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Abstract. For any graph G (V, E ) , a block graph B(G ) is a graph whose vertices are corresponding to the blocks of 

G and two vertices in B(G ) are adjacent whenever the corresponding blocks contain a common cutvertex in G . An 

edge dominating set 𝑠𝑒  of a block graph B(G ) is an endedge block dominating set if  𝑠𝑒  contains all endedges of 

B(G ) . The endedge block domination number 𝛾𝑒𝑏
′ (G ) is the minimum cardinality of an endedge block dominating 

set . In this paper some bounds for 𝛾𝑒𝑏
′ (G ) are obtained in terms of elements of G . Further exact values of  𝛾𝑒𝑏

′ (G ) 

for some standard graphs and relationships with other dominating parameters were obtained. 

Keywords:  block graph; domination number; endedge domination number; endedge block domination number. 

2010 Mathematics Subject Classification: 05C69, 05C70. 

 

Introduction 

In this paper We follow the notations and terminology of Harary [1]. We consider 

connected, undirected, finite graphs without loops. Let G = (V, E) be a graph with |𝑉| =

𝑝 𝑎𝑛𝑑 |𝐸| = 𝑞. n denotes number of blocks of G. N (v) and N [v] denote the open and closed 

neighborhoods of a vertex v respectively in G. The degree of an edge e = u v of G is defined by 

deg e = deg u + deg v – 2. The maximum degree of a vertex in G is denoted by ∆(G ) and the 

minimum degree of a vertex in G is denoted by  (G ) .  

A vertex v of V is called a cutvertex if its removal from G increase the number of 

components of G. A nontrivial connected graph with no cutvertex is called a block. A block 

incident with exactly one cutvertex is called an endblock. A block incident with more than one 

cutvertex is  called a  nonendblock.  
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A  set  D  of  a  graph  G = ( V , E )  is  a  dominating  set  if  every  vertex  in  V – D is  adjacent  

to  some  vertex  in  D  .  The  domination  number  𝛾(𝐺)  of  G  is  the  minimum  cardinality  of  

a  minimal  dominating  set  .  A  set  F  of edges  in  a  graph  G = ( V , E )  is  called  an  edge  

dominating  set  of  G  if  every  edge  in  E – F  is  adjacent  to  at  least  one  edge  in  F  .  The  

edge  domination  number  𝛾𝐼(𝐺)  is  the  minimum  cardinality  of  an  edge  dominating  set  of  

G  . Edge  domination  was  introduced  by S. Mitchell  and  S. T. Hedetniemi [2] and  is  now  

well  studied in graph theory. The edge  dominating  set  is  called  an  endedge  dominating  set  

if  all  endedges  belong to  edge  dominating  set  of  G  .  

The endedge  domination  number  𝛾𝑒
𝐼(𝐺)  is  the minimum  cardinality  of  endedge  

dominating   set  of  G. Endedge  domination  is  introduced by M.H.Muddebihal and 

A.R.Sedamkar [3]. A  block  graph  B (G )  is  a  graph  whose  vertices  are  corresponding  to  

the  blocks  of  G and  two  vertices  in  B (G )  are  adjacent  whenever  the  corresponding  

blocks  contain  a  common  cutvertex  in  G.   A  set  Db  of  a block  graph  B (G ) = ( H , X )  is  

a  dominating  set  if  every  vertex  in  H – Db  is  adjacent  to  some  vertex  in  Db.  The 

domination number  𝛾(𝐵(𝐺))  is the minimum cardinality of a minimal block dominating  set. 

Block domination  is  introduced by  M. H. Muddebihal, T. Srinivas and Abdul Majeed [4]. We 

are introducing endedge block domination  in  this  paper  and we  obtain  certain bounds on 

𝛾𝑒𝑏
′ (𝐺) in terms of vertices,  blocks  and  other  parameters  of  G. 

 

Results 

Initially we  begin  with  endedge  block  domination number  of  a  graph  of  some  

standard graphs, which  are  straight  forward  in  the  following  theorem. 

Theorem 1 :  (i)  For  any  star  K1, p  with  p  ≥  2  , 𝛾𝑒𝑏
Ι (𝑘1,𝑃) =

𝑝−1

2
 , if  p  is  odd . 

                                                                                                       =  
𝑝

2
,  if  p  is  even . 

                         (ii)  For any path Pp  with  p ≥ 3, 𝛾𝑒𝑏
Ι (𝑃𝑃) =

𝑝

3
 ,  if p ≡ 0 (mod3) .                                                                                                           

                                                                                                 =   ⌈
𝑝

3
⌉, otherwise. 

In the following theorem we obtain upper bound for  𝛾𝑒𝑏
Ι (𝐺) in terms of number of blocks of G. 

Theorem 2 : For  any  connected  graph  G  with  n  ≥  2  blocks , 𝛾𝑒𝑏
Ι (𝐺) ≤ 𝑛 − 1. Equality 

holds for 𝐵(𝐺) ≅  𝐾1,𝑛−1 where  n  is  number of  blocks  of  G . 
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Proof : Let  G  be  any  nontrivial  connected  graph  with  A = { Bi } , 2  ≤  i  ≤  n   blocks.  Let  

Se = { q1, q2 , ..... , ql }, l  <  n  be  𝛾𝑒𝑏
Ι - set  in  B (G )  such  that  |𝑆𝑒| =   𝛾𝑒𝑏

Ι (𝐺). We prove the 

result by induction on number of blocks of G. 

