013), e60373. https://doi.org/10.1371/journal.pone.0060373.

[11] M. Voinson, S. Billiard, A. Alvergne, Beyond Rational Decision-Making: Modelling the Influence of

Cognitive Biases on the Dynamics of Vaccination Coverage, PLOS ONE 10 (2015), e0142990. https:

//doi.org/10.1371/journal.pone.0142990.

[12] R.C. Tyson, S.D. Hamilton, A.S. Lo, B.O. Baumgaertner, S.M. Krone, The Timing and Nature of Behavioural

Responses Affect the Course of an Epidemic, Bull. Math. Biol. 82 (2020), 14. https://doi.org/10.1007/s115

38-019-00684-z.
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