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1. Introduction

Matthews [16] in 1994 introduced the notion of partial metric space which is a generalization

of usual metric space obtained by replacing the d(x,x)= 0 by d(x,x) ≤ d(x,y) for all x,y in

the definition of metric. He extended the Banach contraction principle from metric spaces to

partial metric spaces. Bakhtin [6] introduced the concept of b-metric spaces which was further

extended by Czerwick [8]. Later in the year 2013, Shukla [19] generalized both the concept

of b-metric and partial metric spaces by introducing the partial b-metric spaces. Many authors

([3,4,5,13,18]) worked on this notion of partial metric spaces and obtained fixed point results

for mappings satisfying different contractive conditions.
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2. Preliminaries

In 2012, Karapinar et al. [14] introduced the concept of quasi-partial metric spaces. The

definition of partial metric space is given as follows:

Definition 2.1. (Matthews, [16]) A partial metric on a nonempty set X is a function p : X×X→

R+ such that for all x,y,z ∈ X :

(P1) x = y⇔ p(x,x) = p(x,y) = p(y,y),

(P2) p(x,x)≤ p(x,y),

(P3) p(x,y) = p(y,x),

(P4) p(x,y)≤ p(x,z)+ p(z,y)− p(z,z).

A partial metric space is a pair (X , p) such that X is a non-empty set and p is a partial metric

on X . For a partial metric p on X , the function dp : X×X → R+ defined by

dp(x,y) = 2p(x,y)− p(x,x)− p(y,y) is a metric on X .

Definition 2.2. (Karapinar et al. [14]) A quasi-partial metric on non-empty set X is a function

q : X×X → R+ which satisfies:

(QPM1) If q(x,x) = q(x,y) = q(y,y), then x = y,

(QPM2) q(x,x)≤ q(x,y),

(QPM3) q(x,x)≤ q(y,x), and

(QPM4) q(x,y)+q(z,z)≤ q(x,z)+q(z,y)

for all x,y,z ∈ X .

A quasi-partial metric space is a pair (X ,q) such that X is a non-empty set and q is a quasi-

partial metric on X .

Let q be a quasi-partial metric on the set X . Then

dq(x,y) = q(x,y)+q(y,x)−q(x,x)−q(y,y) is a metric on X .

Lemma 2.1. (Karapinar et. al [14]) Let (X ,q) be a quasi-partial metric space. Let (X , pq)

be the corresponding partial metric space, and let (X ,dpq) be the corresponding metric space.

Then the following statements are equivalent:
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(1) (X ,q) is complete,

(2) (X , pq) is complete,

(3) (X ,dpq) is complete.

Moreover,

lim
n→∞

dpq(x,xn) = 0 ⇔ pq(x,x) = lim
n→∞

pq(x,xn) = lim
n,m→∞

pq(xn,xm)

⇔ q(x,x) = lim
n→∞

q(x,xn) = lim
n,m→∞

q(xn,xm)

= lim
n→∞

q(xn,x) = lim
n,m→∞

q(xm,xn) .

Definition 2.3. (Shukla [19]) A partial b-metric on a non-empty set X is a mapping pb :

X×X → R+ such that for some real number s≥ 1 and for all x,y,z ∈ X :

(Pb1) x = y if and only if pb(x,x) = pb(x,y) = pb(y,y),

(Pb2) pb(x,x)≤ pb(x,y),

(Pb3) pb(x,y) = pb(y,x),

(Pb4) pb(x,y)≤ s[pb(x,z)+ pb(z,y)]− pb(z,z).

A partial b-metric space is a pair (X , pb) such that X is a non-empty set and pb is a partial

b-metric on X . The number s is called the coefficient of (X , pb).

For simplicity, We denote X×X× .......X by Xk where k ∈ N and X is a non-empty set.

Definition 2.4. (Bhaskar and Lakshmikantham [7]) Let X be a non-empty set. An element

(x,y) ∈ X2 is a coupled fixed point of the mapping

F : X2→ X if F(x,y) = x and F(y,x) = y .

Definition 2.5. (Lakshmikantham and Ćirić [15]) An element (x,y) ∈ X2 is called

(1) a coupled coincidence point of the mappings F : X2→ X and g : X → X if F(x,y) = gx

and F(y,x) = gy; in this case (gx,gy) is called coupled point of coincidence of mappings

F and g;

(2) a common coupled fixed point of mappings F : X2→X and g : X→X if F(x,y) = gx= x

and F(y,x) = gy = y .
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Definition 2.6. (Samet and Vetro [18]) An element (x,y,z) ∈ X3 is a tripled fixed point of the

mapping

F : X3→ X if F(x,y,z) = x, F(y,z,x) = y and F(z,x,y) = z .

Definition 2.7. (Aydi et al. [15]) An element (x,y,z) ∈ X3 is called

(1) a tripled coincidence point of the mappings F : X3→ X and g : X → X if F(x,y,z) =

gx, F(y,z,x) = gy and F(z,x,y) = gz; in this case (gx,gy,gz) is called tripled point of

coincidence of mappings F and g;

(2) a common tripled fixed point of mappings F : X3→ X and g : X→ X if F(x,y,z) = gx =

x, F(y,z,x) = gy = y and F(z,x,y) = gz = z.

Definition 2.8. (Aydi et al. [1]) Let X be a non-empty set. The mappings F : X3→X and

g : X→X are w-compatible if gF(x,y,z) =F(gx,gy,gz) whenever gx=F(x,y,z), gy=F(y,z,x)

and gy = F(z,x,y).

