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Abstract. For several decades researchers have been studying global dynamics of viral infection models to prevent
wide outbreak of scattered virus both in population and vivo such as Dengue fever, SARS-COV2, HRSV, and
immunodeficiency diseases. In this paper, our main aim is obtaining sufficient conditions for the global stability
of equilibria of a Caputo fractional derivative order system with general incidence functional response by using
Lyapunov’s method and LaSalle’s invariance principle. We prove the global stability of stationary points by the
values of the basic reproduction number (Ry) and we consider this threshold as a strong index for our sensitivity
analysis. We confirm theoretical results through numerical simulations.
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1. INTRODUCTION

Fractional calculus has many use in engineering and medical sciences such as time-fractional
vibration equations (TFVEs) especially for large membrane [4, 12, 16], and epidemic models
[5, 14, 20]. Fractional derivatives (FD) have high efficacy in modeling biological infections,
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real adaptive systems, and cure and control theories. Clearly, infected mathematical models
have biological importance to study short and long dynamics of invading viruses such as HIV,
HBV, HCV, SARS-COV2,...[13, 18, 3,7, 11, 15] as disturbing factors in vivo. many researchers
have modeled HIV infection both in population and cellular cases to get better understanding
of virus proliferations[9, 11, 19]. As general incidence rate concludes vast range of cases in
modeling the viral infections [1, 6], we proposed a Caputo FDE multi-stage model due to DNA
formation and integration process in a copied infected cell. Moreover, HIV drug treatments
appeared through three inhibitors to analyze HIV progress completely. Non-local memory-
dependent trait of Caputo fractional operator will content us about considered past scenario and
optimality [2, 10]. To get the desire, the next section presents some preliminaries, our model
formulation, determined the threshold parameter as basic reproduction number. Basically, this
threshold alarms us to take effective approaches after well recognition such as getting highly ac-
tive antiretroviral therapy (HAART) diet and HIV medicines and services to direct HIV patients
on time. To continue, we set equilibria of our fractional model, and discussed well-posedness of
solutions. Section 3 establishes the global stability of the equilibria which has vital importance
in facing to chaotic system to minimize damaging immune system and AIDS pathogenesis de-
velopement. Moreover, to prevent HIV transmission from mother to child during pregnancy or
sex partner. To examine the robustness of the model, in section 4 we use basic reproduction
number as a sensitive index and present numerical simulations for various orders of derivative

to demonstrate the efficacy of analytical outcomes. Finally section 5 draws some deductions.

2. MODEL FORMULATION AND PRELIMINARY RESULTS

In this section, we introduce a fractional-order viral infection model formulated using the
Caputo fractional derivative. The model aims to describe the interactions between uninfected
target cells, infected cells at different stages of infection, and viral particles.

We begin by defining the state variables of the model. The variable 7'(¢) denotes the popula-
tion of uninfected target cells. The variables Iy (), I>(¢), and I3(¢) represent infected cells that
have completed reverse transcription, productively infected cells, and infected cells with failed
DNA integration, respectively. The variable L(r) denotes the population of latently infected

cells.The quantities V;(¢) and Viy;(z) correspond to infectious and non-infectious viral particles.
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Next, we describe the parameters governing the biological processes involved. The parameter
s represents the production rate of uninfected cells, while d and d; denote the natural death
rates of uninfected cells and /;-infected cells, respectively. The parameters k; and k; describe
the transition rates from /; to /> and /3. The parameter p denotes the fraction of infected cells
entering latency. The parameters 0, d3, and d represent the death rates of productively infected
cells, -infected cells, and latently infected cells, respectively, whereas a is the activation rate
of latently infected cells. The quantity N denotes the rate of viral production per infected
cell, and c is the viral clearance rate. Finally, €rr, &7, and €p; denote the efficacies of reverse
transcriptase, integrase, and protease inhibitors, respectively.

