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Abstract. For several decades researchers have been studying global dynamics of viral infection models to prevent

wide outbreak of scattered virus both in population and vivo such as Dengue fever, SARS-COV2, HRSV, and

immunodeficiency diseases. In this paper, our main aim is obtaining sufficient conditions for the global stability

of equilibria of a Caputo fractional derivative order system with general incidence functional response by using

Lyapunov’s method and LaSalle’s invariance principle. We prove the global stability of stationary points by the

values of the basic reproduction number (R0) and we consider this threshold as a strong index for our sensitivity

analysis. We confirm theoretical results through numerical simulations.
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1. INTRODUCTION

Fractional calculus has many use in engineering and medical sciences such as time-fractional

vibration equations (TFVEs) especially for large membrane [4, 12, 16], and epidemic models

[5, 14, 20]. Fractional derivatives (FD) have high efficacy in modeling biological infections,
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real adaptive systems, and cure and control theories. Clearly, infected mathematical models

have biological importance to study short and long dynamics of invading viruses such as HIV,

HBV, HCV, SARS-COV2,...[13, 18, 3, 7, 11, 15] as disturbing factors in vivo. many researchers

have modeled HIV infection both in population and cellular cases to get better understanding

of virus proliferations[9, 11, 19]. As general incidence rate concludes vast range of cases in

modeling the viral infections [1, 6], we proposed a Caputo FDE multi-stage model due to DNA

formation and integration process in a copied infected cell. Moreover, HIV drug treatments

appeared through three inhibitors to analyze HIV progress completely. Non-local memory-

dependent trait of Caputo fractional operator will content us about considered past scenario and

optimality [2, 10]. To get the desire, the next section presents some preliminaries, our model

formulation, determined the threshold parameter as basic reproduction number. Basically, this

threshold alarms us to take effective approaches after well recognition such as getting highly ac-

tive antiretroviral therapy (HAART) diet and HIV medicines and services to direct HIV patients

on time. To continue, we set equilibria of our fractional model, and discussed well-posedness of

solutions. Section 3 establishes the global stability of the equilibria which has vital importance

in facing to chaotic system to minimize damaging immune system and AIDS pathogenesis de-

velopement. Moreover, to prevent HIV transmission from mother to child during pregnancy or

sex partner. To examine the robustness of the model, in section 4 we use basic reproduction

number as a sensitive index and present numerical simulations for various orders of derivative

to demonstrate the efficacy of analytical outcomes. Finally section 5 draws some deductions.

2. MODEL FORMULATION AND PRELIMINARY RESULTS

In this section, we introduce a fractional-order viral infection model formulated using the

Caputo fractional derivative. The model aims to describe the interactions between uninfected

target cells, infected cells at different stages of infection, and viral particles.

We begin by defining the state variables of the model. The variable T (t) denotes the popula-

tion of uninfected target cells. The variables I1(t), I2(t), and I3(t) represent infected cells that

have completed reverse transcription, productively infected cells, and infected cells with failed

DNA integration, respectively. The variable L(t) denotes the population of latently infected

cells.The quantities VI(t) and VNI(t) correspond to infectious and non-infectious viral particles.
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Next, we describe the parameters governing the biological processes involved. The parameter

s represents the production rate of uninfected cells, while d and d1 denote the natural death

rates of uninfected cells and I1-infected cells, respectively. The parameters k1 and k2 describe

the transition rates from I1 to I2 and I3. The parameter p denotes the fraction of infected cells

entering latency. The parameters δ , d3, and dL represent the death rates of productively infected

cells, I3-infected cells, and latently infected cells, respectively, whereas a is the activation rate

of latently infected cells. The quantity Nδ denotes the rate of viral production per infected

cell, and c is the viral clearance rate. Finally, εRT , εII , and εPI denote the efficacies of reverse

transcriptase, integrase, and protease inhibitors, respectively.