Theorem 2.1. [9] Let q1 and q2 be two quasi partial metrics on X such that q2(x,y)≤ q1(x,y),

for all x,y ∈ X, and let F : X3→ X, g : X → X be two mappings. Suppose that there exists k1,

k2, k3, k4, and k5 in [0,1) with

k1 + k2 + k3 +2k4 + k5 < 1

such that the condition

q1(F(x,y,z),F(u,v,w))+q1(F(y,z,x),F(v,w,u))+q1(F(z,x,y),F(w,u,v))

≤ k1[q2(gx,gu)+q2(gy,gv)]+q2(gz,gw)

+ k2[q2(gx,F(x,y,z))+q2(gy,F(y,z,x))+q2(gz,F(z,x,y))]

+ k3[q2(gu,F(u,v,w))+q2(gv,F(v,w,u))+q2(gw,F(w,u,v))]

+ k4[q2(gx,F(u,v,w))+q2(gy,F(v,w,u))+q2(gz,F(w,u,v))]

+ k5[q2(gu,F(x,y,z))+q2(gv,F(y,z,x))+q2(gw,F(z,x,y))]

holds for all x,y,z,u,v,w ∈ X. Also, suppose we have the following hypotheses:

(1) F(X3)⊆ g(X).

(2) g(X) is complete subspace of X with respect to the quasi-partial metric q1.
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Then the mapping F and g have a tripled coincidence point (x,y,z) satisfying gx = F(x,y,z) =

F(y,z,x) = gy = F(z,x,y) = gz. Moreover, if F and g are w-compatible, then F and g have a

unique common tripled fixed point of the form (u,u,u).

Recently, Gupta and Gautam [11] has introduced quasi-partial b-metric spaces which is the

generalization of the concept of quasi-partial-metric spaces.

Definition 2.9. (Gupta and Gautam [11]) A quasi-partial b-metric on a non-empty set X is a

mapping qpb : X×X → R+ such that for some real number s≥ 1 and for all x,y,z ∈ X :

(QPb1) qpb(x,x) = qpb(x,y) = qpb(y,y)⇒ x = y,

(QPb2) qpb(x,x)≤ qpb(x,y),

(QPb3) qpb(x,x)≤ qpb(y,x),

(QPb4) qpb(x,y)≤ s[qpb(x,z)+qpb(z,y)]−qpb(z,z).

A quasi-partial b-metric space is a pair (X ,qpb) such that X is a non-empty set and qpb is a

quasi-partial b-metric on X .

Let qpb be a quasi-partial b-metric on the set X .Then

dqpb(x,y) = qpb(x,y)+qpb(y,x)−qpb(x,x)−qpb(y,y)

is a b-metric on X .

Lemma 2.2. (Gupta and Gautam [11]) Every quasi-partial metric space is a quasi-partial b-

metric space. But the converse need not be true.

Lemma 2.3. (Gupta and Gautam [11]) Let (X ,qpb) be a quasi-partial b-metric space. Then

the following hold:

(1) If qpb(x,y) = 0 then x = y,

(2) If x 6= y, then qpb(x,y)> 0 and qpb(y,x)> 0.

Definition 2.10. (Gupta and Gautam [11]) Let (X ,qpb) be a quasi-partial b-metric space.

Then:

(1) A sequence {xn} ⊂ X converges to x ∈ X if and only if

qpb(x,x) = lim
n→∞

qpb(x,xn) = lim
n→∞

qpb(xn,x)
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(2) A sequence {xn} ⊂ X is called a Cauchy sequence if and only if

lim
n,m→∞

qpb(xn,xm) and lim
n,m→∞

qpb(xm,xn) exist (and are finite).

(3) The quasi partial b-metric space (X ,qpb) is said to be complete if every Cauchy se-

quence {xn} ⊂ X converges with respect to τqpb to a point x ∈ X such that

qpb(x,x) = lim
n,m→∞

qpb(xm,xn) = lim
n,m→∞

qpb(xn,xm).

(4) A mapping f : X → X is said to be continuous at x0 ∈ X if, for every ε > 0, there exists

δ > 0 such that f (B(x0,δ ))⊂ B( f (x0),ε).

Recently, Aydi and Abbas [2] obtained some tripled coincidence and fixed point theorems in

partial metric space. Also, Shatanawi and Pitea [17] derived some common coupled fixed point

theorems for a pair of mappings in quasi-partial metric space. Gu and Wang [9,10] obtained

some results on coupled and tripled fixed-point theorems in two quasi-partial metric spaces.

Very recently, Gupta and Gautam [12] discussed some coupled fixed point results on quasi-

partial b-metric spaces. The aim of this paper is to explore some common tripled fixed-point

theorems for mappings defined on a set equipped with two quasi-partial b-metric spaces.

3. Main results

In this section we prove our main theorem which gives conditions for existence and unique-

ness of a tripled fixed point on quasi-partial b-metric spaces.

Theorem 3.1. Let qpb1 and qpb2 be two quasi-partial b-metrics on X such that qpb2(x,y) ≤

qpb1(x,y), for all x,y ∈ X. Let F : X3 → X, g : X → X be two mappings. Suppose that there

exist k1,k2,k3,k4, and k5 in [0,1) with

k1 + k2 + k3 +2sk4 + k5 <
1
s

(3.1)
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such that the condition

qpb1(F(x,y,z),F(u,v,w))+qpb1(F(y,z,x),F(v,w,u))+qpb1(F(z,x,y),F(w,u,v))

≤ k1[qpb2(gx,gu)+qpb2(gy,gv)]+qpb2(gz,gw)

+ k2[qpb2(gx,F(x,y,z))+qpb2(gy,F(y,z,x))+qpb2(gz,F(z,x,y))]

+ k3[qpb2(gu,F(u,v,w))+qpb2(gv,F(v,w,u))+qpb2(gw,F(w,v,u))]

+ k4[qpb2(gx,F(u,v,w))+qpb2(gy,F(v,w,u))+qpb2(gz,F(w,u,v))]

+ k5[qpb2(gu,F(x,y,z))+qpb2(gv,F(y,z,x))+qpb2(gw,F(z,x,y))]

(3.2)

holds for all x,y,z,u,v,w ∈ X. Also, suppose we have the following hypotheses:

(1) F(X3)⊂ g(X)

(2) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb1 .

