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Abstract. For any graph G (V; E) , a block graph B(G ) is a graph whose vertices are corresponding to the blocks of
G and two vertices in B(G ) are adjacent whenever the corresponding blocks contain a common cutvertex in G . An
edge dominating set s, of a block graph B(G ) is an endedge block dominating set if s, contains all endedges of
B(G) . The endedge block domination number y;, (&) is the minimum cardinality of an endedge block dominating
set . In this paper some bounds for y,, (&) are obtained in terms of elements of G . Further exact values of y.,(G)
for some standard graphs and relationships with other dominating parameters were obtained.
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Introduction

In this paper We follow the notations and terminology of Harary [1]. We consider
connected, undirected, finite graphs without loops. Let ¢ = (V;, E) be a graph with |[V| =
p and |E| = q. n denotes number of blocks of G. N (v) and N [v] denote the open and closed
neighborhoods of a vertex v respectively in G. The degree of an edge e = u vof Gis defined by
deg e=degu + deg v - 2. The maximum degree of a vertex in G is denoted by 4(G ) and the
minimum degree of a vertex in G is denoted by 5(G) .

A vertex v of Vis called a cutvertex if its removal from ¢ increase the number of
components of G. A nontrivial connected graph with no cutvertex is called a block. A block
incident with exactly one cutvertex is called an endblock. A block incident with more than one

cutvertex is called a nonendblock.
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A set D of a graph G=(V, E) is a dominating set if every vertex in V' - Dis adjacent
to some vertex in D . The domination number y(G) of & is the minimum cardinality of
a minimal dominating set . A set F ofedges in a graph G=(V, E) is called an edge
dominating set of G if every edge in £ - Fis adjacent to at least one edge in F . The
edge domination number y!(G) is the minimum cardinality of an edge dominating set of
G . Edge domination was introduced by S. Mitchell and S. T. Hedetniemi [2] and is now
well studied in graph theory. The edge dominating set is called an endedge dominating set
if all endedges belong to edge dominating set of G .

The endedge domination number yI(G) is the minimum cardinality of endedge
dominating set of G Endedge domination is introduced by M.H.Muddebihal and
A.R.Sedamkar [3]. A block graph B (G) is a graph whose vertices are corresponding to
the blocks of Gand two vertices in B (G ) are adjacent whenever the corresponding
blocks contain a common cutvertex in G. A set D» of ablock graph B (G )=(H, X) is
a dominating set if every vertex in H - D is adjacent to some vertex in Dp The
domination number y(B(G)) is the minimum cardinality of a minimal block dominating set.
Block domination is introduced by M. H. Muddebihal, T. Srinivas and Abdul Majeed [4]. We
are introducing endedge block domination in this paper and we obtain certain bounds on

Yep (G) in terms of vertices, blocks and other parameters of G

Results
Initially we begin with endedge block domination number of a graph of some
standard graphs, which are straight forward in the following theorem.
Theorem 1: (i) For any star K7, , with p > 2 ,y;b(kllp) = pT_l, if pis odd.
= g, if p is even.
(i) Forany path B, with p> 3, y!, (Pp) = g, if p=0 (mod3) .
= [2], otherwise.
3

In the following theorem we obtain upper bound for y.,(G) in terms of number of blocks of G.
Theorem 2 : For any connected graph G with n > 2 blocks , y!,(G) < n — 1. Equality

holds for B(G) = K; ,—1 Where n is number of blocks of &.
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Proof : Let G be any nontrivial connected graph with A={ B}, 2 < i < n Dblocks. Let
Se={q1, g2, .., v}, 1< n be yl,-set in B (G) such that |S,| = yl,(G). We prove the
result by induction on number of blocks of é.
Let Gbe a graph with 7= Zblocks. Then S, = {q;},j =1 and
ISel = Yep(@) =n—-1=2-1.
Let Gbe a graph with n = 3blocks. Then S, = {q,,q,} and
ISel = vep(6) =n—1=3-1.
Assume that the result is true for n = ¢ blocks. Then y!,(G) <t — 1.
Suppose Ghas n = t + 1 blocks. Then the corresponding block vertex of (¢ + )™ block of G
is either an endvertex or a nonendvertex incident with either an endblock or a nonend
block respectively in B(G).
Then clearly |S,| = ¥, (G) <t — 1+ 1givesy},(6) < (t+1)— 1.
Equality for B(G) = K; ,_1 is obvious.
Following corollary gives equality for y., (G).
Corollary 1: For any connected graph Gwith n> 2 blocks with exactly one cutvertex,
vL(6) = ”7‘1 if nis odd.
=~ if nis even.
Proof : If G has exactly one cutvertex , then B(G) is complete graph and number of
vertices of B(G) is n. By Theorem 1 clearly result follows.

