Available online at http://scik.org Eng. Math. Lett. 2016, 2016:1 ISSN: 2049-9337 #### ENDEDGE BLOCK DOMINATION IN GRAPHS M. H. MUDDEBIHAL, VEDULA PADMAVATHI* Department of mathematics, Gulbarga University, Gulbarga – 585102, Karnataka, INDIA Copyright © 2016 Muddebihal and Padmavathi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. **Abstract.** For any graph G(V, E), a block graph B(G) is a graph whose vertices are corresponding to the blocks of G and two vertices in B(G) are adjacent whenever the corresponding blocks contain a common cutvertex in G. An edge dominating set s_e of a block graph B(G) is an endedge block dominating set if s_e contains all endedges of B(G). The endedge block domination number $\gamma'_{eb}(G)$ is the minimum cardinality of an endedge block dominating set. In this paper some bounds for $\gamma'_{eb}(G)$ are obtained in terms of elements of G. Further exact values of $\gamma'_{eb}(G)$ for some standard graphs and relationships with other dominating parameters were obtained. Keywords: block graph; domination number; endedge domination number; endedge block domination number. 2010 Mathematics Subject Classification: 05C69, 05C70. # Introduction In this paper We follow the notations and terminology of Harary [1]. We consider connected, undirected, finite graphs without loops. Let G = (V, E) be a graph with |V| = p and |E| = q. n denotes number of blocks of G. N(v) and N[v] denote the open and closed neighborhoods of a vertex v respectively in G. The degree of an edge e = u v of G is defined by $deg \ e = deg \ u + deg \ v - 2$. The maximum degree of a vertex in G is denoted by $\Delta(G)$ and the minimum degree of a vertex in G is denoted by A and A is denoted by A and A is denoted by A and A is denoted by A. A vertex v of V is called a cutvertex if its removal from G increase the number of components of G. A nontrivial connected graph with no cutvertex is called a block. A block incident with exactly one cutvertex is called an endblock. A block incident with more than one cutvertex is called a nonendblock. *Corresponding author Received September 13, 2015 1 A set D of a graph G = (V, E) is a dominating set if every vertex in V - D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a minimal dominating set . A set F of edges in a graph G = (V, E) is called an edge dominating set of G if every edge in E - F is adjacent to at least one edge in F. The edge domination number $\gamma^I(G)$ is the minimum cardinality of an edge dominating set of G. Edge domination was introduced by G. Mitchell and G. The Hedetniemi [2] and is now well studied in graph theory. The edge dominating set is called an endedge dominating set if all endedges belong to edge dominating set of G. The endedge domination number $\gamma_e^I(G)$ is the minimum cardinality of endedge dominating set of G. Endedge domination is introduced by M.H.Muddebihal and A.R.Sedamkar [3]. A block graph B(G) is a graph whose vertices are corresponding to the blocks of G and two vertices in