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Abstract: In this article our aim to introduce some new I- convergent sequence spaces of fuzzy real numbers 

defined by sequence of modulus functions and studies some topological and algebraic properties. Also we 

establish some inclusion relations. 
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1. INTRODUCTION 
          The notion of fuzzy sets was introduced by Zadeh [16]. After that many authors have 

studied and generalized this notion in many ways, due to the potential of the introduced 

notion. Also it has wide range of applications in almost all the branches of studied in 

particular science, where mathematics is used. It attracted many workers to introduce 

different types of fuzzy sequence spaces.  

         Bounded and convergent sequences of fuzzy numbers were studied by Matloka [8]. 

Later on sequences of fuzzy numbers have been studied by Kaleva and Seikkala [2], Tripathy 

and Sarma ([13], [14]) and many others. 
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            I-convergence of real valued sequence was studied at the initial stage by Kostyrko, 

Šalát and Wilczyński [4] which generalizes and unifies different notions of convergence of 

sequences. The notion was further studied by Šalát, Tripathy and Ziman [9]. 

       Let X  be a non-empty set, then a non-void class I ⊆ 2X (power set of X ) is called an ideal 

if I is additive (i.e. A, B ∈ I ⇒ A∪B∈I) and hereditary (i.e. A∈I and B⊆ A⇒ B∈I). An ideal I 

⊆ 2X  is said to be non-trivial if  I ≠ 2X . A non-trivial ideal I is said to be admissible if I 

contains every finite subset of N. A non-trivial ideal I is said to be maximal if there does not 

exist any non-trivial ideal   J ≠ I containing I as a subset. 

         Let X be a non-empty set, then a non-void class F ⊆ 2X  is said to be a filter in X if  φ ∉ 

F ;  A, B ∈ F ⇒ A ∩B∈F and  A∈F,  A ⊆  B ⇒ B∈F .  For any ideal I, there is a filter Ψ(I) 

corresponding to I, given by 

                                                    Ψ (I) = {K ⊆  N : N \ K ∈I }. 

   A modulus function f  is a function from [0,∞) to  [0,∞)  such that : 

                                        (i) 𝑓(𝑥) = 0  𝑖𝑓𝑓  𝑥 = 0 

  (ii) 𝑓(𝑥 + 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦) for all 𝑥, 𝑦 ≥ 0. 

                                       (iii) 𝑓 is increasing. 

                                       (iv) 𝑓 is continous from the right at 0 . 

              It follows that 𝑓 must be continous everywhere on [0,∞) and a modulus function 

may be bounded or not bounded . 

              Let X be a linear metric space. A function :p X R→ is called paranorm if 

(1)  ( ) 0p x ≥   for all x X∈  

(2)  ( ) ( )p x p x− =   for all x X∈  

(3) ( ) ( ) ( )p x y p x p y+ ≤ +   for all ,x y X∈  

(4) If ( )nλ be a sequence of scalars such that 0nλ → as n →∞    and ( )nx   be a sequence 

of vectors with ( ) 0np x x− →  as n →∞ , then ( ) 0n np x xλ λ− →  as n →∞ . 

A paranorm p for which ( ) 0 0p x x= ⇒ =  is called total paranorm and the pair ( , )X p is 

called a total paranormed space. 
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2. Definitions and Background 

         Let D denote the set of all closed and bounded intervals X = [ 1a , 1b ] on the real line R. 

For X = [ 1a , 1b ]∈ D and Y = [ 2a , 2b ]∈ D, define d( X, Y ) by 

                                            d( X, Y ) = max ( | 1a - 1b |, | 2a - 2b | ). 

It is known that (D, d ) is a complete metric space. 

         A fuzzy real number X is a fuzzy set on R  i.e. a mapping X : R → L(= [0,1] ) 

associating each real number  t  with its grade of membership X(t). 

         The α- level set α[ ]X  set of a fuzzy real number  X  for  0 < α  ≤ 1,  defined  as  

αX = { t ∈ R : X(t) ≥ α}. 

         A fuzzy real number X is called convex, if X(t) ≥ X(s) ∧ X(r) = min ( X(s), X(r) ), where 

s < t < r.  

         If there exists 0t  ∈ R such that X( 0t ) = 1, then the fuzzy real number X is called normal.  