Then the mappings F and g have a tripled coincidence point (x,y,z) satisfying gx =

F(x,y,z) = F(y,z,x) = gy = F(z,x,y) = gz. Moreover, if F and g are w-compatible,

then F and g have a unique common tripled fixed point of the form (u,u,u).

Proof. Let x0,y0,z0 ∈ X . Since F(X3) ⊂ g(X), we can choose x1,y1,z1 ∈ X such that gx1 =

F(x0,y0,z0), gy1 = F(y0,z0,x0) and gz1 = F(z0,x0,y0). Similarly, we can choose x2,y2,z2 ∈ X

such that gx2 = F(x1,y1,z1), gy2 = F(y1,z1,x1) and gz2 = F(z1,x1,y1).

Continuing in this manner we can construct three sequences {xn}, {yn} and {zn} in X such

that

gxn+1 = F(xn,yn,zn),gyn+1 = F(yn,zn,xn) and gzn+1 = F(zn,xn,yn) ∀ n≥ 0. (3.3)

Consider

qpb1(gxn,gxn+1)+qpb1(gyn,gyn+1)+qpb1(gzn,gzn+1)

= qpb1(F(xn−1,yn−1,zn−1),F(xn,yn,zn))

+qpb1(F(yn−1,zn−1,xn−1),F(yn,zn,xn))

+qpb1(F(zn−1,xn−1,yn−1),F(zn,xn,yn)).
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It follows from (3.2), (QPb4) and (QPb2) that,

qpb1(gxn,gxn+1)+qpb1(gyn,gyn+1)+qpb1(gzn,gzn+1)

≤ (k1 + k2)[qpb2(gxn−1,gxn)+qpb2(gyn−1,gyn)++qpb2(gzn−1,gzn)]

+ k3[qpb2(gxn,gxn+1)+qpb2(gyn,gyn+1)+qpb2(gzn,gzn+1)]

+ k4[qpb2(gxn−1,gxn+1)+qpb2(gyn−1,gyn+1)+qpb2(gzn−1,gzn+1)]

+ k5[qpb2(gxn,gxn)+qpb2(gyn,gyn)+qpb2(gzn,gzn)]

(3.4)

≤ (k1 + k2)[qpb2(gxn−1,gxn)+qpb2(gyn−1,gyn)+qpb2(gzn−1,gzn)]

+ k3[qpb2(gxn,gxn+1)+qpb2(gyn,gyn+1)qpb2(gzn,gzn+1)]

+ k4[s{qpb2(gxn−1,gxn)+qpb2(gxn,gxn+1)}−qpb2(gxn,gxn)]

+ sk4[{qpb2(gyn−1,gyn)+qpb2(gyn,gyn+1)}−qpb2(gyn,gyn)]

+ sk4[{qpb2(gzn−1,gzn)+qpb2(gzn,gzn+1)}−qpb2(gzn,gzn)]

+ k5[qpb2(gxn,gxn+1)+qpb2(gyn,gyn+1)+qpb2(gzn,gzn+1)]

≤ (k1 + k2 + sk4)[qpb1(gxn−1,gxn)+qpb1(gyn−1,gyn)+qpb1(gzn−1,gzn)]

+(k3 + sk4 + k5)[qpb1(gxn,gxn+1)+qpb1(gyn,gyn+1)+qpb1(gzn,gzn+1)],

(3.5)

which implies that

qpb1(gxn,gxn+1)+qpb1(gyn,gyn+1)+qpb1(gzn,gzn+1)

≤ k1 + k2 + sk4

1− k3− sk4− k5
[qpb1(gxn−1,gxn)+qpb1(gyn−1,gyn)+qpb1(gzn−1,gzn)].

Put k =
k1 + k2 + sk4

1− k3− sk4− k5
. Clearly, 0≤ k <

1
s
< 1. By repetition of inequality (3.4) n times we

get

qpb1(gxn,gxn+1)+qpb1(gyn,gyn+1)+qpb1(gzn,gzn+1)

≤ kn[qpb1(gx0,gx1)+qpb1(gy0,gy1)+qpb1(gz0,gz1)].
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Next, we shall prove that {gxn}, {gyn} and {gzn}are Cauchy sequences in g(X). For each n,m

∈ N, m > n, from (QPb4) and (3.5), we have

qpb1(gxn,gxm)+qpb1(gyn,gym)+qpb1(gzn,gzm)

≤
m−1

∑
i=n

sm−i · ki[qpb1(gx0,gx1)+qpb1(gy0,gy1)+qpb1(gz0,gz1)]

=
m−1

∑
i=n

(
k
s

)i

sm[qpb1(gx0,gx1)+qpb1(gy0,gy1)+qpb1(gz0,gz1)]

≤
∞

∑
i=n

(
k
s

)i

sm[qpb1(gx0,gx1)+qpb1(gy0,gy1)+qpb1(gz0,gz1)]

=

(
k
s

)n

(
1− k

s

) · sm[qpb1(gx0,gx1)+qpb1(gy0,gy1)+qpb1(gz0,gz1)].

(3.6)

Taking limit as n→ ∞ in (3.6) and keeping m fixed, we get

lim
n→∞

[qpb1(gxn,gxm)+qpb1(gyn,gym)+qpb1(gzn,gzm)]≤ 0.

But

lim
n→∞

[qpb1(gxn,gxm)+qpb1(gyn,gym)+qpb1(gzn,gzm)]≥ 0.

This gives

lim
n→∞

[qpb1(gxn,gxm)] = lim
n→∞

[qpb1(gyn,gym)] = lim
n→∞

[qpb1(gzn,gzm)] = 0.