In next theorem we obtain upper bound in terms of n for y!, (T).
Theorem 3: For any tree with n—blocks y.,(T) < EJ ifandonly if T % P,.
Proof: For necessary condition,

Suppose y.,(T) < EJ for any tree 7.
If T= P, then n =3and BJ = 1. The corresponding B(T) = P; and y.,(T) = 2.

Then y!,(T) > BJ a contradiction . Hence T % P,.

For sufficient condition consider T % P,.

Suppose 7= B, , p # 4. Then maximum number of blocks in Tare n =p - 1.

From Theorem 1, y{,(B,) = g < lpT_l , if p=0 (mod 3).
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- E] < [pT_lJ , p # 4 otherwise gives the result.

Theorem 4: For any connected graph & with m endblocks, y.,(G) < yl(G) + lmTHJ .The

proof of the Theorem 4 requires some lemmas. Before the lemmas we construct some sets

in ¢ as well as in B(G) so that to give the proofs of lemmas.

Setsin Gare

Ee={ese...,e}isa set of all endedges.

En=E(G)\ Ee

E,=E,VE,

Ar ={B1, Bz ...,B}is a set of endblocks such that each block is adjacent to exactly one

block.

Az={B1, Bz ...,B}is a set of endblocks such that each block is adjacent to more than

one block.

Az ={B1, Bz, ....,Bx} is aset of all nonendblocks.

A=A UA, UA;.

We define a family as 3 = {E, U (E(G) \ N(E.))}in G.

Setsin B(G) are as follows.

H={ b1 b ..., bn } is a set of all vertices.

Hi={ b1 b ....,bi} is a set of all endvertices of degree 1.

Hz={ b1, b, ....,.bj } is a set of all nonend noncutvertices.

Hs={ b1, b ....,br } is a set of all cutvertices.

X1={q1qz....,q: } s a set of all endedges.

Xz=E(B(G))\ X1

We now define a family R = {X; U (X, \ N(X;))} in B(G).

We consider 47= ¢ in Lemma 1, lemma 2 and 3.

Lemma 1: If A:= ¢ and each block B; € A, has p> 3 vertices, then , ¥ (G) = y'(G) and
Véb(G) € X;.

Proof: Let F; c E;. If Az=¢ and each block B; € A, has p> 3 vertices, then for each

edge e€ F;, 3 an edge e; € {E;\ F;} such that N(e;) nF, ={e}. Hence F: forms
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minimal edge dominating set in G Then |F;| = ¥!(G). Since A:= ¢ and each block of 4,
has p> 3 vertices, y1(G) = y(G).

InB (G ), H, =¢.Then X, =¢ and 3 X} c X, such that every edge in X, \ X} is
adjacent to at least one edge in X}. So X1 forms yl, —set and |X1| = v&,(G).
Lemma 2: If Az= ¢ , each block B; € A, has exactly two vertices, then v&(G) € S and

Ver(G) € Xs.

Proof.: Let Az=¢ and each block B; € A, has exactly two vertices. Then A, = E, and
E(G)\ A, = E, . Let F, c E, be the minimal edge dominating set of induced Subgraph
(E, \ N(4,)).Then F, U A4, forms y!—set which belongsto Jand |F, U 4,| = yX(G) .

In B (G ), endedge set X; =¢ and I X.c X, such that each q; € X,\ X} is
adjacent to at least one edge q; € X. Then X} forms yl, —set and |Xi| = yi,(6).
Lemma 3: If A7=¢ and some blocks B; € A, have exactly two vertices, then y;(G) € 3

and y.,(G) € X,.
Proof : Let AL c A4, be set of endblocks and each block of AL has exactly two vertices.
Then A, =E, and E(G)\A,=E,.3 an edge dominating set F, c E, of induced
subgraph (E, \ N(AL)) such that F, u AL forms y!—set which belongs to & and
|F, U 4y| = vi(6) .