         A fuzzy real number X is said to be upper semi- continuous if for each ε > 0, 1−X ([0, a 

+ ε )), for all a ∈ L  is open in the usual topology of  R.   

         The set of all upper semi-continuous, normal, convex fuzzy number is denoted by L (R). 

         The absolute value |X| of X ∈ L(R) is defined as (see for instance Kaleva and Seikkala 

[2] ) 

                               |X| (t)  =  max { X(t), X(-t) }  ,   if  t ≥0 

                                         =   0                              ,   if  t < 0 . 

         Let  d : L(R) × L(R) → R  be defined by 

                                     d ( X, Y ) = 
10

sup
≤≤α

 d ( αX , αY ). 

  Then  d  defines a metric on L(R). 

              A sequence X = (Xk) of fuzzy numbers is a function X from the set N of all positive 

integers into L(R). The fuzzy number Xk denotes the value of the function at k∈N and is 

called the k-th term or general term of the sequence. The set of all sequences of fuzzy 

numbers is denoted by Fw . 
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                A sequence (Xk) of fuzzy real numbers is said to be convergent to the fuzzy real 

number 0X , if for every ε >0, there exists 0k ∈ N such that d ( kX , 0X ) < ε  for all k  ≥ 0k .                    

                  A sequence space FE  is said to be symmetric if π( )( )kX ∈ FE , whenever (Xk)∈ FE , 

π is a permutation on N. 

         A sequence X = (Xk) of fuzzy numbers is said to be I- convergent if there exists a fuzzy 

number 0X  such that for all ε >0, the set {k∈N : d (Xk, 0X ) ≥ ε }∈I. We write  I-lim kX = 0X . 

         A sequence (Xk) of fuzzy numbers is said to be I- bounded if there exists a real number 

µ such that the set  {k∈N : d (Xk, 0 ) > µ}∈I.  

         If I = fI , then fI  convergence coincides with the usual convergence of fuzzy 

sequences. If I = dI ( Iδ ), then dI ( Iδ ) convergence coincides with statistical convergence 

(logarithmic  convergence) of fuzzy sequences. If I = uI , uI  convergence is said to be 

uniform convergence of fuzzy sequences. 

        Throughout )(FIc , ( )
0
I Fc and ( )I F

∞  denote the spaces of fuzzy real-valued  I- convergent,   

I-null and  I- bounded sequences respectively.  

         It is clear from the definitions that ( )
0
I Fc ⊂ )(FIc ⊂ ( )I F

∞ and the inclusions are proper.  

         It can be easily shown that ( )I F
∞  is complete with respect to the metric ρ  defined by    f 

( X, Y ) = 
n

sup d (Xk, kY )  , where X = (Xk) , Y = (Yk) ∈ ( )I F
∞ . 

Lemma 2.1:  

(a) The condition sup ( ) , 0k
k

f t t< ∞ > hold iff there exists 0 0t > such that 0sup ( ) .k
k

f t < ∞  

(b) The condition inf ( ) , 0kk
f t t> ∞ > hold iff there exists 0 0t > such that 0inf ( ) .kk

f t > ∞  

Lemma 2.2: Let (𝛼𝑘) and (𝛽𝑘) be sequences of real or complex numbers and (𝑝𝑘) be a 

bounded sequence of  positive real numbers , then  

|𝛼𝑘 + 𝛽𝑘|𝑝𝑘 ≤ 𝐷(|𝛼𝑘|𝑝𝑘 + |𝛽𝑘|𝑝𝑘) 

and                                                 |𝜆|𝑝𝑘 ≤ 𝑚𝑎𝑥(1, |𝜆|𝐻) 
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where    D = 𝑚𝑎𝑥(1, |𝜆|𝐻−1),𝐻 = 𝑠𝑢𝑝𝑝𝑘   , 𝜆 is any real or complex number. 