To account for the infection mechanism, we incorporate a general incidence function. The

function f
(
T (t),VI(t)

)
represents a general incidence rate describing the interaction between

uninfected target cells and infectious viral particles. This general formulation allows for a wide

class of nonlinear infection mechanisms. Throughout this work, the incidence function f (T,VI)

is assumed to be continuously differentiable and to satisfy

f (0,VI) = f (T,0) = 0, f (T,VI)> 0 for all T > 0, VI > 0,

and to be non-decreasing with respect to both arguments.

Under the above assumptions, the dynamics of the model are governed by the following

fractional-order system:

(1)



DαT (t) = s−dT (t)− (1− εRT ) f
(
T (t),VI(t)

)
VI(t),

Dα I1(t) = (1− εRT ) f
(
T (t),VI(t)

)
VI(t)−d1I1(t)− (1− εII)k1I1(t)− k2I1(t),

Dα I2(t) = (1− p)(1− εII)k1I1(t)−δ I2(t)+aL(t),

Dα I3(t) = k2I1(t)−d3I3(t),

DαL(t) = p(1− εII)k1I1(t)−dLL(t)−aL(t),

DαVI(t) = (1− εPI)Nδ I2(t)− cVI(t),

DαVNI(t) = εPINδ I2(t)− cVNI(t).
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The system (1) is supplemented with nonnegative initial conditions:

T (0) = T0 ≥ 0, I1(0) = I1,0 ≥ 0, I2(0) = I2,0 ≥ 0, I3(0) = I3,0 ≥ 0, L(0) = L0 ≥ 0,

VI(0) =VI,0 ≥ 0, VNI(0) =VNI,0 ≥ 0.

Since the model is formulated in the sense of the Caputo fractional derivative, only classical

initial conditions are required.

2.1. Well-posedness.

Theorem 1. All solutions of System (1) with non-negative initial conditions exist uniquely for

all t > 0 and remain bounded and non-negative.

Proof. Obviously, the dynamics of the Model (1) can be studied without considering I3 and VNI

equations so for the following system we have

(2)



DαT (t) = s−µ1T − (1− εRT ) f
(
T (t),VI(t)

)
VI(t),

Dα I1(t) = (1− εRT ) f
(
T (t),VI(t)

)
VI(t)−d1I1− (1− εII)k1I1− k2I1,

Dα I2(t) = (1− p)(1− εII)k1I1−δ I2 +aL,

DαL(t) = p(1− εII)k1I1−dLL−aL,

DαVI(t) = (1− εPI)Nδ I2− cVI.

Since
DαT (t)

∣∣
T=0 = s≥ 0,

Dα I1(t)
∣∣
I1=0 = (1− εRT ) f (T (t),VI(t))VI(t), for all T,VI ≥ 0,

Dα I2(t)
∣∣
I2=0 = (1− p)(1− εII)k1I1 +aL, for all I1,L≥ 0,

DαL(t)
∣∣
L=0 = p(1− εII)k1I1, for all I1 ≥ 0,

DαVI(t)
∣∣
VI=0 = (1− εPI)Nδ I2, for all I2 ≥ 0,

it follows that the solutions of the System (2) remain nonnegative for all t ≥ 0.

Now consider the following function:

M(t) = T (t)+ I1(t)+ I2(t)+L(t)+
1

2(1− εPI)N
VI(t).
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We have

DαM(t) = s−µ1T (t)− (d1 + k2)I1(t)−
δ

2
I2(t)−dLL(t)− c

2(1− εPI)N
VI(t)≤ s−ζ M(t),

where ζ = min
{

µ1, d1 + k2,
δ

2 , dL, c
}
.

Hence,

limsup
t−→+∞

M(t)≤ s
ζ
.

Therefore, T (t), I1(t), I2(t),L(t),VI(t) are finally bounded.

Through summing up the equations of the System (2) and multiplying the both sides by eµ1(t)

we have

seµ1t = DαT (t)eµ1(t)+µ1T (t)eµ1(t)+Dα I1(t)eµ1(t)+(d1 + k2)I1(t)eµ1(t)+Dα I2(t)eµ1(t)

+δ I2(t)eµ1(t)+DαL(t)eµ1(t)+dLL(t)eµ1(t).