In B (G ), X} c X, forms yl, —set because each edge in X, \ X} is adjacent to at

least one edge in X1. Then |X}|=vi,(6).
In further lemma 4, lemma5 and 6, we consider Az = ¢.
Lemma 4: If each block B; € A; has p> 3vertices and Az = ¢ , then y}(G) = ¥'(G) and

ver(G) € R.
Proof: Let A-=¢ and each block B; € A, has p> 3vertices. Then E, = ¢ and 3 set of
edges F; C Eg in G such that each edge in Ej \ F; is adjacent to at least one edge of F; .
So F; forms minimal edge dominating set. Since E, = ¢, |F;| = y'(G) = y1(G).

In B (G ), |H,| = |X,|. Let X} cX, be the minimal edge dominating set of

(X3 \ (N(X1) U X1)). Then X, U X} forms yl, —set and |X; UX}| =v1,(G) € R.
Lemma 5: If each block B; € A, has exactly two vertices and Az= ¢ , then ¥}(G) € 3

and y.,(G) € R.
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Proof: Let A>=¢, each block B; € A, has p = 2 vertices. Then A; = E,and 3 a minimal
edge dominating set /3 of induced subgraph (E, \ (A; UN(A,)) such that A; U F; forms
vd-set. |[4; U F3| = yX(G) which belongs to 3.
In B (G ), |X;] = |A;] and X} is the minimal edge dominating set of
(X, \ (N(X1) U X1)).Then X; U X3 forms yl, —set and |X; U Xi| = y{,(G) which belongs
to ‘R.
Lemma 6: If some blocks B; € A; have exactly two vertices and Az= ¢ , then y2(G) € I
and y!,(G) € R.

Proof : Let some blocks B; € A; have exactly p = 2 vertices and A2 = ¢. Then I a
minimal edge dominating set £z of (E(G) \ (A} U N(4}))) where A} c A, is set of all endedges.
So A} =E, and A} UF, forms y}—set. Then |[ALUF,|= ¥(G)€S.

In B(G), |X,] =14;] and 3 X} € X, such that X; U X} forms y!,-set where X}
is the minimal edge dominating set of (E(B(G)) \ (X;U N(X))).
Then |X; U X}| = y1,(G) which belongs to .
In next lemmas 7, lemma 8 and 9 we consider A; # ¢, A, # ¢.
Lemma 7: If A, # ¢, A, # ¢ and each block B; € A; has p> 3 vertices, each block B; € A,
has p> 3 vertices then y1(G) = ¥'(G) and y.,(G) € R.
Proof : If each block of As and A- has 3 or more than three vertices, then 3 a set of
edges F; c E(G) such that every edge in £ (G )\F1 is adjacent to at least one edge in F;.
Hence F; forms y'-setin G and since E, = ¢, |F;| = y'(G) =v.(G) .

In B (G), |X;| = |H;| = |A,| and 3 a minimal edge dominating set X c X, of induced
subgraph (X, \ (X; U N(X,))) such that X; U X} forms y!,-sete R .
Then |X, U X1| = v, (G).
Lemma 8 : If A; #¢ and each block B; € A, has p > 3 vertices, 4, # ¢ and AL € A,
where Al is set of endedges each has degree > 2, then y)(G) € 3 and ¥.,(G) € R.
Proof: Let A, € A, be set of all endedges in G. Let F2 be the minimal edge dominating set
of induced subgraph (E(G)\ (ALUN(AL))). Then F,u4) forms yl-set in & and
|F, u AL =vL(G) . Since AL = E,, yi(G)ES.
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In B (G ), X,UX}forms y!,-set where X! c X,is the minimal edge dominating
set of induced subgraph (E(B(G)) \ (X; UN(X1))) which € R and |X; U X}|= v.,(G).
Lemma 9:If A; # ¢, A, # ¢ and each block B; € A, has p > 3 vertices, Al € A, is set of
all endedges with degree 1then y}(G) € and y.,(G) € R.
Proof : Let , Al € A, is set of all endedges with degree 1 in G. Then Al =E,and3a
minimal edge dominating set F3 of (E(G)\ (A'UN(A!))) such that F; u A} forms y)!-
seteJ. Then |F3 U Al =¥(6) .