Let G be a graph with n = 2 blocks. Then 𝑆𝑒 = {𝑞𝑗} , 𝑗 = 1  and  

|𝑆𝑒| =  𝛾𝑒𝑏
Ι (𝐺) = 𝑛 − 1 = 2 − 1.  

Let G be a graph with n = 3 blocks. Then  𝑆𝑒 = {𝑞1, 𝑞2}  and 

|𝑆𝑒| =  𝛾𝑒𝑏
Ι (𝐺) = 𝑛 − 1 = 3 − 1. 

Assume that the result is true for n = t  blocks. Then 𝛾𝑒𝑏
Ι (𝐺) ≤ 𝑡 − 1. 

Suppose G has n = t + 1  blocks. Then  the  corresponding  block  vertex  of (t +1)th  block  of  G 

is either an  endvertex  or  a  nonendvertex  incident with  either  an  endblock  or  a  nonend  

block  respectively  in  B (G ). 

Then clearly |𝑆𝑒| =  𝛾𝑒𝑏
𝛪 (𝐺) ≤ 𝑡 − 1 + 1 gives 𝛾𝑒𝑏

Ι (𝐺) ≤ (𝑡 + 1) − 1 .  

Equality for 𝐵(𝐺) ≅  𝐾1,𝑛−1 is obvious. 

Following corollary gives equality for 𝛾𝑒𝑏
𝛪 (𝐺). 

Corollary 1 :  For  any  connected  graph  G with  n ≥ 2  blocks  with  exactly  one  cutvertex, 

                 𝛾𝑒𝑏
Ι (𝐺) =

𝑛−1

2
  , if n is odd. 

                              = 
𝑛

2
, if n is  even. 

Proof :  If  G  has  exactly  one  cutvertex , then  B (G )  is  complete  graph  and  number  of   

vertices of  B (G )  is  n. By Theorem 1 clearly  result  follows. 

In  next  theorem  we  obtain  upper  bound  in  terms  of  n  for  𝛾𝑒𝑏
Ι (𝑇). 

Theorem 3:  For any tree with n – blocks  𝛾𝑒𝑏
Ι (𝑇) ≤ ⌊

𝑛

2
⌋  if and only if   𝑇 ≇  𝑃4. 

Proof:  For necessary condition, 

Suppose  𝛾𝑒𝑏
Ι (𝑇) ≤ ⌊

𝑛

2
⌋ for any tree T . 

If  𝑇 ≅  𝑃4, then n = 3 and  ⌊
𝑛

2
⌋ = 1.  The corresponding 𝐵(𝑇) ≅ 𝑃3  and  𝛾𝑒𝑏

Ι (𝑇) = 2. 

Then  𝛾𝑒𝑏
Ι (𝑇) > ⌊

𝑛

2
⌋  a contradiction . Hence  𝑇 ≇  𝑃4. 

For sufficient condition consider  𝑇 ≇  𝑃4.  

Suppose T ≅ 𝑃𝑝 , p ≠ 4. Then maximum number of blocks in T are n = p – 1.  

From Theorem 1,  𝛾𝑒𝑏
Ι (𝑃𝑝) =

𝑝

3
 ≤  ⌊

𝑝−1

2
⌋,  if p ≡ 0 (mod 3). 
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                                            =   ⌈
𝑝

3
⌉ ≤  ⌊

𝑝−1

2
⌋ , p ≠ 4 otherwise gives the result. 

Theorem 4:  For any  connected  graph  G  with  m  endblocks,  𝛾𝑒𝑏
Ι (𝐺) ≤ 𝛾𝑒

Ι(𝐺) + ⌊
𝑚+1

2
⌋ .The 

proof  of  the  Theorem 4  requires  some  lemmas. Before  the  lemmas  we  construct some  sets  

in  G  as  well  as  in  B (G )  so  that  to  give  the  proofs  of  lemmas.   

Sets in G are 

Ee = { e1, e2, ……, ee} is a  set  of  all  endedges. 

En = E (G ) \ Ee 

𝐸𝑔 = 𝐸𝑛 ∪ 𝐸𝑒 

A1  = {B1, B2, …..,Bi} is  a  set  of  endblocks  such  that  each  block  is  adjacent  to  exactly one  

block. 

A2  = {B1, B2, …..,Bj} is  a  set  of  endblocks  such  that  each  block  is  adjacent  to  more  than  

one block. 

A3  = {B1, B2, …..,Bk} is  a set of  all  nonendblocks. 

𝐴 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 .  

We define a family as  ℑ = {𝐸𝑒 ∪ (𝐸(𝐺) ∖ 𝑁(𝐸𝑒))} in G. 

Sets in  B (G )  are  as  follows. 

H = { b1, b2, ….., bn } is a  set  of  all  vertices. 

H1 = { b1, b2, …..,bi } is  a  set  of  all  endvertices  of  degree 1. 

H2 = { b1, b2, …..,bj } is  a  set  of  all  nonend  noncutvertices. 

H3 = { b1, b2, …..,bk } is  a  set  of  all  cutvertices. 

X1  = { q1, q2, …….,qt } is  a  set  of  all  endedges.  