To account for the infection mechanism, we incorporate a general incidence function. The
function f(7(¢),Vi(t)) represents a general incidence rate describing the interaction between
uninfected target cells and infectious viral particles. This general formulation allows for a wide
class of nonlinear infection mechanisms. Throughout this work, the incidence function f (T, V)

is assumed to be continuously differentiable and to satisfy
f(0,V;) = f(T,0) =0, f(T,V;)>O0forall T >0, V; >0,

and to be non-decreasing with respect to both arguments.
Under the above assumptions, the dynamics of the model are governed by the following

fractional-order system:

.

DT (1) = s—dT(t) — (1 — exr) F (T(2). Vi(1)) Vi(0),

D1y (1) = (1 — ey ) (T(6).Vi(0)) Vi(e) —daFy (1) — (1 — enka i (1) — kol ().
DOhy(t) = (1 p)(1—en)kals (1) — b (1) + aL (o).

(D) Dal3(t) = koI, (t) — d313(1),

DOL(t) = p(1 — emki i (1) — dLL(t) — aL(t),

DaVI(l‘) = (1 — 8p1)N6[2(t) — CV[(I),

\D(XVNI(Z‘) = €P1N512(t) — CVNI(I).
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The system (1) is supplemented with nonnegative initial conditions:

Vi(0) =Vio >0, Vni(0)=Vnio>0.

Since the model is formulated in the sense of the Caputo fractional derivative, only classical

initial conditions are required.

2.1. Well-posedness.

Theorem 1. All solutions of System (1) with non-negative initial conditions exist uniquely for

all t > 0 and remain bounded and non-negative.

Proof. Obviously, the dynamics of the Model (1) can be studied without considering I3 and Vy;

equations so for the following system we have

D*T(t) = s—puT—(1—err)f(T(r),V2(r)) Vi(r),

DL (1) = (1—erp)f(T(t),Vi(r)) Vi(t) —dily — (1 — &g )kily — ko,
(2) D°L(t) = (1—p)(1—¢gp)kid; —Sh+al,

DYL(t) = p(1—gyp)kily —diL—aL,

L D(XV[(Z‘) = (1—8p1)N512—CV1.

Since

DT (t)|;_y=5>0,

DL (1)), _o = (1—err) f(T(1),Vi(1)) Vi(t), forallT,V; >0,
Dalz(t)‘h:o =(1—p)(1 —gyq)kiy +aL, foralll},L >0,
DaL(t)‘L:O = p(l — 8]])k111, forall I} > 0,

D*Vi(t)|,,_o = (1 —ep)NSL, forall b >0,
it follows that the solutions of the System (2) remain nonnegative for all # > 0.

Now consider the following function:

1

M) =T(0)+ 1)+ b0 +L0 + 53—y

V[(l‘).
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‘We have

C

mvl(t) <s—CM(1),

DaM(l‘) :S—[.LlT(t) — (d] —I—kz)ll (l‘) — glz(t) —dLL(l‘) —

where C = min{ul, dy +ky, g, dr, C} .

Hence,

limsupM(r) < <2
oo ¢

Therefore, T'(¢),1;(t),12(t),L(t),Vi(¢) are finally bounded.
Through summing up the equations of the System (2) and multiplying the both sides by et (0)

we have
set' = DOT (t)et ® 4 wiT(t)ett ) + po, (t)e“l([) + (dy + k211 (l‘)e“l(’) +D%L(t)e! (1)
+8L(1)eM W 4 DOL(1) e )+ dpL(r)et ).
Through integrating simultaneously on both sides of the equations we have
/O st 0 g — /0 t {DT (1)t 4y T (x)ek )} d+ / t {DH1(x)e ) + (i + ko) (x)et )} dx
+ / { DD ) 4 8D ) ) drt / {DPL)e ) +dy L(x)e )} dx.
Hence,

ui(em(l) — 1) =T@)MO +1,(0)eM O 4 L (1) 4 L)t ) — Ty — g — by — Ly
1

t 1
— (1 — (dy +k2)) / I ()t O dx — (1 — 8) / B(x)et ) dx
0 0
t
—(,ul—dL)/ L(x)eM Wy,
0