In B (G),|X,| =14,] and 3 aminimal edge dominating set X, c X, of induced

Subgraph (E(B(G)) \ (X; UN(X;))) such that X; U X} forms y!,-set € R.
Then |X; U X1| = vip(0).
Lemma 10: If A; # ¢, A, # ¢ and each block of A; and A, has p = 2vertices, thenyl(G) € I
and y!,(G) € R.
Proof: Since A;and Az have all edges, {4; U A,} = E, . Then 3 a minimal edge dominating set
Fsof (E(G)\ (E,UN(E,))) such that E,uUFs forms y!— set which belongs to 5. Then
|E. U Fs| = 72(G) .

In B (G), |X;|=]4;] and 3 a minimal edge dominating set X! c X, of
induced subgraph (E(B(G))\ (X; UN(X;))) such that X; u X} forms y.,- set belongs to
R . Then |X; U X}| = v5,(G).

Now we prove Theorem 4.
PROOF OF THE THEOREM 4:

Let S! be yl-set and Se be yl,-setin G and B (G ) respectively . From Lemma 1,
lemma 4 and 7 either A; = ¢ or each block B; € A, has p> 3 vertices and either A, =
¢ or each block B; € A, has p> 3 vertices in G Then E, = ¢ in ¢ and y;(G) = y'(G) .

In B(G), |X; UX}| = vi(G) where Xi isset of all endedges and X} c X, where Xz
= E(B(G))\ X:1.

Either X, = ¢, X, c X, or X, #¢,XcX, in B (G). Since |A,| = |H{| = |X;| and
|A; U As| = |Hy U Hs| = |X,], Clearly |X; U Xi| < yd(6) gives 5, (G) < yi(G) + lmT_lj :

From lemma 2 and lemma 3, A; = ¢ and each block B; € A, € A, has exactly two vertices.
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Then AL =E, #¢ in Gand S! =ALUF,is y!- set where F7is minimal edge dominating
set of (E(G)\ ALUN(4Y))).

In B(G) X, = ¢ and S, = X} where X} c X, forms y!,- set.

Clearly |X3| < |4} U | gives yi,(G) < vi(G) + [mT_lj

From lemma5, lemma 6 and 9 either each block of A! € A, has exactly two vertices
and A, = ¢ oreach block of A} € A, has exactly two vertices and each block of 4, has
p> 3vertices. Then A} = E, and S! = E, U Q, where Q- is minimal edge dominating set
of (E(G) \ (EcUN(E,))) .

InB(G), X, # ¢ and S, = X, U X} where X} is the minimal edge dominating set of induced
subgraph (E(B(G)) \ (X1 UN(X1))) .

Obviously |S,| < |S!| + lmT_lj where m is number of end blocks of G.

From Lemma 8, each block B; € A, has p> 3vertices and each B of AL € A, has exactly
2 vertices. Then AL =E,and S! =E,uQ, where Qe is minimal edge dominating set of
(E(G) \ (E.UN(E,))) inG.

InB (G), S, =X, U X}, where X! is the minimal edge dominating set of induced subgraph
(E(B(G)\ (X, UN(X)).Then |S,.| < |S}| < S+ lmT_IJ gives the result.

From lemma 10, each block of 4: and Az has exactly two vertices. Then A, UA, = E, in G
Hence S! = E, U Q, where Qis minimal edge dominating set of (E(G) \ (E.UN(E,))) .

In B (G ), S, =X,U X}where where|4;| = |X,|and X} c X, . Clearly, |S,| < |S!| gives
Vi (6) < V6 < VO + [= .

Theorem 5 : Every endblock adjacent to exactly one block in G is in every y!, —set.
Proof : Set of endblocks, each one is adjacent to exactly one block in & forms a set
H, € Hin B (G) where He is set of all end vertices of degree 1 and A isset of all

vertices in B (G ). Clearly |H,| = |X;| where X is set of all endedges belongs to y., — set.