           Let ( )kf=F be a sequence of modulus functions, ( )kp p=  be a bounded sequence of 

strictly positive real numbers and ( )kv v= a sequence of positive real numbers. We define the 

following new sequence spaces as: 

         ( ) { }0 0( , , ) ( ) : lim ([ ( , )] ) 0, ( )k
FI pF

k k k kp v X X w I f d v X X forX L R Ic = = ∈ − = ∈ ∈F
 

         ( ) { }0
( , , ) ( ) : lim ([ ( ,0)] ) 0k

FI pF
k k k kp v X X w I f d v X Ic = = ∈ − = ∈F  

         ( ) { }( , , ) ( ) : sup ([ ( ,0)] )k
FI pF

k k k k
k

p v X X w I f d v X Il ∞
= = ∈ − < ∞ ∈F

 
Some special cases: 

a. If  ( )kf x x= =F  for all k, then we have 

            ( ) { }0 0( , ) ( ) : lim[ ( , )] 0, ( )k
FI pF

k k kp v X X w I d v X X forX L R Ic = = ∈ − = ∈ ∈
 

            ( ) { }0
( , ) ( ) : lim[ ( ,0)] 0k

FI pF
k k kp v X X w I d v X Ic = = ∈ − = ∈

 

            ( ) { }( , ) ( ) : sup[ ( ,0)] k
FI pF

k k k
k

p v X X w I d v X Il ∞
= = ∈ − < ∞ ∈

 

b. If  ( ) 1kp =  and  ( ) 1kv =  for all k N∈  , we have  

             ( ) { }0 0( ) ( ) : lim ([ ( , )]) 0, ( )
FI F

k k kX X w I f d X X forX L R Ic = = ∈ − = ∈ ∈F
 

             ( ) { }0
( ) ( ) : lim ([ ( ,0)]) 0

FI F
k k kX X w I f d X Ic = = ∈ − = ∈F

 

              ( ) { }( ) ( ) : sup ([ ( ,0)])
FI F

k k k
k

X X w I f d X Il ∞
= = ∈ − < ∞ ∈F

 

c. If ( )kf x x= =F  and ( ) 1kp =  for all k N∈ , then 

               ( ) { }0 0( ) ( ) : lim[ ( , )] 0, ( )
FI F

k k kv X X w I d v X X forX L R Ic = = ∈ − = ∈ ∈
 

               ( ) { }0
( ) ( ) : lim[ ( ,0)] 0

FI F
k k kv X X w I d v X Ic = = ∈ − = ∈

 

                ( ) { }( ) ( ) : sup[ ( ,0)]
FI F

k k k
k

v X X w I d v X Il ∞
= = ∈ − < ∞ ∈

 

d. If ( )kf x x= =F  , ( ) 1kp =  and  ( ) 1kv =  for all k N∈ , then 

               ( ) { }0 0( ) : lim[ ( , )] 0, ( )
FI F

k kX X w I d X X forX L R Ic = = ∈ − = ∈ ∈
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              ( ) { }0
( ) : lim[ ( ,0)] 0

FI F
k kX X w I d X Ic = = ∈ − = ∈

 
              

                ( ) { }( ) : sup[ ( ,0)]
FI F

k k
k

X X w I d X Il ∞
= = ∈ − < ∞ ∈

 

e. If ( ) 1kv =  for all k N∈  , then- 

                 ( ) { }0 0( , ) ( ) : lim ([ ( , )] ) 0, ( )k
FI pF

k k kp X X w I f d X X forX L R Ic = = ∈ − = ∈ ∈F
 

             ( ) { }0
( , ) ( ) : lim ([ ( ,0)] ) 0k

FI pF
k k kp X X w I f d X Ic = = ∈ − = ∈F

 

                 
( ) { }( , ) ( ) : sup ([ ( ,0)] )k

FI pF
k k k

k
p X X w I f d X Il ∞

= = ∈ − < ∞ ∈F  

 

3. Main results 

Theorem 3.1:  Let ( )kf=F be a sequence of modulus functions, then ( ) ( , , )
FI p vc F , 

( )0
( , , )

FI p vc F  and ( ) ( , , )
FI p vl ∞

F  are linear spaces. 

Proof: We will prove the result for  ( )0
( , , )

FI p vc F  . 

Let, ( )kX X= and  ( )0
( ) ( , , )

FI
kY Y p vc= ∈ F . For scalars , Cα β ∈ , there exist integers  aα  

and bβ  such that aαα ≤  and   bββ ≤ . Since ( )kf=F be a sequence of modulus functions, 

we have – 

             ([ ( ( ),0)] ) ( ) ([ ( ,0)] ) ( ) ([ ( ,0)] )k k kp p pH H
k k k k k k k k k kf d v X Y D a f d v X D b f d v Yα βα β+ ≤ +   

                                                           0→   as  k →∞ . 