Through multiplying the both sides of the equation by e #1() we have

ui(l —e MY =T@)+ L (1) + L)+ L(t) — (Ty — 1o — Iy — Loe M)
1

t
_(Hl_(d1+k2))/ Il(x) (x— t),uldx_ “1 / 12 x t#ldx
0
t
—(y —dy) / L(x)e™ 0t gy
0
According to Lemma 3.3 in [15] , we have

di+ ko

o d
— > limsupT'(¢t) + limsup/; (t) + — limsup Ir(t) + —LlimsupL(t),

Ui e R M1 t—too U1 t—s+oo
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d+k 0 d
S5 > liminf 7' (¢) 4+ 1 liminf/, (¢) + —liminfh(r) + oL liminfL(t).
Hi t— o0 Hp t—te My t—+o0 Wy t—eo

Through subtracting we have

dy+k
0> limsup7(¢) — liminf 7' (r) + e (limsuph (1) —}imillfll (t))
— 5 +too

{—too I—+eo i f—oo

+ 9 <limsup12(t) - }igiff[ﬁt)) + ! <lim supL(r) — 1iminfL(t)> :

M1\ t—+oo M1\ t—+e0 I—ee

Then,
limsup7(¢) = liminf7(¢), limsupl;(¢) = liminfl(¢),

t—>+too I—>oo t—>+oo I—>oo

limsuplh(t) = ltimJirnflz(t), limsup L(7) = liminfL(z).
— o0

f—oo f—oo [—roo

Hence, the limit of 7'(¢),1;(¢),1>(¢),L(t) exist when t — oo.

Clearly,
t
W@%z%wﬂﬁﬂl—aﬂNé/b@MW”%n
0
Then,
1 —¢epNO
limsupV; (1) < wlimsuplz(t),
f—>—oo c t—+oo0
1 —¢epNS
liminf V() < SN0 v (o).
f—>+oo c I—rtoo

Through using the quality above, we get

limsup V;(¢) —tlir_n>£zlfV1(t) <0.

f—too
Thus,
imsupVi() = i)
Hence, the limit of V;(#) exists when 1 — co. O

2.2. Equilibria and threshold parameters. We now investigate the existence of equilibria

of system (2) and introduce the basic reproduction number Ry.

Proposition 1. System (2) always admits an infection-free equilibrium given by

Eo— (i,o,o,o,o).
M1
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Proof. Setting
D*T = D%l =D%L =D*L=D%V; =0
in system (2) and assuming the absence of infection, that is, I} = I, = L = V; = 0, the first
equation reduces to
0=s—mT,
which yields T = i Hence, the infection-free equilibrium Ej exists for all parameter values.

O

We now seek an endemic equilibrium E; corresponding to the persistence of infection, for
which V;* # 0.

At equilibrium, setting D*I; = 0 in system (2) gives
(1—err) f(T*, Vi)V = (di + (1 — &nky + ko) I,

which implies
" S—‘LLIT>|<
Il - .
di+ (1 — &)k + k2

From the equilibrium equations D*I, = 0 and D*L = 0, we obtain

(1 —emki(s—mT")(ap+ (1 —p)(a+dL))
5(a+dL) (d] + (1 — 8]1)]{1 —|—k2) ’

I =

and

. PU—enki(s—mT?)
(a —f—dL) (dl + (1 — 8]1)](1 +k2)'

Moreover, setting D*V; = 0 yields

1 —é&p)NOL;
VI*:( PNOL
C

Substituting the above expressions into the equilibrium equation D*T = 0 leads to the scalar

equation

(1 —eRr>f(T*, (1 —gp)N(1 — &k(s — T")(ap + (1 —p)(a+dL))>

(d] + (1 — 8[1)k1 +k2)c(a+dL)

( (di+ (1 — &)kt +ky)c(a+dy) ) _o
(1—epl)N(l—811)k1(ap—|—(1—p)(a+dL)) ’

which implicitly defines 7*.
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Linearizing system (2) around the infection-free equilibrium Ey and applying the next-
generation matrix method, the basic reproduction number is given by
(1~ er)f (5:0) (1~ ep)N(1 — el (ap+ (1 = p)(a-+dp))
(dy + (1 — &)k +ka)c(a+dy) .