Through integrating simultaneously on both sides of the equations we have∫ t

0
seµ1(x)dx =

∫ t

0

{
DαT (x)eµ1(x)+µ1T (x)eµ1(x)

}
dx+

∫ t

0

{
Dα I1(x)eµ1(x)+(d1 + k2)I1(x)eµ1(x)

}
dx

+
∫ t

0

{
Dα I2(x)eµ1(x)+δ I2(x)eµ1(x)

}
dx+

∫ t

0

{
DαL(x)eµ1(x)+dLL(x)eµ1(x)

}
dx.

Hence,

s
µ1

(eµ1(t)−1) = T (t)eµ1(t)+ I1(t)eµ1(t)+ I2(t)eµ1(t)+L(t)eµ1(t)−T0− I10− I20−L0

− (µ1− (d1 + k2))
∫ t

0
I1(x)eµ1(x)dx− (µ1−δ )

∫ t

0
I2(x)eµ1(x)dx

− (µ1−dL)
∫ t

0
L(x)eµ1(x)dx.

Through multiplying the both sides of the equation by e−µ1(t) we have

s
µ1

(1− e−µ1(t)) = T (t)+ I1(t)+ I2(t)+L(t)− (T0− I10− I20−L0e−µ1(t))

− (µ1− (d1 + k2))
∫ t

0
I1(x)e(x−t)µ1dx− (µ1−δ )

∫ t

0
I2(x)e(x−t)µ1dx

− (µ1−dL)
∫ t

0
L(x)e(x−t)µ1dx.

According to Lemma 3.3 in [15] , we have

s
µ1
≥ limsup

t−→+∞

T (t)+
d1 + k2

µ1
limsup
t−→+∞

I1(t)+
δ

µ1
limsup
t−→+∞

I2(t)+
dL

µ1
limsup
t−→+∞

L(t),
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s
µ1
≥ liminf

t−→+∞
T (t)+

d1 + k2

µ1
liminf
t−→+∞

I1(t)+
δ

µ1
liminf
t−→+∞

I2(t)+
dL

µ1
liminf
t−→+∞

L(t).

Through subtracting we have

0≥ limsup
t−→+∞

T (t)− liminf
t−→+∞

T (t)+
d1 + k2

µ1

(
limsup
t−→+∞

I1(t)− liminf
t−→+∞

I1(t)
)

+
δ

µ1

(
limsup
t−→+∞

I2(t)− liminf
t−→+∞

I2(t)
)
+

dL

µ1

(
limsup
t−→+∞

L(t)− liminf
t−→+∞

L(t)
)
.

Then,

limsup
t→+∞

T (t) = liminf
t→+∞

T (t), limsup
t→+∞

I1(t) = liminf
t→+∞

I1(t),

limsup
t→+∞

I2(t) = liminf
t→+∞

I2(t), limsup
t→+∞

L(t) = liminf
t→+∞

L(t).

Hence, the limit of T (t), I1(t), I2(t),L(t) exist when t −→ ∞.

Clearly,

VI(t) =V10e−ct +(1− εPI)Nδ

∫ t

0
I2(x)x(x−t)cdx,

Then,

limsup
t−→+∞

VI(t)≤
(1− εPINδ )

c
limsup
t−→+∞

I2(t),

liminf
t−→+∞

VI(t)≤
(1− εPINδ )

c
liminf
t−→+∞

I2(t).

Through using the quality above, we get

limsup
t−→+∞

VI(t)− liminf
t−→+∞

VI(t)≤ 0.

Thus,

limsup
t−→+∞

VI(t) = liminf
t−→+∞

VI(t).

Hence, the limit of VI(t) exists when t −→ ∞. �

2.2. Equilibria and threshold parameters. We now investigate the existence of equilibria

of system (2) and introduce the basic reproduction number R0.

Proposition 1. System (2) always admits an infection-free equilibrium given by

E0 =

(
s

µ1
,0,0,0,0

)
.
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Proof. Setting

DαT = Dα I1 = Dα I2 = DαL = DαVI = 0

in system (2) and assuming the absence of infection, that is, I1 = I2 = L = VI = 0, the first

equation reduces to

0 = s−µ1T,

which yields T = s
µ1

. Hence, the infection-free equilibrium E0 exists for all parameter values.

