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Abstract. Let 1C  and 2C  be two continuous (coplanar or not) Jordan curves defined over a closed (finite) interval. 

We introduce a new approach concerning the distance between 1C  and 2C  and we examine some ramifications of 

this definition in the frame of metric spaces. 
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PART I. Symbols and Definitions 

For the case of coplanar curves, without loss of generality, we will consider our plane to be the 

usual XOY-coordinates plane. Let I be the collection of all closed (finite) intervals of the x-axis. 

We will denote by C the collection of all continuous rectifiable Jordan curves C over all 

intervals in I .In case the interval I=[a, b] is trivial , i.e. for a=b, the corresponding C will be 

considered shrunk to the point P(a, a). We denote by d( , ) the usual Euclidean distance between 

the points of the plane. In elementary calculus it is well known that the average value of a 

continuous function y=f(x) over an interval [a, b], a ≠b, denoted as f(x) , is defined by  

f(x) = 
1

b-a

b

a
f(x)dx  (1) 
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Let P be any point on the plane and CC over an interval [c, d].We will define as the distance 

of P from C the minimum value of the function d(P,Q) as Q traces C. With some abuse of 

notation we will denote this value simply by d(P, C). For 1C and 2C  in C over nontrivial intervals 

I=[a,b] and J=[c, d], respectively, we will define the distance from 1C  to 2C , which in order to 

avoid any further abuse of notation and confusion we will denote by D*( 1C , 2C ) , as follows: 

 

Definition 1 

D*( 1C , 2C ) = 2(P, C )d  over I. (2) 

 

Remark1 

Similarly we define the distance from 2C  to 1C  via the formula D*( 2C , 1C ) = 1(Q, C )d  over J. 

 

Remark 2 

It is evident that in order to have D*( 1C , 2C ) = D*( 2C , 1C  ) we require I=J, which is a necessary 

but not a sufficient condition. We can easily see e.g. that for 1C  ={y=0, 0≤x≤1} and 2C ={y= 

x/√3, 0≤x≤1}, D*( 1C , 2C ) =1/4 while D*( 2C , 1C  ) =1/2√3. Note that if we do not have 

D*( 1C , 2C ) = D*( 2C , 1C  ) but the rest of the metric conditions hold, then we talk about a 

quasimetric. Still, in this case, a metric D can be defined as follows: 

 

Definition 2 

D( 1C , 2C )= [ D*( 1C , 2C )+ D*( 2C , 1C )] /2 (3) 

Then, via (3), we can simply refer to this number as the distance between the two curves, 

provided that our D* is a quasimetric, which will be a routine to check after we have imposed an 

additional condition on C presented in Remark 3. 

 

Remark 3 
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If we consider as 1C  the x-axis interval I=[0, 1] and as 2C  = 1C   OA .where O=(0,0) and 

A=(0,1) .then D( 1C  , 2C )=0 but the two curves are not identical. We impose now on C , 

additionally, the condition our curves C to have at most a countable number of mutual 

intersections. Then it is rather straightforward that when we restrict ourselves to this (still very 

large class!) C , defined over the same I I, a set of curves that will denote by (C, I) , D is a 

metric on (C, I)x(C, I) , for each I I.  

For a trivial I the metric space (C, I, D) is merely the classical (², d) and so we will consider 

only nontrivial intervals. 

 

Remark 4 

Al though we have used the Euclidean d, our D resembles but is not identical neither to the 

intrinsic metric endowed by d on the plane nor to the Housdorff metric even in the case that D* 

is itself a metric and our curves are restricted to graphs of functions (for details of the theory of 

metric space see e. g [1] or [2]). 

 

Remark 5 

Since (C, I, D), that from now on we shall denote it simply by V, is a metric space, we can define 

for any 0C V , a (local) basis of open neighborhoods of 0C , N( 0C ,ε), for the endowed topology, 

i.e the set of all C  (C, I) such that D( 0C  ,C) <ε, for ε>0.Due to the “exotic” nature of V, in 

order to be able to “visualize” the above basis, it is preferable to use I itself for 0C ,in the sense 

that 0C  is the graph of the function y=0, a≤x≤ b. We will see ( in Example 7 ) that, as expected, 

we cannot always calculate the exact distance between two curves in (C, I) and then we make use 

of upper and lower bounds of D in which case we can talk about an ε-proximity of two curves in 

(C, I). 