Hence the result.
Further theorems provide relations between y(B(G)) , y.,(G) and number of blocks n of G.

Theorem 6: For any connected graph Gwith n> Zblocks, y(B(G)) < v.,(G) .
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Proof: Let H = H, U H,, be set of all vertices in B (G ) where He is set of all endvertices and
Hys is set of all nonendvertices. Let X7 is set of all endedges and Xz= E(B (G ))\ Xz in
B(G). We consider the following cases.
Case 1: Suppose H, = @, H, # @. Then X; =0 .Let Do={ bi}, i < n be the vertex
dominating set of B (G ). Let F c X} where X} is the minimal edge dominating set of B (G )
and Xj = FU Q; where Qris the minimal edge dominating set of (E(B(G)) \ (FUN(F)))
such that F and N(F) are incident with b; € D,. Since X; = @, each vertex of Dy is
associated with at least one edge of X} clearly |D,| < |X§| gives the result.
Case 2: Suppose H, # @, H, + ©. We consider following subcases.
Subcase 2.1: Suppose B(() has exactly one cutvertex. Then X; #@,X, =@ or
X, #0,X,#0o0orX; =0,X, # 0.
Clearly |D,| =1 < |X;|or |X; UX}| or |X1| gives y(B(G)) < v&p(G).
Subcase 2.2: Suppose B () has more than one cutvertices. Then X; # @,X, # @.

Let N(H,)=H!. Then D, =H!UH. where H}isy — set of (H, \ (N(H))UH))) and
X, U X} forms yl, —setwhere X} is y'—setof (X, \ (X; UN(X,))).
Clearly |H} U HL| < |X, U X}| gives the result.
Theorem 7: For any connected graph Gwith n> 2blocks, ((B(G)) +y.,(G) <n.
Proof: We consider the following cases.
Case 1: Suppose B (G ) has endedges. Let X7={qz, gz ......, qm }be setof all endedgesin B (G ).
Let {£ (B (®) \ X} = Xzand X} c X, is y'- set of (X2\ (X; UN(X,))). Then X, U X}
forms y., —setin B(G).
Let X! = {q1,92, ... ....,q;}, I < mbe the set of edges adjacent to Xz. Then H = {b;},i<m
denote the y — set of the induced subgraph (X; U X}) .
Further let E(B(G)) \ X; UX) =X;such that H3={ b;},j < nbe the set of vertices incident
to the edges of (X3) but not to the edges of (X; U X1).
Suppose Hi S H; denotes minimal vertex dominating set of (X5). Then Hl U H} is minimal
vertex dominating set of B(G).
Clearly, |X; uX:|+ |H}UH| <n.Hence y(B(G))+v.,(G) <n.
Case2: If B (G ) has no endedges, let Dy be the minimal vertex dominating set of B (G ).
Let S, ={q1,92, o ver o ,q1}, 1 <nbethe yl,-setof B(G).
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Suppose Dz={ bt}, t <n be the set of vertices incident to the edges of Se.
Assume V b; € D, are incident with some ¢q; €S, D,\D =D} and D} =V — D, then
|Di| + |Dy| = n otherwise |Di|+ |Dyl <n .

Hence from all the cases y(B(G)) +¥.,(G) <n.
Theorem 8: For any connected graph G, ¥.,(G) < EJ

Proof : Let S, = {q1, qp) cve von .. ,q;} be the yl, -setof B(G) and X; = {q1,qz, e - ... ,qm)}
be the set of all endedges in B(G), Xz= E(B(G))\ Xz. We consider the following cases.

Case 1: If X, = ¢, then 3 a set X} € X, such that every edge of X, \ X} is adjacent to
at least one edge of X.. Hence X} forms yéb- set of B (G ) and since each block of &

contains at least two vertices, the result is obvious.
Case 2: If X; = S,, then clearly |X;| < EJ because each g; € X; contains at least two
blocks of & and each block of Ghas at least two vertices.

Case 3: If X; © S,, then X, U X} forms yéb- set where X} c X, is the dominating set of

(X, \ (X; UN(X,))) . Clearly | X, U Xx}| =S| < EJ .
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