Now taking limit as m→+∞, one has

lim
n,m→∞

qpb1(gxn,gxm) = lim
n,m→∞

qpb1(gyn,gym) = lim
n,m→∞

qpb1(gzn,gzm) = 0. (3.7)

Similarly, we can show that

lim
n,m→∞

qpb1(gxm,gxn) = 0 and lim
n,m→∞

qpb1(gzm,gzn) = 0. (3.8)

So, {gxn}, {gyn} and {gzn} are Cauchy sequences in (g(X),qpb1). Since (g(X),qpb1) is com-

plete, there exist gx,gy,gz ∈ g(X) such that {gxn}, {gyn} and {gzn} converges to gx, gy and gz
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with respect to τqpb1
, that is,

qpb1(gx,gx) = lim
n→∞

qpb1(gx,gxn) = lim
n→∞

qpb1(gxn,gx)

= lim
n,m→∞

qpb1(gxm,gxn) = lim
n,m→∞

qpb1(gxn,gxm),
(3.9)

qpb1(gy,gy) = lim
n→∞

qpb1(gy,gyn) = lim
n→∞

qpb1(gyn,gy)

= lim
n,m→∞

qpb1(gym,gyn) = lim
n,m→∞

qpb1(gyn,gym)and
(3.10)

qpb1(gz,gz) = lim
n→∞

qpb1(gz,gzn) = lim
n→∞

qpb1(gzn,gz)

= lim
n,m→∞

qpb1(gzm,gzn) = lim
n,m→∞

qpb1(gzn,gzm).
(3.11)

Combining (3.7)-(3.11), we obtain

qpb1(gx,gx) = lim
n→∞

qpb1(gx,gxn) = lim
n→∞

qpb1(gxn,gx)

= lim
n,m→∞

qpb1(gxm,gxn) = lim
n,m→∞

qpb1(gxn,gxm) = 0,
(3.12)

qpb1(gy,gy) = lim
n→∞

qpb1(gy,gyn) = lim
n→∞

qpb1(gyn,gy)

= lim
n,m→∞

qpb1(gym,gyn) = lim
n,m→∞

qpb1(gyn,gym) = 0
(3.13)

and

qpb1(gz,gz) = lim
n→∞

qpb1(gz,gzn) = lim
n→∞

qpb1(gzn,gz)

= lim
n,m→∞

qpb1(gzm,gzn) = lim
n,m→∞

qpb1(gzn,gzm) = 0.
(3.14)

By QPb4 , we have

qpb1(gxn+1,F(x,y,z))≤ s{qpb1(gxn+1,gx)+qpb1(gx,F(x,y,z))}−qpb1(gx,gx)

≤ s{qpb1(gxn+1,gx)+qpb1(gx,F(x,y,z))}

≤ s [qpb1(gxn+1,gx)+ s{qpb1(gx,gxn+1)

+ qpb1(gxn+1,F(x,y,z))}−qpb1(gxn+1,gxn+1)]

≤ s[qpb1(gxn+1,gx)]+ s2[qpb1(gx,gxn+1)]

+ s2[qpb1(gxn+1,F(x,y,z))].
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Taking limit as n→ ∞ in the above inequalities and using (3.14), we have

1
s

qpb1(gx,F(x,y,z))≤ lim
n→∞

qpb1(gxn+1,F(x,y,z))

≤ sqpb1(gx,F(x,y,z)).
(3.15)

Similarly using (3.15), one has

1
s

qpb1(gy,F(y,z,x))≤ lim
n→∞

qpb1(gyn+1,F(y,z,x))

≤ sqpb1(gy,F(y,z,x)).
(3.16)

and
1
s

qpb1(gz,F(z,x,y))≤ lim
n→∞

qpb1(gzn+1,F(z,x,y))

≤ sqpb1(gz,F(z,y,x)).
(3.17)

Now, we prove that F(x,y,z) = gx, F(y,z,x) = gy and F(z,x,y) = gz. In fact, it follows from

(3.1) and (3.2) that

qpb1(gxn+1,F(x,y,z))+qpb1(gyn+1,F(y,z,x))+qpb1(gzn+1,F(z,x,y))

= qpb1(F(xn,yn,zn),F(x,y,z))+qpb1(F(yn,zn,xn),F(y,z,x)

+qpb1(F(zn,xn,yn),F(z,y,x))

≤ k1[qpb2(gxn,gx)+qpb2(gyn,gy)+qpb2(gzn,gz)]

+ k2[qpb2(gxn,F(xn,yn,zn))+qpb2(gyn,F(yn,zn,xn))+qpb2(gzn,F(zn,xn,yn))]

+ k3[qpb2(gx,F(x,y,z))+qpb2(gy,F(y,z,x))+qpb2(gz,F(z,x,y))]

+ k4[qpb2(gxn,F(x,y,z))+qpb2(gyn,F(y,z,x))+qpb2(gzn,F(z,x,y))]

+ k5[qpb2(gx,F(xn,yn,zn))+qpb2(gy,F(yn,znxn))+qpb2(gz,F(zn,xn,yn))]

≤ k1[qpb1(gxn,gx)+qpb1(gyn,gy)+qpb1(gzn,gz)]

+ k2[qpb1(gxn,gxn+1)+qpb2(gyn,gyn+1)+qpb2(gzn,gzn+1)]

+ k3[qpb1(gx,F(x,y,z))+qpb1(gy,F(y,z,x))+qpb1(gz,F(z,x,y))]

+ k4[qpb1(gxn,F(x,y,z))+qpb1(gyn,F(y,z,x))+qpb1(gzn,F(z,x,y))]

+ k5[qpb1(gx,gxn+1)+qpb1(gy,gyn+1)+qpb1(gz,gzn+1)].
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Taking limit as n→ ∞ in the above inequality, using (3.12)-(3.17), we get

lim
n→∞

[qpb1(gxn+1,F(x,y,z))+qpb1(gyn+1,F(y,z,x))+qpb1(gzn+1,F(z,x,y))]

≤ lim
n→∞
{[k1(qpb1(gxn,gx)+qpb1(gyn,gy)+qpb1(gzn,gz)]

+ k2[qpb1(gxn,gxn+1)+qpb1(gyn,gyn+1)+qpb1(gzn,gzn+1)]

+ k3[qpb1(gx,F(x,y,z))+qpb1(gy,F(y,z,x))+qpb1(gz,F(z,x,y))]

+ k4[qpb1(gxn,F(x,y,z))+qpb1(gyn,F(y,z,x))+qpb1(gzn,F(z,x,y))]

+ k5[qpb1(gx,gxn+1)+qpb1(gy,gyn+1)+qpb1(gz,gzn+1)]}.