 

Remark 6  
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Our approach could be extended, in a similar way, to define the distance between two 

(parametrically described over the same parameter interval) rectifiable curves in space (Example 

7). In part (III), where we refer to the classical analysis concept of a Cauchy sequence It will 

emerge as a possibly usable tool of computer mathematics for the image analysis theory in 

reference to the geometry of data points curves: more specifically, among others, it will require 

the ability to determine convergence of a sequence of curves to a “curve-limit” that will rather 

look totally different in shape from the generating sequence; nevertheless in this work we focus 

our attention only to coplanar cases. 

 

Remark 7 

In Part III we also pose some (open so far) questions we consider challenging, concerning the 

type of the new metric space V and provide some pertinent heuristic claims. 

 

PART II.EXAMPLES 

We present now various examples of an increasing degree of calculative difficulty as far as the 

numerical calculations is concerned. The first four examoles can actually be worked out “by 

hand” and provide exact distance results while the rest like the fifth and the sixth, involving 2-D 

curves, along with the seventh which is our only 3-D example, make use of Mathematica and 

thus we will produce only ε-proximity results. 

 

Example II.1 

Let 1C  be the x-axis interval I=[0, 1] and 2C  the line segment joining the A (0,1) to B(1,1). 

Evident ly D( 1C , 2C )=1. Suppose now that at the points nA = (1- -n2 , 1) of 2C  , for n=0,1,2,... , 

we draw above AB vertical line segments of length -n2 .This new curve , 3C  is defined over I and 

evidently has length 3, but when traced in the ccw sense in a continuous way the vertical lines at 

nA  , for n=1,2,..., are travelled twice and thus 3C  is not a Jordan path. Once again, D*( 1C  , 3C  ) 

=1 but D*( 3C , 1C  ) is not well defined and thus D( 1C , 3C  ) is not well defined either , even 

though 3C  is rectifiable; this remark explains the initial condition that our curves have to be 

Jordan paths.□  
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Example II.2 

If 1C  is the graph of y=x+2 and 2C  the graph of y=2x+2, with domain [-2,2] , we can easily 

check that the minimum of the distance d(P,Q), for any fixed point P on 1C  as Q traces 2C  is 

3
x

5  and thus D*( 1C , 2C ) = 

2

2

3
d

20
x x


 =1√5. In a similar way we have D* 

( 2C , 1C )=

2

22

1
d

4
x x


 =1/√2 and so D( 1C , 2C )= .□ 

 

Example II.3  

Let 1C  be the graph of y=x with domain [0,1] and 2C  the quarter of the unit circle centered at O 

(0,0) that lies in the first quadrant:  

(i)We can easily check that the minimum of the distance d(P,Q), for any fixed point P on the line 

segment OA ,with A= (1,1), from any point on the arc is 1 x 2  where x= Px . 

Then D*( 1C , 2C  ) =
1

0

21-x dx = √2-1.  

(ii)Similarly, for any fixed point Q of the arc , d(Q, 1C )=
2

1 2x- 1 x (where x= Qx ) and so 

D*( 2C , 1C ) =
1

2
 [

2
2

1/

0

( x -x) x1 d +
2

2
1

1/

(x- x ) x1 d ] = 1/2√2. 

We conclude that D( 1C , 2C )=
1
8

(5√2 -4).□ 

 

Example II.4 

Let 1C  be the graph of y= 
3
4 - x, and 2C  the graph of y=x² over [

1
4 ,

3
4  ].  
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(i)For a fixed P on the line segment AB , where A=(
1
4 ,

1
2  ) and B=(

3
4 ,0) we first calculate the 

distance d(P,Q) between P and any point Q on the above parabolic arc, then we calculate d(P, 2C ) 

and finally we will calculate D*( 1C , 2C ) =2 2

3/4

1/4

P,( C )dxd . 