X2  = E (B (G )) \ X1 

We now define a family  ℜ = {𝑋1 ∪ (𝑋2 ∖ 𝑁(𝑋1))}  in B (G ). 

We consider A1 = 𝜙  in Lemma 1, lemma 2 and 3. 

Lemma 1:  If A1 = 𝜙  and  each  block  𝐵𝑗 ∈  𝐴2 has  p ≥ 3  vertices, then , 𝛾𝑒
Ι(𝐺) ≅ 𝛾Ι(𝐺) and   

                  𝛾𝑒𝑏
Ι (𝐺) ∈ 𝑋2. 

Proof: Let  𝐹1 ⊂ 𝐸𝑔. If  A1 = 𝜙  and  each  block  𝐵𝑗 ∈  𝐴2  has  p ≥ 3  vertices,  then  for  each  

edge  𝑒 ∈  𝐹1, ∃  an  edge   𝑒1  ∈  {𝐸𝑔 ∖ 𝐹1}  such  that  𝑁(𝑒1) ∩ 𝐹1 = {𝑒}. Hence  F1  forms 
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minimal  edge  dominating  set  in  G. Then  |𝐹1| = 𝛾Ι(𝐺). Since A1 = 𝜙  and each block of  𝐴2 

has p ≥ 3 vertices, 𝛾𝑒
Ι(𝐺) = 𝛾Ι(𝐺). 

       In B (G ), 𝐻1 = 𝜙. Then  𝑋1 = 𝜙  and  ∃  𝑋2
Ι ⊂  𝑋2  such  that  every  edge  in  𝑋2 ∖ 𝑋2

Ι   is  

adjacent  to  at  least  one  edge  in  𝑋2
Ι .  So  𝑋2

Ι   forms   𝛾𝑒𝑏
Ι −set  and |𝑋2

Ι | =  𝛾𝑒𝑏
Ι (𝐺). 

Lemma 2:  If A1 = 𝜙 , each block 𝐵𝑗 ∈  𝐴2 has exactly two vertices, then 𝛾𝑒
Ι(𝐺) ∈ ℑ and   

                   𝛾𝑒𝑏
Ι (𝐺) ∈ 𝑋2.  

Proof:  Let A1 = 𝜙  and each  block  𝐵𝑗 ∈  𝐴2 has  exactly  two  vertices. Then 𝐴2 ≅ 𝐸𝑒  and 

 𝐸(𝐺) ∖ 𝐴2 = 𝐸𝑛 . Let  𝐹2 ⊂ 𝐸𝑛 be  the  minimal  edge  dominating  set  of  induced  Subgraph  

〈𝐸𝑛 ∖ 𝑁(𝐴2)〉 . Then  𝐹2 ∪ 𝐴2  forms  𝛾𝑒
Ι – set  which  belongs to  ℑ and  |𝐹2 ∪ 𝐴2| = 𝛾𝑒

Ι(𝐺) .  

          In  B (G ),  endedge  set  𝑋1 = 𝜙  and  ∃ 𝑋2
Ι ⊂ 𝑋2  such  that  each  𝑞𝑖 ∈ 𝑋2 ∖ 𝑋2

Ι   is  

adjacent  to  at  least  one  edge  𝑞𝑗 ∈ 𝑋2
Ι . Then  𝑋2

Ι   forms  𝛾𝑒𝑏
Ι  – set  and  |𝑋2

Ι |  =  𝛾𝑒𝑏
Ι (𝐺). 

Lemma 3:  If  A1 = 𝜙  and  some  blocks  𝐵𝑗 ∈  𝐴2  have  exactly  two  vertices, then  𝛾𝑒
Ι(𝐺) ∈ ℑ 

                 and  𝛾𝑒𝑏
Ι (𝐺) ∈ 𝑋2. 

Proof :  Let  𝐴2
Ι ⊂ 𝐴2 be  set  of  endblocks  and  each  block  of  𝐴2

Ι   has  exactly  two vertices. 

Then  𝐴2
Ι ≅ 𝐸𝑒   and  𝐸(𝐺) ∖ 𝐴2

Ι = 𝐸𝑛 . ∃   an  edge  dominating  set  𝐹2 ⊂ 𝐸𝑛  of  induced  

subgraph  〈𝐸𝑛 ∖ 𝑁(𝐴2
Ι )〉  such  that  𝐹2 ∪ 𝐴2

Ι  forms  𝛾𝑒
Ι – set  which  belongs  to  ℑ  and 

|𝐹2 ∪ 𝐴2
Ι | = 𝛾𝑒

Ι(𝐺) .  

           In B (G ),  𝑋2
Ι ⊂ 𝑋2 forms  𝛾𝑒𝑏

Ι  – set  because  each  edge  in 𝑋2 ∖ 𝑋2
Ι   is adjacent  to  at  

least  one  edge  in  𝑋2
Ι . Then  |𝑋2

Ι | = 𝛾𝑒𝑏
Ι (𝐺).   

In further  lemma 4, lemma 5 and 6,  we  consider A2  =  𝜙. 

Lemma 4: If  each  block  𝐵𝑖 ∈ 𝐴1 has  p ≥ 3 vertices  and  A2  = 𝜙 , then 𝛾𝑒
Ι(𝐺) ≅ 𝛾Ι(𝐺) and    

                   𝛾𝑒𝑏
Ι (𝐺) ∈ ℜ. 