Therefore,

lim
n→∞

[qpb1(gxn+1,F(x,y,z))+qpb1(gyn+1,F(y,z,x))+qpb1(gzn+1,F(z,x,y))]

≤ k1[qpb1(gx,gx)+qpb1(gy,gy)+qpb1(gz,gz)]+ k2[qpb1(gx,gx)+qpb1(gy,gy)+qpb1(gz,gz)]

+ k3[qpb1(gx,F(x,y,z))+qpb1(gy,F(y,z,x))+qpb1(gz,F(z,x,y))]

+ lim
n→∞

k4[qpb1(gxn,F(x,y,z))+qpb1(gyn,F(y,z,x))+qpb1(gzn,F(z,x,y))]

+ k5[qpb1(gx,gx)+qpb1(gy,gy)+qpb1(gz,gz)]

= k3[qpb1(gx,F(x,y,z))+qpb1(gy,F(y,z,x))+qpb1(gz,F(z,x,y))]

+ lim
n→∞

k4[qpb1(gxn,F(x,y,z))+qpb1(gyn,F(y,z,x))+qpb1(gzn,F(z,x,y))].
(3.19)

By using (3.12)-(3.17), we get

lim
n→∞

[qpb1(gxn+1,F(x,y,z))+qpb1(gyn+1,F(y,z,x))+qpb1(gzn+1,F(z,x,y))]

≤ k3[qpb1(gx,F(x,y,z))+qpb1(gy,F(y,z,x))+qpb1(gz,F(z,x,y))]

+ k4 · s[qpb1(gx,F(x,y,z))+qpb1(gy,F(y,z,x))+qpb1(gz,F(z,x,y))]

= (k3 + sk4)[qpb1(gx,F(x,y,z))+qpb1(gy,F(y,z,x))+qpb1(gz,F(z,x,y))].
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And also

1
s
[qpb1(gx,F(x,y,z))+qpb1(gy,F(y,z,x))+qpb1(gz,F(z,x,y))]

≤ (k3 + sk4)[qpb1(gx,F(x,y,z))+qpb1(gy,F(y,z,x))+qpb1(gy,F(z,x,y))]

⇒
[

1
s
− k3− sk4

]
[qpb1(gx,F(x,y,z))+qpb1(gy,F(y,z,x))+qpb1(gz,F(z,x,y))]≤ 0.

(3.18)

Since k3 + sk4 <
1
s

. Thus it follows from (3.18) that

qpb1(gx,F(x,y,z)) = qpb1(gy,F(y,z,x)) = qpb1(gz,F(z,x,y)) = 0.

By Lemma 2.3, we get F(x,y,z) = gx, F(y,z,x) = gy and F(z,x,y) = gz. Hence, (gx,gy,gz) is

a tripled point of coincidence of mappings F and g.

Next, we will show that the tripled point of coincidence is unique. Suppose that (x′,y′,z′) ∈

X3 with F(x′,y′,z′) = gx′, F(y′,z′,x′) = gy′ and F(z′,x′,y′) = gz′.

Using (3.2), (3.14)-(3.16), and (QPb3), we obtain

qpb1(gx,gx′)+qpb1(gy,gy′)+qpb1(gz,gz′)

= qpb1(F(x,y,z),F(x′,y′,z′))+qpb1(F(y,z,x),F(y′,z′,x′)

+qpb1(F(z,x,y),F(z′,x′,y′))

≤ k1[qpb2(gx,gx′)+qpb2(gy,gy′)+qpb2(gz,gz′)]

+ k2[qpb2(gx,F(x,y,z))+qpb2(gy,F(y,z,x))+qpb2(gz,F(z,x,y))]

+ k3[qpb2(gx′,F(x′,y′,z′))+qpb2(gy′,F(y′,z′,x′))+qpb2(gz′,F(z′,x′,y′))]

+ k4[qpb2(gx,F(x′,y′,z′))+qpb2(gy,F(y′,z′,x′))+qpb2(gz,F(z′,y′,x′))]

+ k5[qpb2(gx′,F(x,y,z))+qpb2(gy′,F(y,z,x))+qpb2(gz′,F(z,y,x))]

= k1[qpb2(gx,gx′)+qpb2(gy,gy′)+qpb2(gz,gz′)]

+ k2[qpb2(gx,gx)+qpb2(gy,gy)+qpb2(gz,gz)]

+ k3[qpb2(gx′,gx′)+qpb2(gy′,gy′)+qpb2(gz′,gz′)]
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+ k4[qpb2(gx,gx′)+qpb2(gy,gy′)+qpb2(gz,gz′)]

+ k5[qpb2(gx′,gx)+qpb2(gy′,gy)+qpb2(gz′,gz)]

≤ (k1 + k4)[qpb1(gx,gx′)+qpb1(gy,gy′)+qpb1(gz,gz′)]

+ k2[qpb1(gx,gx)+qpb1(gy,gy)+qpb1(gz,gz)]

+ k3[qpb1(gx′,gx′)+qpb1(gy′,gy′)+qpb1(gz′,gz′)]

+ k5[qpb1(gx′,gx)+qpb1(gy′,gy)+qpb1(gz′,gz)]

≤ (k1 + k3 + k4)[qpb1(gx,gx′)+qpb1(gy,gy′)+qpb1(gz,gz′)]

+ k5[qpb1(gx′,gx)+qpb1(gy′,gy)+qpb1(gz′,gz)].