To facilitate our calculations we set, Q(t) for the point Q=(t,t²), 1/4≤ t≤ 3/4 and squaring 

distances we can check directly that the derivative (with respect to t) of d(P,Q(t))² leads to the 

cubic equation  

2t³ +(2x-
1
2 )t –x=0  (t-

1
2 )(2t² +t=2x)=0 with the only acceptable root - critical point t=

1
2  and 

by construction there is no need to compare d(P,Q(
1

2
)) to d(P,Q(1/4)) or d(P,Q(3/4)) Note also 

that the second derivative of d(P,Q(t))² is 12t² +4x-1>0 and d(P,Q(
1
2 ))²=2(x-

1
2 )² .We conclude 

that d(P, 2C )= √2
1

2
x-  and thus D*( 2C , 1C )= 2√2[

1/2

1/4

x) x
1( d
2
 +

3/4

1/2

)
1

(x- dx
2 ] = 

1

4 2
 . 

 

 (ii)In a similar way for a fixed point Q= Q(x) on the parabolic arc , it is straightforward to see 

that  

d(Q, 1C ) = , Thus D*( 2C , 1C )= =
1

4 2
   D* ( 1C  , 2C )= 

1

4 2
.  

We conclude that D( 1C , 2C )=
1

4 2
.□  

 

Example II.5 

Let 1C  and 2C  be, respectively, the graphs of y= 
1
4 x² -

1
2  and y=x², 0≤x≤1. 

(i)For a fixed point P on the first parabolic arc, in order to facilitate once more our 

calculations, ,we set  
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Q=Q(t) for the point Q tracing the second parabola. Following the same steps and symbols as in 

Ex. 4, we directly see that the derivative of d(P,Q(t))² leads to the cubic 2t³ +(2-
1
2

 x² )t –x=0   

(t- 
x

2
)(2t² +xt+2)=0, and since 0≤x≤1 the only acceptable root-critical point is t=

x
2

. Naturally 

the second derivative of d(P,Q(
x
2

))² is 11x² +4>0 and since d(P,Q(
x
2

))²=
2 1x
4


 we conclude 

that d(P, 2C )= 
2x +1
2

  D*( 1C , 2C  )=
1
2

2
1

0

x +1dx .Since 2x +1dx = 
1
2 [x 2x +1  + 

ln(x+ 2x +1 )] (modulo a constant) we obtain D*( 1C , 2C )=  ≈ 0.573. 

Thus we can take D*( 1C , 2C )- =0.573 and D*( 1C , 2C )+ = 0.574 

(ii)Now, for a fixed point Q=Q(x) on the second parabolic arc and P=P(t) tracing the first one, 

we require calculations will not be as simple as in (i): when 0<t<1, in order to find the critical 

points (if any ), t =ρ=ρ(x), we have to solve the cubic t³+ (1-2x²)t-2x=0 and then compare all 

three , d (Q, P(ρ)), d(Q,P(0)) and d(Q,P(1)) in order to produce d(Q, 1C ) as a function of x in 

[0,1].  

Following the classical cubic equation theory (see e.g.[5]) we find as the only acceptable 

minimizing root ρ(x)=
2

2 3 1/3]
1-2x[x+ x +( )

3
+ 

2
2 3 1/3]

1-2x[x- x +( )
3

 and d(Q, 1C ) = d(Q, 

P(ρ(x))).We conclude, via Mathematica, that D*( 2C , 1C )= 

2 2 22
1

0

1 1
(

4 2
x )(ρ(x)-x) + ρ(x) dx  =  

 ≈ 0.696833 
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Thus we can take D*( 2C , 1C )- = 0.696 and D*( 2C , 1C )+ = 0.697 and finally we have D( 1C , 2C )- 

=0.634 and D( 1C , 2C )+ =0.635 so we have secured an ε-proximity between the two curves for 

ε=0.001. 

 

Example II.6 

 Let 1C  and 2C , respectively, be the graphs of y = 
2

2

1

2

1 x
x 2

   and y=x² , over [1, 1.27]. 