Proof:   Let  A2 = 𝜙  and each block  𝐵𝑖 ∈ 𝐴1 has  p ≥ 3 vertices.  Then  𝐸𝑒 = 𝜙  and  ∃ set  of  

edges  𝐹1 ⊂ 𝐸𝑔 in  G  such  that  each  edge  in  𝐸𝑔 ∖ 𝐹1 is  adjacent  to  at least  one  edge  of  𝐹1 . 

So F1 forms minimal edge dominating set.  Since   𝐸𝑒 = 𝜙 , |𝐹1| = 𝛾Ι(𝐺) = 𝛾𝑒
Ι(𝐺). 

               In B (G ), |𝐻1| = |𝑋1|.  Let  𝑋2
Ι ⊂ 𝑋2  be  the  minimal  edge  dominating  set  of  

〈𝑋2 ∖ (𝑁(𝑋1) ∪ 𝑋1)〉. Then  𝑋1 ∪ 𝑋2  
Ι 𝑓𝑜𝑟𝑚𝑠  𝛾𝑒𝑏

Ι − 𝑠𝑒𝑡  and  |𝑋1 ∪ 𝑋2
Ι | = 𝛾𝑒𝑏

Ι (𝐺) ∈ ℜ. 

Lemma 5: If  each  block  𝐵𝑖 ∈ 𝐴1 has exactly  two vertices  and  A2 = 𝜙 , then  𝛾𝑒
Ι(𝐺) ∈ ℑ 

                  and   𝛾𝑒𝑏
Ι (𝐺) ∈ ℜ. 
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Proof: Let A2 = 𝜙,  each  block  𝐵𝑖 ∈ 𝐴1 has p = 2 vertices. Then  𝐴1 = 𝐸𝑒 and  ∃  a minimal  

edge  dominating  set  F3  of  induced  subgraph  〈𝐸𝑔 ∖ (𝐴1 ∪ 𝑁(𝐴1)〉  such  that  𝐴1 ∪ 𝐹3  forms  

𝛾𝑒 
Ι - set. |𝐴1 ∪ 𝐹3| =  𝛾𝑒

Ι(𝐺)  which  belongs  to  ℑ. 

                                In B (G ), |𝑋1| = |𝐴1|  and 𝑋2
Ι   is the minimal  edge dominating set of  

〈𝑋2 ∖ (𝑁(𝑋1) ∪ 𝑋1)〉.Then 𝑋1 ∪ 𝑋2  
Ι 𝑓𝑜𝑟𝑚𝑠  𝛾𝑒𝑏

Ι − 𝑠𝑒𝑡  𝑎𝑛𝑑  |𝑋1 ∪ 𝑋2
Ι | =  𝛾𝑒𝑏

Ι (𝐺) which  belongs  

to  ℜ. 

Lemma 6: If  some  blocks   𝐵𝑖 ∈ 𝐴1 have  exactly  two vertices  and  A2 = 𝜙 , then  𝛾𝑒
Ι(𝐺) ∈ ℑ 

                 and   𝛾𝑒𝑏
Ι (𝐺) ∈ ℜ. 

Proof : Let  some  blocks  𝐵𝑖 ∈ 𝐴1 have  exactly  p = 2  vertices  and  A2  =  𝜙. Then  ∃  a  

minimal edge dominating set F4 of 〈𝐸(𝐺) ∖ (𝐴1
Ι ∪ 𝑁(𝐴1

Ι ))〉 where 𝐴1
Ι ⊂ 𝐴1 is set of all endedges.  

So  𝐴1
Ι ≅ 𝐸𝑒  and  𝐴1

Ι ∪ 𝐹4  forms    𝛾𝑒
Ι − 𝑠𝑒𝑡. Then  |𝐴1

Ι ∪ 𝐹4| =   𝛾𝑒
Ι(𝐺) ∈ ℑ . 

            In  B (G ) ,  |𝑋1| = |𝐴1|  and  ∃  𝑋2
Ι ⊂ 𝑋2  such  that  𝑋1 ∪ 𝑋2

Ι   forms  𝛾𝑒𝑏
Ι - set  where  𝑋2

Ι   

is  the  minimal  edge  dominating  set  of  〈𝐸(𝐵(𝐺)) ∖ (𝑋1⋃ 𝑁(𝑋1))〉 .   

Then |𝑋1 ∪ 𝑋2
Ι | =  𝛾𝑒𝑏

Ι (G )  which  belongs  to  ℜ. 

In  next  lemmas 7, lemma 8 and 9 we  consider  𝐴1 ≠ 𝜙, 𝐴2 ≠ 𝜙. 

Lemma 7: If 𝐴1 ≠ 𝜙, 𝐴2 ≠ 𝜙 and each block 𝐵𝑖 ∈ 𝐴1 has p ≥ 3  vertices,  each block 𝐵𝑗 ∈  𝐴2  

has p ≥ 3 vertices then  𝛾𝑒
Ι(𝐺) ≅ 𝛾Ι(𝐺)  and   𝛾𝑒𝑏

Ι (𝐺) ∈ ℜ. 