This implies that

qpb1(gx,gx′)+qpb1(gy,gy′)+qpb1(gz,gz′)

≤ k5

1− k1− k3− k4
[qpb1(gx′,gx)+qpb1(gy′,gy)+qpb1(gz′,gz)].

(3.19)

Similarly, we have

qpb1(gx′,gx)+qpb1(gy′,gy)+qpb1(gz′,gz)

≤ k5

1− k1− k3− k4
[qpb1(gx,gx′)+qpb1(gy,gy′)+qpb1(gz,gz′)].

(3.20)

Substituting (3.20) into (3.19), we obtain

qpb1(gx,gx′)+qpb1(gy,gy′)+qpb1(gz,gz′)

≤
(

k5

1− k1− k3− k4

)2

[qpb1(gx,gx′)+qpb1(gy,gy′)+qpb1(gz,gz′)].
(3.21)

Since
k5

1− k1− k3− k4
< 1, from (2.21), we must have

qpb1(gx,gx′) = qpb1(gy,gy′) = qpb1(gz,gz′) = 0.

By Lemma 2.3, we get gx = gx′, gy = gy′ and gz = gz′. This gives the uniqueness of the

tripled point of coincidence of F and g, that is, (gx,gy,gz).
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Next, we will show that gx = gy = gz. In fact, from (3.2), (3.14)-(3.16), we have

qpb1(gx,gy)+qpb1(gy,gz)+qpb1(gz,gx)

= qpb1(F(x,y,z),F(y,z,x))+qpb1(F(y,z,x),F(z,x,y))+qpb1(F(z,x,y),F(x,y,z))

≤ k1[qpb2(gx,gy)+qpb2(gy,gz)]+qpb2(gz,gx)]

+ k2[qpb2(gx,F(x,y,z))+qpb2(gy,F(y,z,x))+qpb2(gz,F(z,x,y))]

+ k3[qpb2(gy,F(y,z,x))+qpb2(gz,F(z,x,y))+qpb2(gx,F(x,y,z))]

+ k4[qpb2(gx,F(y,z,x))+qpb2(gy,F(z,x,y))+qpb2(gz,F(x,y,z))]

+ k5[qpb2(gy,F(x,y,z))+qpb2(gz,F(y,z,x))+qpb2(gx,F(z,x,y))]

= k1[qpb2(gx,gy)+qpb2(gy,gz)]+qpb2(gz,gx)]

+ k2[qpb2(gx,gx)+qpb2(gy,gy)+qpb2(gz,gz)]

+ k3[qpb2(gy,gy)+qpb2(gz,gz)+qpb2(gx,gx)]

+ k4[qpb2(gx,gy)+qpb2(gy,gz)+qpb2(gz,gx)]

+ k5[qpb2(gy,gx)+qpb2(gz,gy)+qpb2(gx,gz)]

≤ k1[qpb1(gx,gy)+qpb1(gy,gz)+qpb1(gz,gx)]

+ k2[qpb1(gx,gx)+qpb1(gy,gy)+qpb1(gz,gz)]

+ k3[qpb1(gy,gy)+qpb1(gz,gz)+qpb1(gx,gx)]

+ k4[qpb1(gx,gy)+qpb1(gy,gz)+qpb1(gz,gx)]

+ k5[qpb1(gy,gx)+qpb1(gz,gy)+qpb1(gx,gz)]

= (k1 + k4 + k5)[qpb1(gx,gy)+qpb1(gy,gz)+qpb1(gz,gx)].

(3.22)

Since k1 + k4 + k5 < 1 from (3.22) we have

qpb1(gx,gy) = qpb1(gy,gz) = qpb1(gz,gx) = 0.

By Lemma 2.3, we get gx = gy = gz.



16 N. BHATIA

Finally, assume that g and F are w-compatible. Let u= gx, then we have u= gx = F(x,y,z) =

gy = F(y,z,x) = gz = F(z,x,y), so that

gu = ggx = g(F(x,y,z)) = F(gx,gy,gz) = F(u,u,u). (3.23)

Consequently, (u,u,u) is a tripled coincidence point of F and g, and therefore (gu,gu,gu) is a

tripled point of coincidence of F and g, and by its uniqueness, we get gu = gx. Thus, we obtain

F(u,u,u) = gu = u. Therefore, (u,u,u) is the unique common tripled fixed point of F and g.

This completes the proof.

Corollary 3.1. Let qpb be a quasi-partial b-metrics on X, F : X3→ X, g : X → X be two map-

pings. Suppose that there exist k1,k2,k3,k4, and k5 in [0,1) with

k1 + k2 + k3 +2sk4 + k5 <
1
s

(3.1.1)

such that the condition

qpb(F(x,y,z),F(u,v,w))+qpb(F(y,z,x),F(v,w,u))+qpb(F(z,x,y),F(w,u,v))

≤ k1[qpb(gx,gu)+qpb(gy,gv)]+qpb2(gz,gw)

+ k2[qpb(gx,F(x,y,z))+qpb(gy,F(y,z,x))+qpb(gz,F(z,x,y))]

+ k3[qpb(gu,F(u,v,w))+qpb(gv,F(v,w,u))+qpb(gw,F(w,v,u))]

+ k4[qpb(gx,F(u,v,w))+qpb(gy,F(v,w,u))+qpb(gz,F(w,u,v))]

+ k5[qpb(gu,F(x,y,z))+qpb(gv,F(y,z,x))+qpb(gw,F(z,x,y))]

(3.1.2)

holds for all x,y,z,u,v,w ∈ X. Also, suppose we have the following hypotheses:

(1) F(X3)⊂ g(X)

(2) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb.