Here, at the final stage, the calculations lead to cumbersome expressions that require rounding 

offs. and it will be feasible to produce only upper and a lower bounds D( 1C , 2C )±. 

(i)Under the same symbolism as before and in a similar way, we find that the minimum of 

d(P,Q(t)) is obtained at t= 
1
x , the only acceptable root of the cubic 2t³ +(1-2y )t –x=(t- 

1

x
)(2t² 

+
2

x
t+x²)=0 in our interval (actually even for 1≤x≤2).Then d(P, 2C )=   

We thus have to calculate D( 1C , 2C )=
1
2

2
2

2

1

x +1
x +4dx

x .Since 
2x x +1dx = 2 3( )x +4  and 

21
x +4dx

x = 2x +4 2arcsinh
2
x (modulo the usual constants) we obtain as the exact value of 

D*( 1C , 2C ) =  ≈ 0.809 

Thus we can take D* ( 1C , 2C )- =0.644 and D* ( 1C , 2C )+=0.974 

(ii)It is rather natural to expect that, once again, things will not be as simple as in (i) in order to 

minimize d(Q,P) for a fixed point Q=Q(x) in 2C  as P=P(t) traces 1C .The critical points t=ρ(x)-if 

any)- require solving in our open interval the octic equation 8t - 6t +(2-x²) 4t -2x 3t -2 2t +4(x²-

1)=0. 

This requires a numerical approach by use of an advanced scientific computer program. First we 

make use of Mathematica and check that in the interval (1, 1.27) this octic has always exactly 

one (real of course) root ρ =ρ(x); consequently we make use of Mathematica again, for a 

relatively large sample of values of x in (1, 1.27). comparing, each time, for each fixed x, the 
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values of d(Q,P(ρ)), d(Q,P(1)) and d(Q,P(1.27)). Naturally the larger the sample the better the 

approximation Then we unavoidably resort to the discrete average of all these approximate 

d(Q, 1C ) that we have found, in order to estimate bounds D*( 2C , 1C )± and thus, when combined 

with part (i) ,we produce bounds D ( 2C , 1C )±. More specifically, we will use xκ =1+0.002κ, 0≤κ 

≤135 in order to produce lower and upper bounds of 	

  
135

0

1

136
Q, P(ρ )d 

 
  to infer that D*( 2C , 1C ) ≈ 0.695. Thus we can take D* ( 2C , 1C )- = 0.695 

and D* ( 2C , 1C )+ = 0.732. Finally, using (i) we conclude that 0.669< D ( 1C , 2C ) <0.853 and so 

we have secured an ε-proximity between the two curves for ε< 0.2.□ 

 

Example II.7 

Here we present our only 3-D example: 

 Let 1C  be the line segment of the points P= (x, 0,1) and 2C  the spiral arc of the points Q=(cost, 

sint, t) defined over I=[0,1]. 

(i)Following the same routine we conclude that for any fixed P in 1C  , as Q traces 2C , the only 

critical value of t that minimizes PQ satisfies cost=x and thus d(P, 2C ) = 2 21-x +(1-arccosx) . 

Via Mathematica, we have that D*( 1C , 2C )= 
2 2

1

0

1-x +(1-arccosx) dx ≈ 0.886882. Thus we can 

take 

 D* ( 1C , 2C )- =0.886 and D* ( 1C , 2C )+ =0.887. 

(ii)In a similar way, for any fixed Q=Q(x) in 2C , as P=P(t) traces 1C  , the critical t mimizing QP 

satisfies t=cosx, thus d(Q, 1C )= 221-x( ) +(sinx)  and again via Mathematica D*( 1C , 2C )= 

2 2

1

0

(1-x) +(sinx) dx  ≈ 0.774255 Thus, if we take D*( 2C , 1C )- =0.774 and D*( 2C , 1C )+ = 0.775, 

we have that 0.830 < D ( 1C , 2C )< 0.831, and so we have secured an ε-proximity between the two 

curves for ε=0.001. 

 

PART III. The topological nature of the metric space V 
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(A).We start by reminding the concept of a Cauchy sequence {sκ ,κ=1,2,.} within a general 

metric space (S, d).Usually, when this sequence consists of numbers the metric d used is simple , 

i.e the distance between real or complex numbers; but when the sequence consists of functions d 

could be either simple or quite cumbersome (see e.g. [2]). 