�

We now seek an endemic equilibrium E1 corresponding to the persistence of infection, for

which V ∗I 6= 0.

At equilibrium, setting Dα I1 = 0 in system (2) gives

(1− εRT ) f (T ∗,V ∗I )V
∗
I =

(
d1 +(1− εII)k1 + k2

)
I∗1 ,

which implies

I∗1 =
s−µ1T ∗

d1 +(1− εII)k1 + k2
.

From the equilibrium equations Dα I2 = 0 and DαL = 0, we obtain

I∗2 =
(1− εII)k1(s−µ1T ∗)(ap+(1− p)(a+dL))

δ (a+dL)(d1 +(1− εII)k1 + k2)
,

and

L∗ =
p(1− εII)k1(s−µ1T ∗)

(a+dL)(d1 +(1− εII)k1 + k2)
.

Moreover, setting DαVI = 0 yields

V ∗I =
(1− εPI)Nδ I∗2

c
.

Substituting the above expressions into the equilibrium equation DαT = 0 leads to the scalar

equation

(1− εRT ) f
(

T ∗,
(1− εPI)N(1− εII)k1(s−µ1T ∗)(ap+(1− p)(a+dL))

(d1 +(1− εII)k1 + k2)c(a+dL)

)

×
(

(d1 +(1− εII)k1 + k2)c(a+dL)

(1− εPI)N(1− εII)k1(ap+(1− p)(a+dL))

)
= 0,

which implicitly defines T ∗.
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Linearizing system (2) around the infection-free equilibrium E0 and applying the next-

generation matrix method, the basic reproduction number is given by

R0 =
(1− εRT ) f

(
s

µ1
,0
)
(1− εPI)N(1− εII)k1(ap+(1− p)(a+dL))

(d1 +(1− εII)k1 + k2)c(a+dL)
.

If R0 > 1, the above scalar equation admits a unique solution

T ∗ ∈
(

0,
s

µ1

)
,

which guarantees the existence of a unique endemic equilibrium

E1 = (T ∗, I∗1 , I
∗
2 ,L
∗,V ∗I ).

The above analysis leads to the following result, which summarizes the existence of equilibria

of system (2).

Theorem 2. If R0 ≤ 1, system (2) admits only the infection-free equilibrium E0. If R0 > 1,

system (2) admits a unique endemic equilibrium E1.

Remark 1. Theorem 2 highlights the threshold role of the basic reproduction number R0. When

R0 ≤ 1, the infection dies out and only the infection-free equilibrium exists, whereas the condi-

tion R0 > 1 ensures the persistence of the infection through the emergence of a unique endemic

equilibrium.

3. GLOBAL DYNAMICS

Clearly, the corresponding ordinary differential equations (ODEs) of System (2) is given by

(3) u̇ = f (u),

where u =



T

I1

I2

L

VI


and f (u) =



s−dT − (1− εRT ) f (T (t),VI(t))VI(t)

(1− εRT ) f (T (t),VI(t))VI(t)−d1I1− (1− εII)k1I1− k2I1

(1− p)(1− εII)k1I1−δ I2 +aL

p(1− εII)k1I1−dLL−aL

(1− εPI)Nδ I2− cVI


.

Hence, System (2) can be written as

Dα
t u = f (u),
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where Dα
t is the fractional derivative in the Caputo sense of order α ∈ (0,1]. For α = 1, we get

the ODE Model (3).

The Jacobian matrix of reduced Model (2) at E0 is given by

J =



−µ1 0 0 0 −(1− εRT ) f ( s
µ1
,0)

0 −(d1 +(1− εII)k1 + k2) 0 0 (1− εRT ) f ( s
µ1
,0)

0 (1− p)(1− εII)k1 −δ a 0

0 p(1− εII)k1 0 −a−dL 0

0 0 (1− εPI)Nδ 0 −c


.