If Rp > 1, the above scalar equation admits a unique solution

T € (0,i> ,
M1

which guarantees the existence of a unique endemic equilibrium

Ry =

Ey = (T* I}, I}, L*,V}).

The above analysis leads to the following result, which summarizes the existence of equilibria

of system (2).

Theorem 2. If Ry < 1, system (2) admits only the infection-free equilibrium Ey. If Ry > 1,

system (2) admits a unique endemic equilibrium Ej.

Remark 1. Theorem 2 highlights the threshold role of the basic reproduction number Ry. When
Ry < 1, the infection dies out and only the infection-free equilibrium exists, whereas the condi-
tion Ry > 1 ensures the persistence of the infection through the emergence of a unique endemic

equilibrium.
3. GLOBAL DYNAMICS

Clearly, the corresponding ordinary differential equations (ODEs) of System (2) is given by

3) = f(u),
7| ' s—dT — (1 —egr) f(T(0),Vi(1)Vi 1) '
I (1= err) F(T (), Vi(t))Vi(t) —di ]y — (1 — &1)k1 ]y — kol
where u = | [, | and f(u) = (1—=p)(1 —gq)kil; — 8L +aL
L p(1 — &)k Iy —dp L — al
Vi (1—ep1)NSL —cVy |

Hence, Systém-(2) can be written as

Di'u= f(u),
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where D is the fractional derivative in the Caputo sense of order o € (0, 1]. For o = 1, we get

the ODE Model (3).
The Jacobian matrix of reduced Model (2) at Ej is given by
B 0 0 0 —(1-en)f(;.0)]
0 —(di+(1—en)k +k) 0 0 (1_8RT)f(L%1’O>
J=10 (1—=p)(1 — &)k ) a 0
0 p(1 —en)k; 0 —a—dp, 0
| 0 0 (1—€p)NS 0 —c ]
Obviously, it has an eigenvalue A = — 1, then consider
4) Y(A) = A 46143+ baA? 4 b3A 4+ by =0

As
v(0) =bg = (di+ (1 — &)k +k2)cd S (1 — Ry)
If Ry > 1, we have
¥(0) <0,
and
)=+

Thus, (4) has at least one positive eigenvalue. Hence, Ey is unstable if Ry > 1.
Theorem 3. If Ry < 1, then Ey is globally asymptotically stable.

Proof. We define Lyapunov functional as follows

T f(Tp,0) d(di+ (1 —g)ky + k)
m S50 (1—enky <ap+(1 - p)d>
a(dy+ (1 —gn)k; + ko) L+ d(di+ (1 — gk + k)

(1 — 8]])](1 <ap + (1 —p)d) (1 — SPI)N(l — 8]])](1 (ap —+ (1 —p)d>

Lo(u)=T —Ty—

dt+15 +

143

Vi.

Based on the results of [17], we deduce that Ly is a Lyapunov functional at Ey when Ry < 1.

Moreover, we have

D¥Lo(u) < VLo(u).f(u).



10 MAROUANE MAHROUF, FERESHTEH KESHAVARZ

By using Theorem 1 (i) in [8], we conclude that L is also a Lyapunov functional for FDE

Model (2) at Ey when Ry < 1. Therefore, E is globally asymptotically stable when Ry <1. [
Theorem 4. If 1 < Ry, then Ey is globally asymptotically stable.

Proof. We consider the following Lyapunov functional

aa”L+1—p>(1—811)k1 —_—
Ly(u) = ( e (T—T* — TMdr)
(di + (1 —en)ki +k2) - f(T, V)

(%—f— 1 —p) (1 —811)](1

I L
+ LI —I*ln—*) + (12 I —I*ln—*)
(di + (1 —e)ky +k2) < SR S &

a L 1 Vi
L-L—L'in—= )4+ —— (v,—vi—vrinL).
a+dL< "L*)+N(1—sp,)( =V =M ”V,*)

By means of [17], we get that L is a Lyapunov functional at £y when Ry > 1. Furthermore, we

_|_

have

D¥Lyi(u) < VL (u).f(u).
By applying Theorem 1 (i) of [8], we deduce that L is also a Lyapunov functional for FDE
Model (2) at E; when Ry > 1. Thus, E| is globally asymptotically stable when Ry > 1. ]

4. NUMERICAL SIMULATIONS AND DISCUSSION

In this section, we present numerical simulations to illustrate the theoretical results. We
consider several values of the fractional order, namely o@ = 0.7,0.8,0.9, and 1, and we use the
parameter values listed in Table 1.