 Generally speaking {sκ} will be called a Cauchy sequence if d (sm, sn)→0, whenever m and n 

→∞ (independently to each other!). 

 Though it is a well known result in classical analysis, it is worth reminding also that if { sκ } 

converges in (S, d) then it is a Cauchy sequence but the converse is not true. In case every 

Cauchy sequence in a metric space converges then we call this space a complete metric space. 

 We will give below a heuristic argument which indicates that our metric space V is complete, 

but first let us give a rather simple example of a Cauchy sequence, { κC }, in our metric space: 

 

Example III.1  

Let κC  be the line segments y=x/κ , κκ=1,2,…, over I= [0,1].Then it is immediate that 

D*( mC , nC ) =
1

2

11
m n
  2

1

m n 1
→0, and D*( nC , mC  ) = 

1

2

11
m n


2

1

n m 1
 →0, and 

thus D( mC , nC ) →0,  

as m, n →∞.  

 

Remark 7 

We should point out that we knew that we have a Cauchy sequence, anyway, since  

d (P, nC ) = 2

1

n 1 Px  , for each point P in I and thus D*(I, nC )= 22

1

n 1 →0, as n →∞ and 

since d (Q,I) =
1

n Qx  for each point Q in nC  ,D*( nC  ,I)= 
1

2n →0, as n →∞ i.e { nC }→ 0C  in 

our V (where 0C  in this case is I itself)).  

 

A conjecture heuristically motivated  
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 Let us now consider a seemingly rather interesting question whether, for a given nontrivial I, V 

is a complete metric space or not: 

It looks like that the answer should be affirmative if we can materialize the following process for 

producing the limit curve C in our space (a process which is not genuinely constructive but 

merely intuitive): 

We start with a pair 1C  and 2C  and by choosing middle (or suitable intermediate) points of each 

minimum distance PQ, for each fixed P in 1C  as Q traces 2C . If necessary we “glue” via line 

segments the “first” and/or “last” (in the sense of the smaller and/or larger x in I for these 

intermediate points) in order the new “middle curve” (or intermediate curve) to be defined over 

the whole interval instead of a subinterval of I .We continue this process for all the consecutive 

pairs via a “continuous gluing” without worrying about the end of this process since we have 

started with rectifiable curves. It is plausible that we will be able to produce a continuous and 

seemingly rectifiable C over I such that, for each n, D( nC ,C) ≤ D( nC , n+1C ).Since 

D( nC , n+1C )→0 , as n→∞, we conclude D( nC , C) →0. 

 

(B)Final Remarks and Open Problems 

 

1. Under the assumption that V is a complete metric space, when examined exclusively 

topologically (see Remark 4 of part (I)), we then have also a Baire space. This amounts to the 

property that any countable union of closed sets with empty interior has also an empty interior 

(see e.g. [3] or [4]). Such a property seems plausible for our metric space: the absence, in each 

component, of any curves within ε-proximity from I and despite the fact that we are granted a 

high degree of flexibility since we allow not rectifiable curves, suggests that the union lacks of 

any acceptable curve (in the sense of Jordan and continuous over the same I).This can be 

considered as an indication to expect an affirmative answer to the completeness question. 

2,An equally challenging question , due to the “exotic” structure of V could have been the 

following: this metric space seems to be not bounded and thus not totally bounded ; then in order 

to be (sequentially ) compact it is sufficient and necessary to be complete and totally bounded. 

Thus, even if we have a complete space it would not be a compact space. But, at least is, is it 

locally compact?  
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3. Naturally one could had posed also additional questions for our metric D and/or our metric 

space, like whether D is an ultrametric, or whether V separable or connected e.t.c. 

4. Finally, in case our metric space eventually turned out not to be complete, then naturally rises 

the question about its completion, in the following sense: what are the additional features that we 

could had imposed on the curves of CI in order our space V to be a dense subspace of the new 

complete space, with respect to our metric?  
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