Proof :  If  each  block  of  A1  and  A2  has  3  or  more  than  three  vertices,  then  ∃  a  set of  

edges  𝐹1 ⊂ 𝐸(𝐺) such  that  every  edge  in  E (G ) \ F1  is  adjacent to at  least  one  edge  in  F1 . 

Hence F1 forms  𝛾Ι– set in G  and  since  𝐸𝑒 = 𝜙,  |𝐹1| =   𝛾Ι(𝐺) = 𝛾𝑒
Ι(𝐺) . 

            In B (G ), |𝑋1| = |𝐻1| = |𝐴1| and ∃ a minimal edge dominating  set  𝑋2
Ι ⊂ 𝑋2  of  induced  

subgraph  〈𝑋2 ∖ (𝑋1 ∪ 𝑁(𝑋1))〉  such  that  𝑋1 ∪ 𝑋2
Ι   forms  𝛾𝑒𝑏

Ι - set ∈ ℜ .   

Then  |𝑋1 ∪ 𝑋2
Ι | =  𝛾𝑒𝑏

Ι (G ). 

Lemma 8 : If  𝐴1 ≠ 𝜙  and  each  block 𝐵𝑖 ∈ 𝐴1 has  p ≥ 3 vertices, 𝐴2 ≠ 𝜙 and  𝐴2
Ι ⊆ 𝐴2 

where  𝐴2
Ι  is  set  of  endedges  each has degree  ≥  2,  then  𝛾𝑒

Ι(𝐺) ∈ ℑ  and   𝛾𝑒𝑏
Ι (𝐺) ∈ ℜ. 

Proof: Let  𝐴2
Ι ⊆ 𝐴2  be set of all endedges in G. Let  F2  be  the  minimal  edge   dominating  set  

of  induced  subgraph  〈𝐸(𝐺) ∖ (𝐴2
Ι ⋃𝑁(𝐴2

Ι ))〉 .  Then  𝐹2 ∪ 𝐴2
Ι  forms   𝛾𝑒

Ι – set  in  G  and  

|𝐹2 ∪ 𝐴2
Ι | = 𝛾𝑒

Ι(𝐺) . Since  𝐴2
Ι ≅ 𝐸𝑒 , 𝛾𝑒

Ι(𝐺) ∈ ℑ . 
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             In B (G ),  𝑋1 ∪ 𝑋2
Ι  forms  𝛾𝑒𝑏

Ι - set  where  𝑋2
Ι ⊂ 𝑋2 is  the  minimal  edge  dominating      

set  of  induced  subgraph  〈𝐸(𝐵(𝐺)) ∖ (𝑋1 ∪ 𝑁(𝑋1))〉  which  ∈ ℜ  and  |𝑋1 ∪ 𝑋2
Ι | =  𝛾𝑒𝑏

Ι (G) . 

Lemma 9 : If  𝐴1 ≠ 𝜙, 𝐴2 ≠ 𝜙 and  each  block 𝐵𝑗 ∈ 𝐴2 has  p ≥ 3 vertices, 𝐴1
Ι ⊆ 𝐴1 is  set  of  

all  endedges  with  degree  1 then  𝛾𝑒
Ι(𝐺) ∈ ℑ  and   𝛾𝑒𝑏

Ι (𝐺) ∈ ℜ. 

Proof :  Let  , 𝐴1
Ι ⊆ 𝐴1 is  set  of  all  endedges  with  degree  1  in  G.  Then  𝐴1

Ι ≅ 𝐸𝑒 and ∃ a 

minimal  edge  dominating  set  F3  of   〈𝐸(𝐺) ∖ (𝐴1
Ι ⋃𝑁(𝐴1

Ι ))〉  such  that  𝐹3 ∪ 𝐴1
Ι   forms   𝛾𝑒

Ι – 

set ∈ ℑ .  Then  |𝐹3 ∪ 𝐴1
Ι | = 𝛾𝑒

Ι(𝐺) . 

               In  B (G ), |𝑋1| = |𝐴1|  and  ∃  a minimal  edge  dominating  set  𝑋2
Ι ⊂ 𝑋2  of  induced     

Subgraph  〈𝐸(𝐵(𝐺)) ∖ (𝑋1 ∪ 𝑁(𝑋1))〉  such  that  𝑋1 ∪ 𝑋2
Ι   forms  𝛾𝑒𝑏

Ι - set   ∈ ℜ .    

Then  |𝑋1 ∪ 𝑋2
Ι | =  𝛾𝑒𝑏

Ι (G). 

Lemma 10: If 𝐴1 ≠ 𝜙, 𝐴2 ≠ 𝜙 and each block of 𝐴1 𝑎𝑛𝑑  𝐴2 has p = 2 vertices, then 𝛾𝑒
Ι(𝐺) ∈ ℑ  

and  𝛾𝑒𝑏
Ι (𝐺) ∈ ℜ.   

Proof:  Since A1 and A2 have all edges, {𝐴1 ∪ 𝐴2} ≅ 𝐸𝑒 . Then ∃  a minimal edge dominating set 

F5 of   〈𝐸(𝐺) ∖ (𝐸𝑒⋃𝑁(𝐸𝑒))〉  such that   𝐸𝑒 ∪ 𝐹5  forms  𝛾𝑒
Ι – set which belongs to ℑ .  Then  

|𝐸𝑒 ∪ 𝐹5| = 𝛾𝑒
Ι(𝐺) . 