B(G) are adjacent whenever the corresponding blocks contain a common cutvertex in G. A set D_b of a block graph B(G) = (H, X) is a dominating set if every vertex in $H - D_b$ is adjacent to some vertex in D_b . The domination number $\gamma(B(G))$ is the minimum cardinality of a minimal block dominating set. Block domination is introduced by M. H. Muddebihal, T. Srinivas and Abdul Majeed [4]. We are introducing endedge block domination in this paper and we obtain certain bounds on $\gamma'_{eb}(G)$ in terms of vertices, blocks and other parameters of G. # **Results** Initially we begin with endedge block domination number of a graph of some standard graphs, which are straight forward in the following theorem. **Theorem 1**: (i) For any star $$K_{1,p}$$ with $p \ge 2$, $\gamma_{eb}^{I}(k_{1,p}) = \frac{p-1}{2}$, if p is odd. $$= \frac{p}{2}, \text{ if } p \text{ is even.}$$ (ii) For any path $$P_p$$ with $p \ge 3$, $\gamma_{eb}^{I}(P_p) = \frac{p}{3}$, if $p \equiv 0 \pmod{3}$. $$= \left[\frac{p}{3}\right], \text{ otherwise.}$$ In the following theorem we obtain upper bound for $\gamma_{eb}^{\rm I}(G)$ in terms of number of blocks of G. **Theorem 2**: For any connected graph G with $n \geq 2$ blocks , $\gamma_{eb}^{\rm I}(G) \leq n-1$. Equality holds for $B(G) \cong K_{1,n-1}$ where n is number of blocks of G. **Proof**: Let G be any nontrivial connected graph with $A = \{B_i\}$, $2 \le i \le n$ blocks. Let $S_e = \{q_1, q_2, ..., q_l\}$, l < n be γ_{eb}^I set in B(G) such that $|S_e| = \gamma_{eb}^I(G)$. We prove the result by induction on number of blocks of G. Let G be a graph with n = 2 blocks. Then $S_e = \{q_j\}$, j = 1 and $$|S_e| = \gamma_{eb}^{\rm I}(G) = n - 1 = 2 - 1.$$ Let G be a graph with n = 3 blocks. Then $S_e = \{q_1, q_2\}$ and $$|S_e| = \gamma_{eb}^{I}(G) = n - 1 = 3 - 1.$$ Assume that the result is true for n = t blocks. Then $\gamma_{eb}^{I}(G) \le t - 1$. Suppose G has n = t + 1 blocks. Then the corresponding block vertex of $(t + 1)^{th}$ block of G is either an endvertex or a nonendvertex incident with either an endblock or a nonend block respectively in B(G). Then clearly $|S_e| = \gamma_{eb}^I(G) \le t-1+1$ gives $\gamma_{eb}^I(G) \le (t+1)-1$. Equality for $B(G) \cong K_{1,n-1}$ is obvious. Following corollary gives equality for $\gamma_{eb}^{I}(G)$. Corollary 1: For any connected graph G with $n \ge 2$ blocks with exactly one cutvertex, $$\gamma_{eb}^{I}(G) = \frac{n-1}{2}$$, if *n* is odd. = $\frac{n}{2}$, if *n* is even. **Proof**: If G has exactly one cutvertex, then B(G) is complete graph and number of vertices of B(G) is n. By Theorem 1 clearly result follows. In next theorem we obtain upper bound in terms of n for $\gamma_{eb}^{I}(T)$. **Theorem 3**: For any tree with n – blocks $\gamma_{eb}^{I}(T) \leq \left|\frac{n}{2}\right|$ if and only if $T \ncong P_4$. **Proof**: For necessary condition, Suppose $\gamma_{eb}^{\rm I}(T) \leq \left|\frac{n}{2}\right|$ for any tree T. If $T \cong P_4$, then n = 3 and $\left\lfloor \frac{n}{2} \right\rfloor = 1$. The corresponding $B(T) \cong P_3$ and $\gamma_{eb}^{I}(T) = 2$. Then $\gamma_{eb}^{\rm I}(T) > \left\lfloor \frac{n}{2} \right\rfloor$ a contradiction . Hence $T \ncong P_4$. For sufficient condition consider $T \ncong P_4$. Suppose $T \cong P_p$, $p \neq 4$. Then maximum number of blocks in T are n = p - 1. From Theorem 1, $\gamma_{eb}^{I}(P_p) = \frac{p}{3} \leq \left\lfloor \frac{p-1}{2} \right\rfloor$, if $p \equiv 0 \pmod{3}$. $$=$$ $\left|\frac{p}{3}\right| \le \left|\frac{p-1}{2}\right|$, p $\ne 4$ otherwise gives the result. **Theorem 4**: For any connected graph G with m endblocks, $\gamma_{eb}^{\rm I}(G) \leq \gamma_e^{\rm I}(G) + \left\lfloor \frac{m+1}{2} \right\rfloor$. The proof of the Theorem 4 requires some lemmas. Before the lemmas we construct some sets in G as well as in B(G) so that to give the proofs of lemmas. ## Sets in Gare $E_e = \{ e_1, e_2, \dots, e_e \}$ is a set of all endedges. $$E_n = E(G) \setminus E_e$$ $$E_g = E_n \cup E_e$$ $A_1 = \{B_1, B_2, ..., B_i\}$ is a set of endblocks such that each block is adjacent to exactly one block. $A_2 = \{B_1, B_2,, B_j\}$ is a set of endblocks such that each block is adjacent to more than one block. $A_3 = \{B_1, B_2, \dots, B_k\}$ is a set of all nonendblocks. $$A = A_1 \cup A_2 \cup A_3 .$$ We define a family as $\mathfrak{I} = \{E_e \cup (E(G) \setminus N(E_e))\}$ in G. ## Sets in B(G) are as follows. $H = \{ b_1, b_2, \dots, b_n \}$ is a set of all vertices. $H_1 = \{b_1, b_2, \dots, b_i\}$ is a set of all endvertices of degree 1. $H_2 = \{ b_1, b_2,, b_j \}$ is a set of all nonend noncutvertices. $H_3 = \{b_1, b_2, \dots, b_k\}$ is a set of all cutvertices. $X_1 = \{ q_1, q_2, \dots, q_t \}$ is a set of all endedges. $$X_2 = E(B(G)) \setminus X_1$$ We now define a family $\Re = \{X_1 \cup (X_2 \setminus N(X_1))\}\$ in B(G). We consider $A_1 = \phi$ in Lemma 1, lemma 2 and 3. **Lemma 1**: If $A_1 = \phi$ and each block $B_j \in A_2$ has $p \ge 3$ vertices, then $\gamma_e^{\mathrm{I}}(G) \cong \gamma^{\mathrm{I}}(G)$ and $\gamma_{eh}^{\mathrm{I}}(G) \in X_2$. **Proof:** Let $F_1 \subset E_g$. If $A_1 = \phi$ and each block $B_j \in A_2$ has $p \geq 3$ vertices, then for each edge $e \in F_1$, \exists an edge $e_1 \in \{E_g \setminus F_1\}$ such that $N(e_1) \cap F_1 = \{e\}$. Hence F_1 forms minimal edge dominating set in G. Then $|F_1| = \gamma^{\mathrm{I}}(G)$. Since $A_1 = \phi$ and each block of A_2 has $p \ge 3$ vertices, $\gamma_e^{\mathrm{I}}(G) = \gamma^{\mathrm{I}}(G)$. In B(G), $H_1 = \phi$. Then $X_1 = \phi$ and $\exists X_2^I \subset X_2$ such that every edge in $X_2 \setminus X_2^I$ is adjacent to at least one edge in X_2^I . So X_2^I forms γ_{eb}^I —set and $|X_2^I| = \gamma_{eb}^I(G)$. **Lemma 2**: If $A_1 = \phi$, each block $B_j \in A_2$ has exactly two vertices, then $\gamma_e^{\mathrm{I}}(G) \in \mathfrak{I}$ and $\gamma_{eb}^{\mathrm{I}}(G) \in X_2$. **Proof**: Let $A_1 = \phi$ and each block $B_j \in A_2$ has exactly two vertices. Then $A_2 \cong E_e$ and $E(G) \setminus A_2 = E_n$. Let $F_2 \subset E_n$ be the minimal edge dominating set of induced Subgraph $\langle E_n \setminus N(A_2) \rangle$. Then $F_2 \cup A_2$ forms γ_e^I – set which belongs to \mathfrak{I} and $|F_2 \cup A_2| = \gamma_e^I(G)$. In B (G), endedge set $X_1 = \phi$ and $\exists X_2^{\rm I} \subset X_2$ such that each $q_i \in X_2 \setminus X_2^{\rm I}$ is adjacent to at least one edge $q_j \in X_2^{\rm I}$. Then $X_2^{\rm I}$ forms $\gamma_{eb}^{\rm I}$ – set and $\left|X_2^{\rm I}\right| = \gamma_{eb}^{\rm I}(G)$. **Lemma 3**: If $A_1 = \phi$ and some blocks $B_j \in A_2$ have exactly two vertices, then $\gamma_e^{\mathrm{I}}(G) \in \mathfrak{F}$ and $\gamma_{eb}^{\mathrm{I}}(G) \in X_2$. **Proof**: Let $A_2^{\rm I} \subset A_2$ be set of endblocks and each block of $A_2^{\rm I}$ has exactly two vertices. Then $A_2^{\rm I} \cong E_e$ and $E(G) \setminus A_2^{\rm I} = E_n$. \exists an edge dominating set $F_2 \subset E_n$ of induced subgraph $\langle E_n \setminus N(A_2^{\rm I}) \rangle$ such that $F_2 \cup A_2^{\rm I}$ forms $\gamma_e^{\rm I}$ – set which belongs to \Im and $|F_2 \cup A_2^{\rm I}| = \gamma_e^{\rm I}(G)$. In B(G), $X_2^{\rm I} \subset X_2$ forms $\gamma_{eb}^{\rm I}$ – set because each edge in $X_2 \setminus X_2^{\rm I}$ is adjacent to at least one edge in $X_2^{\rm I}$. Then $|X_2^{\rm I}| = \gamma_{eb}^{\rm I}(G)$. In further **lemma 4, lemma 5 and 6**, we consider $A_2 = \phi$. **Lemma 4**: If each block $B_i \in A_1$ has $p \ge 3$ vertices and $A_2 = \phi$, then $\gamma_e^{\mathrm{I}}(G) \cong \gamma^{\mathrm{I}}(G)$ and $\gamma_{eh}^{\mathrm{I}}(G) \in \Re$. **Proof**: Let $A_2 = \phi$ and each block $B_i \in A_1$ has $p \ge 3$ vertices. Then $E_e = \phi$ and \exists set of edges $F_1 \subset E_g$ in G such that each edge in $E_g \setminus F_1$ is adjacent to at least one edge of F_1 . So F_1 forms minimal edge dominating set. Since $E_e = \phi$, $|F_1| = \gamma^{\mathrm{I}}(G) = \gamma_e^{\mathrm{I}}(G)$. In B (G), $|H_1|=|X_1|$. Let $X_2^{\rm I}\subset X_2$ be the minimal edge dominating set of $\langle X_2\setminus (N(X_1)\cup X_1)\rangle$. Then $X_1\cup X_2^{\rm I}$ forms $\gamma_{eb}^{\rm I}-set$ and $\left|X_1\cup X_2^{\rm I}\right|=\gamma_{eb}^{\rm I}(G)\in\Re$. **Lemma 5**: If each block $B_i \in A_1$ has exactly two vertices and $A_2 = \phi$, then $\gamma_e^I(G) \in \mathfrak{F}$ and $\gamma_{eh}^I(G) \in \mathfrak{R}$. **Proof**: Let $A_2 = \phi$, each block $B_i \in A_1$ has p = 2 vertices. Then $A_1 = E_e$ and \exists a minimal edge dominating set F_3 of induced subgraph $\langle E_g \setminus (A_1 \cup N(A_1)) \rangle$ such that $A_1 \cup F_3$ forms γ_e^{I} - set. $|A_1 \cup F_3| = \gamma_e^{\mathrm{I}}(G)$ which belongs to \Im . In B (G), $|X_1| = |A_1|$ and X_2^I is the minimal edge dominating set of $\langle X_2 \setminus (N(X_1) \cup X_1) \rangle$. Then $X_1 \cup X_2^I$ forms $\gamma_{eb}^I - set$ and $|X_1 \cup X_2^I| = \gamma_{eb}^I(G)$ which belongs to \Re . **Lemma 6**: If some blocks $B_i \in A_1$ have exactly two