When the parameter values given in the second column of Table 1 are adopted, the basic re-
production number is computed as Ry = 0.05 < 1. In this case, System (1) admits the infection-
free equilibrium (IFE) Ey. According to Theorem 3, the solution of System (1) converges to
Ey (see Figs. 1-7). In particular, Fig. 1 shows that the population of uninfected cells increases,
whereas the densities of the infected cell populations and viral loads decrease significantly and

tend to zero. Consequently, the virus is cleared from the host and the infection is eliminated.
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When the parameter values reported in the third column of Table 1 are considered, the basic
reproduction number is computed as Ry = 7.07 > 1. In this case, the endemic equilibrium E;
is globally asymptotically stable, indicating that the virus persists in the host and the infection
evolves into a chronic state. According to Theorem 4, the solution of System (1) converges to

E1, as illustrated in Figs. 8—14.
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FIGURE 8. Stable inclination of plots towards the IE E; for T using distinct

values of « related to System (1).
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TABLE 1. Parameter values used in numerical simulations

Parameters Ry <1 Ro>1 Units
s 10.0 10.0 cells-day !
d 0.01 0.01 day~!
B 0.001 0.001 virion~!-day~!
d; 0.1 0.2 day~!
ki 0.2 0.3 day~!
k> 0.05 0.1 day~!
p 0.1 0.05 dimensionless
0 0.1 0.5 day~!
ds 0.05 0.2 day~!
dy 0.01 0.002 day~!
a 0.01 0.003 day~!
N& 50.0 80.0 virions-day !
c 2.0 3.0 day~!
ERT 0.6 0.2 dimensionless
&1 0.5 0.1 dimensionless
Epy 0.7 0.3 dimensionless
TABLE 2. Viral loads for different values of o
Ro<1 Ro>1
o
Vi Vi Vi Vi
0.7 866.654011 371.345382 866.65 371.35
0.8 938.659662 402.240109 938.66 402.24
0.9 1020.019972 437.134412 1020.02 437.13
1.0 1112.011758 476.576468 1112.01 476.58
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We compare the peaks of the viral loads V; and Vy; for different values of o, as reported in
Table 2. The results indicate that both viral loads increase as & increases. Larger values of o
reduce memory effects in the system, leading to higher infectious and non-infectious viral loads.

This highlights the crucial role of memory effects in moderating viral replication dynamics.

5. CONCLUSION

In this parer, we have proposed a fractional HIV infected model with seven main compart-
ments that are target host cells, infectious cells that have finished the process of reverse tran-
scription, infected cells which can produce new infectious viruses, infected cells that fail the
DNA integration, latently infected cells, non-infectious viral particles owning the efficacy of
protease inhibitors, and infectious viral particles. We used specific incidence rate of type Bi-
linear as functional response. We derived one threshold parameter, the primary infection repro-
ductive number Ry . Under defined presumptions, it is shown that the proposed model has a
bounded and nonnegative response as desired in any population dynamics. By using stability
analysis of Caputo fractional derivative order system, we have proved that if the primary repro-
ductive number Ry < 1, then the uninfected steady state is GAS for all @ € (0, 1]. consequently
the viruses are unable to invade the target cells and be cleared. Hence, using antiviral drug
treatment can control and prevent the infection. If 1 < Ry, then the E; is GAS. In this stage,
viruses have strong ability to invade the host and weaken the immune system. To stop replicat-
ing the viruses in the body, HIV medicines and medical devices are essential approaches to fight
HIV. Based on the above theoretical analysis, we realize that the global dynamics of the model
are completely determined by computations of the reproductive number Ry. Furthermore, we
observe that the fractional o does not affect on our model related to global dynamics, but it can

affect the time for reaching the steady states (see the figures).
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