                   In  B (G ) ,  |𝑋1| = |𝐴1|  and  ∃  a minimal  edge  dominating  set   𝑋2
Ι ⊂ 𝑋2 of     

induced  subgraph  〈𝐸(𝐵(𝐺)) ∖ (𝑋1 ∪ 𝑁(𝑋1))〉  such  that  𝑋1 ∪ 𝑋2
Ι   forms  𝛾𝑒𝑏

Ι - set  belongs to     

ℜ . Then  |𝑋1 ∪ 𝑋2
Ι | =  𝛾𝑒𝑏

Ι (G ). 

Now we prove Theorem 4. 

PROOF OF THE THEOREM 4: 

        Let  𝑆𝑒
Ι   be   𝛾𝑒

Ι – set  and  Se  be   𝛾𝑒𝑏 
Ι - set in  G  and  B (G )  respectively . From  Lemma  1,  

lemma 4  and  7  either  𝐴1 = 𝜙  or  each  block 𝐵𝑖 ∈ 𝐴1 has p ≥ 3  vertices  and  either  𝐴2 =

𝜙  or  each  block 𝐵𝑗 ∈ 𝐴2 has  p ≥ 3  vertices  in  G. Then  𝐸𝑒 = 𝜙 in G  and  𝛾𝑒
Ι(𝐺) = 𝛾Ι(𝐺) . 

        In  B (G ),  |𝑋1 ∪ 𝑋2
Ι | =  𝛾𝑒𝑏

Ι (G )  where  X1  is set  of  all  endedges  and  𝑋2
Ι ⊂ 𝑋2  where  X2 

= E (B (G )) \ X1 .  

Either 𝑋1 = 𝜙 ,  𝑋2
Ι ⊂  𝑋2   or  𝑋1 ≠ 𝜙 , 𝑋2

Ι ⊂ 𝑋2  in B (G). Since |𝐴1| =  |𝐻1| = |𝑋1|   and  

|𝐴2 ∪ 𝐴3| = |𝐻2 ∪ 𝐻3| ≥ |𝑋2| , Clearly |𝑋1 ∪ 𝑋2
Ι |  ≤  𝛾𝑒

Ι (G) gives 𝛾𝑒𝑏
Ι (𝐺) ≤ 𝛾𝑒

Ι(𝐺) +  ⌊
𝑚−1

2
⌋ . 

From lemma 2 and lemma 3, 𝐴1 = 𝜙  and each block 𝐵𝑗 ∈ 𝐴2
Ι ⊆ 𝐴2  has exactly two vertices.  
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Then  𝐴2
Ι ≅ 𝐸𝑒 ≠ 𝜙  in G and   𝑆𝑒

Ι = 𝐴2
Ι ∪ 𝐹2 is  𝛾𝑒

Ι - set where F2 is minimal edge dominating  

set of  〈𝐸(𝐺) ∖ 𝐴2
Ι ⋃𝑁(𝐴2

Ι ))〉 . 

In B (G )  𝑋1 = 𝜙  and  𝑆𝑒 = 𝑋2
Ι   where  𝑋2

Ι ⊂ 𝑋2 forms  𝛾𝑒𝑏
Ι - set.  

Clearly  |𝑋2
Ι | ≤ |𝐴2

Ι ∪ 𝐹2|  gives   𝛾𝑒𝑏
Ι (𝐺) ≤ 𝛾𝑒

Ι(𝐺) +  ⌊
𝑚−1

2
⌋. 

From  lemma 5,  lemma 6  and  9  either  each  block  of  𝐴1
Ι ⊆ 𝐴1  has  exactly  two  vertices  

and  𝐴2 = 𝜙  or each  block  of  𝐴1
Ι ⊆ 𝐴1  has   exactly  two  vertices  and  each  block of 𝐴2  has  

p ≥ 3 vertices. Then  𝐴1
Ι ≅ 𝐸𝑒 and  𝑆𝑒

Ι = 𝐸𝑒 ∪ 𝑄𝑒  where Qe  is  minimal  edge  dominating  set  

of  〈𝐸(𝐺) ∖ (𝐸𝑒⋃𝑁(𝐸𝑒))〉 .  

In B (G ),  𝑋1 ≠ 𝜙  𝑎𝑛𝑑  𝑆𝑒 = 𝑋1 ∪ 𝑋2
Ι  where 𝑋2

Ι  is the minimal edge dominating set of   induced  

subgraph  〈𝐸(𝐵(𝐺)) ∖ (𝑋1 ∪ 𝑁(𝑋1))〉 .  

 Obviously |𝑆𝑒| ≤ |𝑆𝑒
Ι| + ⌊

𝑚−1

2
⌋  where m is number of end blocks of G. 

From  Lemma  8,  each  block 𝐵𝑖 ∈ 𝐴1 has  p ≥ 3 vertices  and  each  Bj  of  𝐴2
Ι ⊆ 𝐴2 has  exactly  

2  vertices. Then   𝐴2
Ι ≅ 𝐸𝑒 and  𝑆𝑒

Ι = 𝐸𝑒 ∪ 𝑄𝑒  where Qe is minimal edge dominating  set of  

〈𝐸(𝐺) ∖ (𝐸𝑒⋃𝑁(𝐸𝑒))〉  in G. 