vertices and $A_2 = \phi$, then $\gamma_e^{\rm I}(G) \in \mathfrak{F}$ and $\gamma_{eb}^{\rm I}(G) \in \mathfrak{R}$. **Proof**: Let some blocks $B_i \in A_1$ have exactly p = 2 vertices and $A_2 = \phi$. Then \exists a minimal edge dominating set F_4 of $\langle E(G) \setminus (A_1^I \cup N(A_1^I)) \rangle$ where $A_1^I \subset A_1$ is set of all endedges. So $A_1^I \cong E_e$ and $A_1^I \cup F_4$ forms $\gamma_e^I - set$. Then $|A_1^I \cup F_4| = \gamma_e^I(G) \in \mathfrak{I}$. In B(G), $|X_1| = |A_1|$ and $\exists X_2^I \subset X_2$ such that $X_1 \cup X_2^I$ forms γ_{eb}^I - set where X_2^I is the minimal edge dominating set of $\langle E(B(G)) \setminus (X_1 \cup N(X_1)) \rangle$. Then $|X_1 \cup X_2^I| = \gamma_{eb}^I(G)$ which belongs to \Re . In next lemmas 7, lemma 8 and 9 we consider $A_1 \neq \phi$, $A_2 \neq \phi$. **Lemma 7**: If $A_1 \neq \phi$, $A_2 \neq \phi$ and each block $B_i \in A_1$ has $p \geq 3$ vertices, each block $B_j \in A_2$ has $p \geq 3$ vertices then $\gamma_e^{\mathrm{I}}(G) \cong \gamma^{\mathrm{I}}(G)$ and $\gamma_{eb}^{\mathrm{I}}(G) \in \Re$. **Proof**: If each block of A_1 and A_2 has 3 or more than three vertices, then \exists a set of edges $F_1 \subset E(G)$ such that every edge in $E(G) \setminus F_1$ is adjacent to at least one edge in F_1 . Hence F_1 forms γ^I set in G and since $E_e = \phi$, $|F_1| = \gamma^I(G) = \gamma_e^I(G)$. In B(G), $|X_1|=|H_1|=|A_1|$ and \exists a minimal edge dominating set $X_2^{\mathrm{I}}\subset X_2$ of induced subgraph $\langle X_2\setminus (X_1\cup N(X_1))\rangle$ such that $X_1\cup X_2^{\mathrm{I}}$ forms γ_{eb}^{I} -set $\in\Re$. Then $|X_1 \cup X_2^{\mathrm{I}}| = \gamma_{eb}^{\mathrm{I}}(G)$. **Lemma 8**: If $A_1 \neq \phi$ and each block $B_i \in A_1$ has $p \geq 3$ vertices, $A_2 \neq \phi$ and $A_2^I \subseteq A_2$ where A_2^I is set of endedges each has degree ≥ 2 , then $\gamma_e^I(G) \in \mathfrak{F}$ and $\gamma_{eb}^I(G) \in \mathfrak{R}$. **Proof**: Let $A_2^{\rm I} \subseteq A_2$ be set of all endedges in G. Let F_2 be the minimal edge dominating set of induced subgraph $\langle E(G) \setminus (A_2^{\rm I} \cup N(A_2^{\rm I})) \rangle$. Then $F_2 \cup A_2^{\rm I}$ forms $\gamma_e^{\rm I}$ – set in G and $|F_2 \cup A_2^{\rm I}| = \gamma_e^{\rm I}(G)$. Since $A_2^{\rm I} \cong E_e, \gamma_e^{\rm I}(G) \in \mathfrak{F}$. In B(G), $X_1 \cup X_2^I$ forms γ_{eb}^I set where $X_2^I \subset X_2$ is the minimal edge dominating set of induced subgraph $\langle E(B(G)) \setminus (X_1 \cup N(X_1)) \rangle$ which $\in \mathfrak{R}$ and $\left| X_1 \cup X_2^{\mathrm{I}} \right| = \gamma_{eb}^{\mathrm{I}}(\mathrm{G})$. **Lemma 9**: If $A_1 \neq \phi$, $A_2 \neq \phi$ and each block $B_j \in A_2$ has $p \geq 3$ vertices, $A_1^{\mathsf{I}} \subseteq A_1$ is set of all endedges with degree 1 then $\gamma_e^{\rm I}(G) \in \mathfrak{F}$ and $\gamma_{eb}^{\rm I}(G) \in \mathfrak{R}$. **Proof**: Let , $A_1^{\rm I}\subseteq A_1$ is set of all endedges with degree 1 in ${\it G}$. Then $A_1^{\rm I}\cong