Then the mappings F and g have a tripled coincidence point (x,y,z) satisfying gx = F(x,y,z) =

F(y,z,x) = gy = F(z,x,y) = gz.

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed

point of the form (u,u,u).

Corollary 3.2. Let qpb1 and qpb2 be two quasi-partial b-metrics on X and qpb2(x,y)≤ qpb1(x,y),

for all x,y∈ X. Let F : X3→ X, g : X → X be two mappings. Suppose that there exist ai ∈ [0,1)
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(i = 1,2,3, . . . ,15) with

a1 +a2 +a3 +a4 +a5 +a6 +a7 +a8 +a9 +2s(a10 +a11 +a12)+a13 +a14 +a15 <
1
s

(3.2.1)

such that the condition

qpb1(F(x,y,z),F(u,v,w))+qpb1(F(y,z,x),F(v,w,u))+qpb1(F(z,x,y),F(w,u,v))

≤ a1qpb2(gx,gu)+a2qpb2(gy,gv)+a3qpb2(gz,gw)

+a4qpb2(gx,F(x,y,z))+a5qpb2(gy,F(y,z,x))+a6qpb2(gz,F(z,x,y))

+a7qpb2(gu,F(u,v,w))+a8qpb2(gv,F(v,w,u))++a9qpb2(gv,F(v,w,u))

+a10qpb2(gx,F(u,v,w))+a11qpb2(gy,F(v,w,u))+a12qpb2(gz,F(w,u,v))

+a13qpb2(gu,F(x,y))+a14qpb2(gv,F(y,z,x))+a15qpb2(gw,F(z,y,x))

(3.2.2)

holds for all x,y,z,u,v,w ∈ X. Also suppose we have the following hypotheses:

(1) F(X3)⊆ g(X)

(2) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb1 .

Then the mappings F and g have a tripled coincidence point (x,y,z) satisfying gx = F(x,y,z) =

F(y,z,x) = gy = F(z,x,y) = gz.

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed

point of the form (u,u,u).

Proof. Given x,y,z,u,v,w ∈ X , it follows from (3.2.2) that

qpb1(F(x,y,z),F(u,v,w))

≤ a1qpb2(gx,gu)+a2qpb2(gy,gv)+a3qpb2(gz,gw)

+a4qpb2(gx,F(x,y,z))+a5qpb2(gy,F(y,z,x))+a6qpb2(gz,F(z,x,y))

+a7qpb2(gu,F(u,v,w))+a8qpb2(gv,F(v,w,u))++a9qpb2(gv,F(v,w,u))

+a10qpb2(gx,F(u,v,w))+a11qpb2(gy,F(v,w,u))+a12qpb2(gz,F(w,u,v))

+a13qpb2(gu,F(x,y))+a14qpb2(gv,F(y,z,x))+a15qpb2(gw,F(z,y,x))

(3.2.3)



18 N. BHATIA

holds for all x,y,z,u,v,w ∈ X . Also suppose we have the following hypotheses: and

qpb1(F(y,z,x),F(v,w,u))

≤ a1qpb2(gy,gv)+a2qpb2(gz,gw)+a3qpb2(gx,gu)

+a4qpb2(gy,F(y,z,x))+a5qpb2(gz,F(z,x,y))+a6qpb2(gx,F(x,y,z))

+a7qpb2(gv,F(v,w,u))++a8qpb2(gw,F(v,w,u))+a9qpb2(gu,F(u,v,w))

+a10qpb2(gy,F(v,w,u))+a11qpb2(gz,F(w,u,v))+a12qpb2(gx,F(u,v,w))

+a13qpb2(gv,F(y,z,x))+a14qpb2(gw,F(z,y,x))+a15qpb2(gu,F(x,y))

(3.2.4)

holds for all x,y,z,u,v,w ∈ X . Also suppose we have the following hypotheses:

qpb1(F(z,x,y),F(w,u,v))

≤+a1qpb2(gz,gw)+a2qpb2(gx,gu)a3qpb2(gy,gv)

+a6qpb2(gy,F(y,z,x))+a4qpb2(gz,F(z,x,y))+a5qpb2(gx,F(x,y,z))

+a7qpb2(gw,F(w,u,v))+a8qpb2(gu,F(u,v,w))+a9qpb2(gv,F(v,w,u))

+a10qpb2(gz,F(w,u,v))+a11qpb2(gx,F(u,v,w))+a12qpb2(gy,F(v,w,u))

+a13qpb2(gw,F(z,y,x))+a14qpb2(gu,F(x,y))+a15qpb2(gv,F(y,z,x))

(3.2.5)

holds for all x,y,z,u,v,w ∈ X . Adding inequalities (3.2.3) and (3.2.4) to inequality (3.2.5), we

get

qpb1(F(x,y,z),F(u,v,w)))+qpb1(F(y,z,x),F(v,w,u))+qpb1(F(z,x,y),F(w,u,v))

≤ (a1 +a2 +a3)[qpb2(gx,gu)+qpb2(gy,gv)+qpb2(gz,gw)]

+(a4 +a5 +a6)[qpb2(gx,F(x,y,z))+qpb2(gy,F(y,z,x))+qpb2(gz,F(z,x,y))]

+(a7 +a8 +a9)[qpb2(gu,F(u,v,w))+qpb2(gv,F(v,w,u))+qpb2(gw,F(w,u,v))]

+(a10 +a11 +a12)[qpb2(gx,F(u,v,w))+qpb2(gy,F(v,w,u))+qpb2(gz,F(w,u,v))]

+(a13 +a14 +a15)[qpb2(gu,F(x,y,z))+qpb2(gv,F(y,z,x))+qpb2(gw,F(z,x,y))].