In B (G ),  𝑆𝑒 = 𝑋1 ∪ 𝑋2
Ι  where  𝑋2

Ι   is  the minimal  edge  dominating  set  of induced  subgraph  

〈𝐸(𝐵(𝐺)) ∖ (𝑋1 ∪ 𝑁(𝑋1))〉 . Then   |𝑆𝑒| ≤ |𝑆𝑒
Ι | ≤ |𝑆𝑒

Ι | + ⌊
𝑚−1

2
⌋   gives the result. 

From lemma 10, each block of A1 and A2 has exactly two vertices. Then 𝐴1 ∪ 𝐴2 = 𝐸𝑒  in G. 

Hence   𝑆𝑒
Ι = 𝐸𝑒 ∪ 𝑄𝑒  where Qe is minimal edge dominating set of  〈𝐸(𝐺) ∖ (𝐸𝑒⋃𝑁(𝐸𝑒))〉 . 

In B (G ),  𝑆𝑒 = 𝑋1 ∪ 𝑋2
Ι  where  where|𝐴1| = |𝑋1| and  𝑋2

Ι ⊂ 𝑋2  . Clearly, |𝑆𝑒| ≤ |𝑆𝑒
Ι| gives   

𝛾𝑒𝑏
Ι (𝐺) ≤ 𝛾𝑒

Ι(𝐺) ≤ 𝛾𝑒
Ι(𝐺) +  ⌊

𝑚−1

2
⌋ . 

Theorem 5 : Every  endblock  adjacent  to  exactly  one  block  in  G  is  in  every  𝛾𝑒𝑏
Ι  – set. 

Proof  :  Set  of  endblocks,  each  one  is  adjacent  to  exactly  one  block  in  G  forms  a   set  

𝐻𝑒 ⊆ 𝐻 in  B (G )  where  He  is  set  of  all  end  vertices  of  degree 1  and  H  is set  of  all  

vertices  in  B (G ).  Clearly  |𝐻𝑒| = |𝑋1| where X1 is set of all endedges belongs to 𝛾𝑒𝑏
Ι  – set. 

Hence the result. 

Further  theorems  provide relations between 𝛾(𝐵(𝐺)) , 𝛾𝑒𝑏
Ι (𝐺) and  number  of  blocks  n  of  G.  

Theorem 6:  For any connected graph G with n ≥ 2 blocks,  𝛾(𝐵(𝐺)) ≤  𝛾𝑒𝑏
Ι (𝐺) . 
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Proof: Let 𝐻 = 𝐻𝑒 ∪ 𝐻𝑛 be set of all vertices in B (G ) where He  is  set  of  all  endvertices  and  

Hn  is  set  of  all  nonendvertices .  Let  X1  is  set  of  all  endedges  and  X2 = E (B (G )) \ X1  in  

B (G ). We consider the following cases. 

Case 1: Suppose 𝐻𝑒 = ∅, 𝐻𝑛 ≠ ∅. Then  𝑋1 = ∅ .Let  Db = { bi }, i < n   be  the  vertex  

dominating  set  of  B (G ). Let  𝐹 ⊂ 𝑋2
Ι   where 𝑋2

Ι   is the minimal edge dominating  set  of  B (G )  

and  𝑋2
Ι = 𝐹 ∪ 𝑄𝑓  where  Qf  is  the  minimal  edge dominating  set of  〈𝐸(𝐵(𝐺)) ∖ (𝐹⋃𝑁(𝐹))〉  

such  that  𝐹 𝑎𝑛𝑑  𝑁(𝐹)  are incident with  𝑏𝑖 ∈ 𝐷𝑏. Since  𝑋1 = ∅ , each  vertex  of  Db  is  

associated  with  at  least  one  edge  of  𝑋2
Ι   clearly  |𝐷𝑏| ≤ |𝑋2

Ι | gives  the  result. 

Case 2: Suppose  𝐻𝑒 ≠ ∅ , 𝐻𝑛 ≠ ∅.  We consider following subcases. 

Subcase 2.1:  Suppose B (G ) has exactly one cutvertex. Then  𝑋1 ≠ ∅ , 𝑋2 = ∅  or   

 𝑋1 ≠ ∅ , 𝑋2 ≠ ∅ or 𝑋1 = ∅ , 𝑋2 ≠ ∅. 

Clearly  |𝐷𝑏| = 1 ≤ |𝑋1| or  |𝑋1 ∪ 𝑋2
Ι |  or  |𝑋2

Ι | gives  𝛾(𝐵(𝐺)) ≤  𝛾𝑒𝑏
Ι (𝐺) . 

Subcase 2.2:  Suppose B (G ) has more than one cutvertices.  Then  𝑋1 ≠ ∅ , 𝑋2 ≠ ∅. 

   Let  𝑁(𝐻𝑒) = 𝐻𝑒
Ι  .  Then  𝐷𝑏 = 𝐻𝑒

Ι ∪ 𝐻𝑛
Ι   where  𝐻𝑛

Ι  is γ – set of 〈𝐻𝑛 ∖ (𝑁(𝐻𝑒
Ι )⋃𝐻𝑒

Ι )〉 and  

𝑋1 ∪ 𝑋2
Ι   forms  𝛾𝑒𝑏

Ι  – set where  𝑋2
Ι   is  γI – set of 〈𝑋2 ∖ (𝑋1 ∪ 𝑁(𝑋1))〉 .  