Therefore, ( )0
( , , )

FI
k kX Y p vcα β+ ∈ F . This completes the proof. 

Theorem 3.2: Let ( )kf=F be a sequence of modulus functions, then  

( ) ( )( , ) ( , , ).
F FI Ip v p vl l∞ ∞

⊂ F   

Proof:  Let ( )( ) ( , )
FI

kX X p vl ∞
= ∈   , then we have sup ([ ( ,0)] ) .kp

k k k
k

I f d v X− < ∞ Let 

0ε > and choose a 0δ > with  0 1δ< <  such that ( )kf t ε<  for  0 1δ≤ ≤ . Thus  
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, ( ,0) , ( ,0)
sup ([ ( ,0)] ) sup ([ ( ,0)] ) sup ([ ( ,0)] )k k k

k k

p p p
k k k k k k k k k

k k d X k d X
I f d v X I f d v X I f d v X

δ δ≤ >
− = − + −  

                                           ( )sup ( ,0) kp

k k
k

M d v Xε
δ

 ≤ +       
by properties of modulus function. 

                                            < ∞  

Hence ( )( ) ( , , ).
FI

kX X p vl ∞
= ∈ F  This completes the proof. 

Theorem 3.3: Let ( )kf=F be a sequence of modulus functions and  
( )

lim 0k

t

f t
t

α
→∞

= >  , then  

( ) ( )( , , ) ( , ).
F FI Ip v p vl l∞ ∞

⊂F  

Proof: Let ( )( ) ( , , ).
FI

kX X p vl ∞
= ∈ F

 
By definition of α   , we have ( ) .kf t tα≥  for all 

0.t ≥  

Since  0α >  , we have 
( )kf t

t
α

≤ . 
 

Thus, 

                1sup([ ( ,0)] ) sup ([ ( ,0)] )k kp p
k k k k k

k k
I d v X I f d v X

α
− ≤ −  

                                                      < ∞  

This follows that  ( )( ) ( , ).
FI

kX X p vl ∞
= ∈

 
 

Theorem 3.4: Let ( )kf=F be a sequence of modulus functions, then  

( ) ( )0
( ) ( , , )

F FI Iv p vl c∞
⊂ F  if   lim ( ) 0kt

f t
→∞

=  for  0.t >  

Proof:  It is easy to prove, so omitted. 

Theorem 3.5:  Let ( )kf=F be a sequence of modulus functions and if  lim ( )kt
f t

→∞
= ∞  for  

0t >  then   ( ) ( )0
( , , ) ( ).

F FI Ip v vl c∞
⊂F

 

Proof: Let  lim ( )kt
f t

→∞
= ∞  for  0t > . If   ( )( ) ( , , ).

FI
kX X p vl ∞

= ∈ F
 

Then,        

                       ([ ( ,0)] )kp
k k kf d v X M≤ < ∞  for all  k . 

If possible let ( )0
( ) ( ).

FI
kX X vc= ∉  Then for some 0ε > there exists a positive integer 0k  

such that  ( ,0)k kd v X ε<  for 0 .k k≥  

Therefore,  
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( ) ([ ( ,0)] )kp
k k k kf f d v X Mε ≥ ≤  for  0 .k k≥  

This contradicts to our assumption that lim ( )kt
f t

→∞
= ∞  for  0t >  and hence 

( )0
( ) ( ).

FI
kX X vc= ∈

 

Theorem 3.6:  Let ( )kf=F be a sequence of modulus functions then ( )0
( , , )

FI p vc F  and 

( ) ( , , )
FI p vl ∞

F  are paranormed spaces with the paranorm  

                     { }
1

( ) sup [ ( ,0)] kp M
k k k

k
h X f d v X=  

Where  { }max 1,sup k
k

M p=
 

Proof:  Obviously  ( ) ( )h X h X= −  for all ( )0
( , , )

FIX p vc∈ F
     

It is trivial that 0k kv X =  for 0X = . 

Since 1kp
M

≤ , since  d  is  translation invariant and by using Minkowski’s inequality , we 

have  

              { } { } { }
1 1 1

[ ( ( ),0)] [ ( ,0)] [ ( ,0)]k k kp p pM M M
k k k k k k k k k kf d v X Y f d v X f d v Y+ ≤ +

 
 Hence, 
               ( ) ( ) ( )h X Y h X h Y+ ≤ +  
Finally to check the continuity of scalar multiplication, let λ be any scalar, by definition we 
have  

                          { }
1

( ) sup [ ( ,0)] ( )k

H
p M M

k k k
k

h X f d v X K h Xλλ λ= ≤   

 where sup k
k

H p= < ∞ . 