Therefore, letting a1 +a2 +a3 = k1, a4 +a5 +a6 = k2, a7 +a8 +a9 = k3, a10 +a11 +a12 = k4,

a13 +a14 +a15 = k5, the result follows from Theorem 3.1.
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Corollary 3.3. Let qpb1 and qpb2 be two quasi-partial b-metrics such that qpb2(x,y)≤ qpb1(x,y),

for all x,y∈ X. Let F : X3→ X, g : X → X be two mappings. Suppose that there exists k ∈ [0,1)

such that the condition

qpb1(F(x,y,z),F(u,v,w))+qpb1(F(y,z,x),F(v,w,u))+qpb1(F(z,x,y),F(w,u,v))

≤ k[qpb2(gx,gu)+qpb2(gy,gv)+qpb2(gz,gw)]

holds for all x,y,z,u,v,w ∈ X. Also, suppose we have the following hypotheses:

(1) F(X3)⊆ g(X)

(2) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb1 .

Then the mappings F and g have a tripled coincidence point (x,y,z) satisfying gx = F(x,y,z) =

F(y,z,x) = gy = F(z,x,y) = gz.

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed

point of the form (u,u,u).

Proof. By putting k1 = k and k2 = k3 = k4 = k5 = 0 in Theorem 3.1 we get the result.

Corollary 3.4. Let qpb1 and qpb2 be two quasi-partial b-metrics on X such that qpb2(x,y) ≤

qpb1(x,y), for all x,y ∈ X. Let F : X3→ X, g : X → X be two mappings. Suppose that there

exists k ∈
[

0,
1
2s

)
such that the condition

qpb1(F(x,y,z),F(u,v,w))+qpb1(F(y,z,x),F(v,w,u))+qpb1(F(z,x,y),F(w,u,v))

≤ k[qpb2(gx,F(u,v,w))+qpb2(gy,F(v,w,u))+qpb2(gz,F(w,u,v))]
(3.2)

holds for all x,y,z,u,v,w ∈ X. Also, suppose we have the following hypotheses:

(1) F(X3)⊆ g(X)

(2) g(X) is a complete subspace of X with respect to the quasi-partial b-metric qpb1 .

Then the mappings F and g have a tripled coincidence point (x,y) satisfying gx = F(x,y,z) =

F(y,z,x) = gy = F(z,x,y) = gz.

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed

point of the form (u,u,u).

Proof. By putting k4 = k and k1 = k2 = k3 = k5 = 0 in Theorem 3.1 we get the desired result.
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Example 3.1. Let X = [0,1] and two quasi-partial b-metrics qpb1 and qpb2 on X be given as

qpb1(x,y) = |x− y|+ x and qpb2(x,y) =
1
2
(|x− y|+ x)

for all x,y ∈ X. Also, define F : X3→ X and g : X → X as F(x,y) =
x+ y+ z

36
and g(x) =

x
2

for

all x,y ∈ X. Then

(1) (X ,qpb1) is a complete quasi-partial b-metric space.

(2) F(X3)⊆ g(X)

(3) F and g is w-compatible.

(4) For any x,y,z,u,v,w ∈ X, we have

qpb1(F(x,y,z),F(u,v,w))+qpb1(F(y,z,x),F(v,w,u))+qpb1(F(z,x,y),F(w,u,v))

≤ 1
3
(qpb2(gx,gu)+qpb2(gy,gv)+qpb2(gz,gz)).

Proof. The proof of (i), (ii) and (iii) are clear. Next, we prove (iv). For x,y,z,u,v,w ∈ X , we

have

qpb1(F(x,y,z),F(u,v,w))+qpb1(F(y,z,x),F(v,w,u))+qpb1(F(z,x,y),F(w,u,v))

= qpb1

(
x+ y+ z

36
,
u+ v
36

)
+qpb1

(
y+ z+ x

36
,
v+w+u

36

)
+qpb1

(
z+ x+ y

36
,
w+u+ v

36

)
=

∣∣∣∣x+ y+ z
36

− u+ v+w
36

∣∣∣∣+ ∣∣∣∣y+ z+ x
36

− v+w+u
36

∣∣∣∣
+

∣∣∣∣z+ x+ y
36

− w+u+ v
36

∣∣∣∣+ 3(x+ y+ z)
36

=
1

12
[|(x+ y+ z)− (u+ v+w)|+(x+ y+ z)]

=
1
12

[|(x−u)+(y− v)+(z−w)|+(x+ y+ z)]

≤ 1
12

[|x−u|+ |y− v|+ |z−w|+(x+ y+ z)]

=
1
3

[
1
4
|x−u|+ 1

4
|y− v|+ 1

4
|z−w|+ x

4
+

y
4
+

z
4

]
=

1
3
(qpb2(

x
2
,
u
2
)+qpb2(

y
2
,

v
2
))+qpb2(

z
2
,
w
2
)

=
1
3
(qpb2(gx,gu)+qpb2(gy,gv)+qpb2(gz,gw)).
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Thus, F and g satisfy all the hypotheses of Corollary 2.4. So, F and g have a unique common

tripled fixed point. Here (0,0,0) is the unique common tripled fixed point of F and g.

Example 3.2. Let X = [0,1] and two quasi-partial b-metrics qpb1 and qpb2 on X be given as

qpb1(x,y) = qpb2(x,y) = |x− y|+ x

for all x,y ∈ X. Also, define F : X3→ X and g : X → X as F(x,y) =
x+ y+ z

3nm
and g(x) =

x
m

for

all x,y ∈ X and n,m ∈ N. Then

(1) (X ,qpb1) is a complete quasi-partial b-metric space.

(2) F(X3)⊆ g(X)

(3) F and g is w-compatible.

(4) For any x,y,z,u,v,w ∈ X, we have

qpb1(F(x,y,z),F(u,v,w))+qpb1(F(y,z,x),F(v,w,u))+qpb1(F(z,x,y),F(w,u,v))

≤ 1
3n−1 (qpb2(gx,gu)+qpb2(gy,gv)+qpb2(gz,gz)).
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