 Clearly  |𝐻𝑒
Ι ∪ 𝐻𝑛

Ι | ≤  |𝑋1 ∪ 𝑋2
Ι | gives the  result. 

Theorem 7: For any connected graph G with n ≥ 2 blocks, ((𝐵(𝐺)) + 𝛾𝑒𝑏
Ι (𝐺) ≤ 𝑛 . 

Proof:  We consider the following cases. 

Case 1: Suppose B (G ) has endedges. Let  X1 = {q1, q2, ……, qm }be set of  all endedges in B (G ).  

Let {E (B (G)) \ X1} = X2 and  𝑋2
Ι ⊆ 𝑋2  is  𝛾Ι - set of 〈𝑋2 ∖ (𝑋1 ∪ 𝑁(𝑋1))〉. Then  𝑋1 ∪ 𝑋2

Ι   

forms  𝛾𝑒𝑏
Ι  – set in B (G). 

Let  𝑋1
Ι =  {𝑞1, 𝑞2, … … . , 𝑞𝑖} , i ≤ m be the set of edges adjacent to X1. Then  𝐻2

Ι =  {𝑏𝑖} , i ≤ m 

denote the γ – set of the induced subgraph  〈𝑋1 ∪ 𝑋1
Ι〉 .     

Further let 𝐸(𝐵(𝐺)) ∖ 𝑋1 ∪ 𝑋2
Ι = 𝑋3 such  that  H3 = { bj }, j < n be  the  set of vertices  incident  

to  the  edges  of  〈𝑋3〉  but  not  to  the  edges  of  〈𝑋1 ∪ 𝑋1
Ι〉. 

Suppose  𝐻3
Ι ⊆ 𝐻3 denotes minimal vertex dominating set of 〈𝑋3〉. Then 𝐻2

Ι ∪  𝐻3
Ι   is minimal 

vertex dominating set of  B (G).  

Clearly,  |𝑋1 ∪ 𝑋2
Ι | + |𝐻3

Ι ∪ 𝐻2
Ι | ≤ 𝑛 . Hence  𝛾(𝐵(𝐺)) + 𝛾𝑒𝑏

Ι (𝐺) ≤ 𝑛 . 

Case 2 :   If  B (G )  has  no  endedges, let  Db  be  the  minimal vertex dominating set  of B (G ). 

Let  𝑆𝑒 = {𝑞1, 𝑞2, … … … , 𝑞𝑙} , l < n be the  𝛾𝑒𝑏
Ι - set of  B (G).  
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Suppose  D2 = { bt }, t < n  be  the  set  of  vertices  incident  to  the  edges  of  Se .      

Assume ∀ 𝑏𝑖 ∈ 𝐷𝑏  are incident with some  𝑞𝑖 ∈ 𝑆𝑒 ,   𝐷2 ∖ 𝐷 = 𝐷2 
Ι  𝑎𝑛𝑑 𝐷2

Ι ≅ 𝑉 − 𝐷𝑏 , then  

|𝐷2
Ι | + |𝐷𝑏| = 𝑛  otherwise  |𝐷2

Ι | + |𝐷𝑏| < 𝑛  . 

 Hence from all the cases  𝛾(𝐵(𝐺)) + 𝛾𝑒𝑏
Ι (𝐺) ≤ 𝑛 . 

Theorem 8:  For any connected graph G,  𝛾𝑒𝑏
Ι (𝐺) ≤  ⌊

𝑝

2
⌋ 

Proof :  Let  𝑆𝑒 = {𝑞1, 𝑞2, … … … , 𝑞𝑙}   be  the  𝛾𝑒𝑏
Ι - set of  B (G )  and    𝑋1 = {𝑞1, 𝑞2, … … … , 𝑞𝑚}   

be  the  set  of  all  endedges  in  B (G ) ,  X2 = E (B (G )) \ X1 . We consider the following cases. 

Case 1 :  If  𝑋1 = 𝜙, then  ∃  a  set  𝑋2
Ι ⊆ 𝑋2  such  that  every  edge  of  𝑋2 ∖ 𝑋2

Ι  is  adjacent  to  

at least  one  edge  of  𝑋2
Ι . Hence 𝑋2

Ι  forms  𝛾𝑒𝑏
Ι - set  of  B (G )  and  since  each  block  of  G  

contains  at  least  two  vertices, the  result  is  obvious. 

Case 2:  If  𝑋1 ≅ 𝑆𝑒, then clearly  |𝑋1| ≤ ⌊
𝑝

2
⌋  because each  𝑞𝑖 ∈ 𝑋1 contains  at  least  two    

blocks  of  G  and  each  block  of  G has  at  least  two  vertices. 

Case 3:  If  𝑋1 ⊂ 𝑆𝑒, then  𝑋1 ∪ 𝑋2
Ι  forms  𝛾𝑒𝑏

Ι - set  where  𝑋2
Ι ⊂ 𝑋2 is  the dominating  set  of   

〈𝑋2 ∖ (𝑋1 ∪ 𝑁(𝑋1))〉 . Clearly  |𝑋1 ∪ 𝑋2
Ι | = |𝑆𝑒| ≤ ⌊

𝑝

2
⌋ . 
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