Where Kλ is positive integer such that Kλλ ≤ . Let 0λ →  for any fixed  X  with ( ) 0h X = . 

By definition for 1λ ≤ , we have  

                             

                                 { }sup [ ( ,0)] kp
k k k

k
f d v Xλ ε≤   for  ( ).n N ε>  
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Also for  1 n N≤ ≤   by taking λ  small enough, since kf  is continuous, we get  

                              

                                 { }sup [ ( ,0)] .kp
k k k

k
f d v Xλ ε≤  

Implies that ( ) 0h Xλ →  as 0λ → . This completes the proof. 

Theorem 3.7: If  I  is an admissible ideal then the spaces ( ) ( , )
FI pc F , ( )0

( , )
FI pc F  and 

( ) ( , )
FI pl ∞

F  are complete metric spaces under the metric –  

                              { }
1

( , ) sup [ ( , )] kp M
k k k

k
h X Y f d X Y=  

 
 Where  { }max 1,sup k

k
M p=  

Proof: It is easy to see that h is a metric on  ( ) ( , )
FI pc F  . To show completeness. 

Let ( )iX be a Cauchy sequence in ( ) ( , )
FI pc F   where  ( ) ( )i i

kX X= . 

Therefore for each 0ε >  there exists 0i N∈ such that  

                                 ( , )i jh X X ε<   for all 0,i j i≥ . 

i.e  

                                { }
1

sup [ ( , )] kpi j M
k k k

k
f d X X ε<      for all 0,i j i≥ . 

This means 

sup( [ ( , )] )kpi j
k k k

k
f d X X ε<      for all 0,i j i≥ . 

Since f is modulus function, so choosing suitable 1 0ε > and  we obtain  

                                  1( , )i j
k kd X X ε<      for  all 0,i j i≥    and for each k .        

i.e  

                   ( )i
kX  is a Cauchy sequence in ( )L R  for each  k . 

Keeping i fixed and letting  j →∞  , one can find that – 
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                                    sup( [ ( , )] )kpi
k k k

k
f d X X ε<       for all 0i i≥ . 

That means, 

                                 ( ),ih X X ε<      for all 0i i≥ . 

Next to show  ( ) ( , )
FIX pc∈ F  , for which the proof as follows: 

 Since ( ) ( ) ( , )
FIi

kX pc∈ F  for i N∈  , so for ,i j  , there exist , ( )i jL L L R∈  and ,i jk k N∈  

Such that  

                            sup( [ ( , )] )kpi i
k k

k
f d X L ε<        for all ik k≥ .    

And 

                            sup( [ ( , )] )kpj j
k k

k
f d X L ε<        for all jk k≥ .    

Now let  ( )0 max ,i jk k k= and  0,i j i≥ , we have  

                  sup( [ ( , )] ) sup( [ ( , )] )k kp pi j i i
k k k

k k
f d L L C f d L X≤

 

                                                  sup( [ ( , )] )kpi j
k k k

k
C f d X X+                                                     

                                                  sup( [ ( , )] )kpj j
k k

k
C f d X L+  

                                                   3Cε<   for all 0,i j i≥   and  0k k≥ . 

Hence ( )iL  is a Cauchy sequence in ( )L R . So there exists ( )L L R∈  such that  

                      iL L→  as  i →∞  

 

Now keeping i  fixed and letting   j →∞ , once can find  

                    sup( [ ( , )] ) 3kpi
k

k
f d L L Cε<  for all 0i i≥  and  0k k≥ . 

Therefore, 

                   0sup( [ ( , )] ) sup( [ ( , )] )k kp i p
k k k k k

k k
f d X L C f d X X≤

 

                                                     +sup( [ ( , )] )kpi i
k k

k
f d X L
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                                                     + 0sup( [ ( , )] )ki p
k

k
f d L L

 

                                                     2
12 3C Cε ε ε< + ≅    for all 0k k≥ . 

This implies that  ( ) ( ) ( , )
FI

kX X pc= ∈ F  . This completes the proof. 
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