Obviously, it has an eigenvalue λ =−µ1, then consider

(4) y(λ ) = λ
4 +b1λ

3 +b2λ
2 +b3λ +b4 = 0

As

y(0) = b4 = (d1 +(1− εII)k1 + k2)cdδ (1−R0)

If R0 > 1, we have

y(0)< 0,

and

lim
λ−→+∞

y(λ ) = +∞

Thus, (4) has at least one positive eigenvalue. Hence, E0 is unstable if R0 > 1.

Theorem 3. If R0 ≤ 1, then E0 is globally asymptotically stable.

Proof. We define Lyapunov functional as follows

L0(u) = T −T0−
∫ T

T0

f (T0,0)
f (τ,0)

dτ + I1 +
d(d1 +(1− εII)k1 + k2)

(1− εII)k1

(
ap+(1− p)d

) I2

+
a(d1 +(1− εII)k1 + k2)

(1− εII)k1

(
ap+(1− p)d

)L+
d(d1 +(1− εII)k1 + k2)

(1− εPI)N(1− εII)k1

(
ap+(1− p)d

)VI.

Based on the results of [17], we deduce that L0 is a Lyapunov functional at E0 when R0 ≤ 1.

Moreover, we have

Dα
t L0(u)≤ ∇L0(u). f (u).
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By using Theorem 1 (i) in [8], we conclude that L0 is also a Lyapunov functional for FDE

Model (2) at E0 when R0 ≤ 1. Therefore, E0 is globally asymptotically stable when R0 ≤ 1. �

Theorem 4. If 1 < R0, then E1 is globally asymptotically stable.

Proof. We consider the following Lyapunov functional

L1(u) =

(
ap

a+dL
+1− p

)
(1− εII)k1

(d1 +(1− εII)k1 + k2)

(
T −T ∗−

∫ T

T ∗

f (T ∗,V ∗I )
f (τ,V ∗I )

dτ

)

+

(
ap

a+dL
+1− p

)
(1− εII)k1

(d1 +(1− εII)k1 + k2)

(
I1− I∗1 − I∗1 ln

I1

I∗1

)
+

(
I2− I∗2 − I∗2 ln

I2

I∗2

)
+

a
a+dL

(
L−L∗−L∗ln

L
L∗

)
+

1
N(1− εPI)

(
VI−V ∗I −V ∗I ln

VI

V ∗I

)
.

By means of [17], we get that L1 is a Lyapunov functional at E1 when R0 > 1. Furthermore, we

have

Dα
t L1(u)≤ ∇L1(u). f (u).

By applying Theorem 1 (i) of [8], we deduce that L1 is also a Lyapunov functional for FDE

Model (2) at E1 when R0 > 1. Thus, E1 is globally asymptotically stable when R0 > 1. �

4. NUMERICAL SIMULATIONS AND DISCUSSION

In this section, we present numerical simulations to illustrate the theoretical results. We

consider several values of the fractional order, namely α = 0.7,0.8,0.9, and 1, and we use the

parameter values listed in Table 1.

When the parameter values given in the second column of Table 1 are adopted, the basic re-

production number is computed as R0 = 0.05≤ 1. In this case, System (1) admits the infection-

free equilibrium (IFE) E0. According to Theorem 3, the solution of System (1) converges to

E0 (see Figs. 1–7). In particular, Fig. 1 shows that the population of uninfected cells increases,

whereas the densities of the infected cell populations and viral loads decrease significantly and

tend to zero. Consequently, the virus is cleared from the host and the infection is eliminated.
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FIGURE 1. Stable inclination of plots towards the IFE E0 for T using distinct

values of α related to System (1).

FIGURE 2. Stable inclination of plots towards the IFE E0 for I1 using distinct

values of α related to System (1).

FIGURE 3. Stable inclination of plots towards the IFE E0 for I2 using distinct

values of α related to System (1).
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FIGURE 4. Stable inclination of plots towards the IFE E0 for I3 using distinct

values of α related to System (1).

FIGURE 5. Stable inclination of plots towards the IFE E0 for L using distinct

values of α related to System (1).

FIGURE 6. Stable inclination of plots towards the IFE E0 for VI using distinct

values of α related to System (1).
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FIGURE 7. Stable inclination of plots towards the IFE E0 for VNI using distinct

values of α related to System (1).

When the parameter values reported in the third column of Table 1 are considered, the basic

reproduction number is computed as R0 = 7.07 > 1. In this case, the endemic equilibrium E1

is globally asymptotically stable, indicating that the virus persists in the host and the infection

evolves into a chronic state. According to Theorem 4, the solution of System (1) converges to

E1, as illustrated in Figs. 8–14.

FIGURE 8. Stable inclination of plots towards the IE E1 for T using distinct

values of α related to System (1).
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FIGURE 9. Stable inclination of plots towards the IE E1 for I1 using distinct

values of α related to System (1).

FIGURE 10. Stable inclination of plots towards the IE E1 for I2 using distinct

values of α related to System (1).

FIGURE 11. Stable inclination of plots towards the IE E1 for I3 using distinct

values of α related to System (1).
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FIGURE 12. Stable inclination of plots towards the IE E1 for L using distinct

values of α related to System (1).

FIGURE 13. Stable inclination of plots towards the IE E1 for VI using distinct

values of α related to System (1).

FIGURE 14. Stable inclination of plots towards the IE E1 for VNI using distinct

values of α related to System (1).
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TABLE 1. Parameter values used in numerical simulations

Parameters R0 < 1 R0 > 1 Units

s 10.0 10.0 cells·day−1

d 0.01 0.01 day−1

β 0.001 0.001 virion−1·day−1

d1 0.1 0.2 day−1

k1 0.2 0.3 day−1

k2 0.05 0.1 day−1

p 0.1 0.05 dimensionless

δ 0.1 0.5 day−1

d3 0.05 0.2 day−1

dL 0.01 0.002 day−1

a 0.01 0.003 day−1

Nδ 50.0 80.0 virions·day−1

c 2.0 3.0 day−1

εRT 0.6 0.2 dimensionless

εII 0.5 0.1 dimensionless

εPI 0.7 0.3 dimensionless

TABLE 2. Viral loads for different values of α

α

R0 < 1 R0 > 1

VI VNI VI VNI

0.7 866.654011 371.345382 866.65 371.35

0.8 938.659662 402.240109 938.66 402.24

0.9 1020.019972 437.134412 1020.02 437.13

1.0 1112.011758 476.576468 1112.01 476.58
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We compare the peaks of the viral loads VI and VNI for different values of α , as reported in

Table 2. The results indicate that both viral loads increase as α increases. Larger values of α

reduce memory effects in the system, leading to higher infectious and non-infectious viral loads.

This highlights the crucial role of memory effects in moderating viral replication dynamics.

5. CONCLUSION

In this parer, we have proposed a fractional HIV infected model with seven main compart-

ments that are target host cells, infectious cells that have finished the process of reverse tran-

scription, infected cells which can produce new infectious viruses, infected cells that fail the

DNA integration, latently infected cells, non-infectious viral particles owning the efficacy of

protease inhibitors, and infectious viral particles. We used specific incidence rate of type Bi-

linear as functional response. We derived one threshold parameter, the primary infection repro-

ductive number R0 . Under defined presumptions, it is shown that the proposed model has a

bounded and nonnegative response as desired in any population dynamics. By using stability

analysis of Caputo fractional derivative order system, we have proved that if the primary repro-

ductive number R0 ≤ 1, then the uninfected steady state is GAS for all α ∈ (0,1]. consequently

the viruses are unable to invade the target cells and be cleared. Hence, using antiviral drug

treatment can control and prevent the infection. If 1 < R0, then the E1 is GAS. In this stage,

viruses have strong ability to invade the host and weaken the immune system. To stop replicat-

ing the viruses in the body, HIV medicines and medical devices are essential approaches to fight

HIV. Based on the above theoretical analysis, we realize that the global dynamics of the model

are completely determined by computations of the reproductive number R0. Furthermore, we

observe that the fractional α does not affect on our model related to global dynamics, but it can

affect the time for reaching the steady states (see the figures).
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