E_e$ and \exists a minimal edge dominating set F_3 of $\langle E(G) \setminus (A_1^{\mathrm{I}} \cup N(A_1^{\mathrm{I}})) \rangle$ such that $F_3 \cup A_1^{\mathrm{I}}$ forms γ_e^{I} set $\in \mathfrak{I}$. Then $|F_3 \cup A_1^I| = \gamma_e^I(G)$. In B(G), $|X_1| = |A_1|$ and \exists a minimal edge dominating set $X_2^{\mathsf{I}} \subset X_2$ of induced Subgraph $\langle E(B(G)) \setminus (X_1 \cup N(X_1)) \rangle$ such that $X_1 \cup X_2^{\mathrm{I}}$ forms γ_{eb}^{I} -set $\in \Re$. Then $|X_1 \cup X_2^I| = \gamma_{eh}^I(G)$. **Lemma 10**: If $A_1 \neq \phi$, $A_2 \neq \phi$ and each block of A_1 and A_2 has p = 2 vertices, then $\gamma_e^{\rm I}(G) \in \mathfrak{F}$ and $\gamma_{eb}^{\mathrm{I}}(G) \in \mathfrak{R}$. **Proof**: Since A_1 and A_2 have all edges, $\{A_1 \cup A_2\} \cong E_e$. Then \exists a minimal edge dominating set F_5 of $\langle E(G) \setminus (E_e \cup N(E_e)) \rangle$ such that $E_e \cup F_5$ forms $\gamma_e^{\rm I}$ – set which belongs to \Im . Then $|E_e \cup F_5| = \gamma_e^{\mathrm{I}}(G)$. In B(G), $|X_1| = |A_1|$ and \exists a minimal edge dominating set $X_2^{\mathsf{I}} \subset X_2$ of induced subgraph $\langle E(B(G)) \setminus (X_1 \cup N(X_1)) \rangle$ such that $X_1 \cup X_2^I$ forms γ_{eb}^I set belongs to \Re . Then $|X_1 \cup X_2^{\mathrm{I}}| = \gamma_{eh}^{\mathrm{I}}(G)$. Now we prove **Theorem 4**. ## **PROOF OF THE THEOREM 4**: Let $S_e^{\rm I}$ be $\gamma_e^{\rm I}$ - set and S_e be $\gamma_{eb}^{\rm I}$ - set in G and B (G) respectively. From Lemma 1, lemma 4 and 7 either $A_1 = \phi$ or each block $B_i \in A_1$ has $p \ge 3$ vertices and either $A_2 = \phi$ ϕ or each block $B_j \in A_2$ has $p \ge 3$ vertices in G. Then $E_e = \phi$ in G and $\gamma_e^I(G) = \gamma^I(G)$. In B(G), $\left|X_1 \cup X_2^{\mathrm{I}}\right| = \gamma_{eb}^{\mathrm{I}}(G)$ where X_1 is set of all endedges and $X_2^{\mathrm{I}} \subset X_2$ where X_2 $= E(B(G)) \setminus X_1.$ Either $X_1=\phi$, $X_2^{\rm I}\subset X_2$ or $X_1\neq\phi$, $X_2^{\rm I}\subset X_2$ in B (G). Since $|A_1|=|H_1|=|X_1|$ $|A_2 \cup A_3| = |H_2 \cup H_3| \ge |X_2|$, Clearly $|X_1 \cup X_2^I| \le \gamma_e^I(G)$ gives $\gamma_{eb}^I(G) \le \gamma_e^I(G) + \left|\frac{m-1}{2}\right|$. From lemma 2 and lemma 3, $A_1 = \phi$ and each block $B_i \in A_2^{\mathrm{I}} \subseteq A_2$ has exactly two vertices. Then $A_2^{\rm I} \cong E_e \neq \phi$ in G and $S_e^{\rm I} = A_2^{\rm I} \cup F_2$ is $\gamma_e^{\rm I}$ - set where F_2 is minimal edge dominating set of $\langle E(G) \setminus A_2^{\rm I} \cup N(A_2^{\rm I}) \rangle$. In B(G) $X_1 = \phi$ and $S_e = X_2^I$ where $X_2^I \subset X_2$ forms γ_{eb}^I -set. Clearly $$\left|X_2^{\mathrm{I}}\right| \le \left|A_2^{\mathrm{I}} \cup F_2\right|$$ gives $\gamma_{eb}^{\mathrm{I}}(G) \le \gamma_e^{\mathrm{I}}(G) + \left\lfloor \frac{m-1}{2} \right\rfloor$. From lemma 5, lemma 6 and 9 either each block of $A_1^{\rm I} \subseteq A_1$ has exactly two vertices and $A_2 = \phi$ or each block of $A_1^{\rm I} \subseteq A_1$ has exactly two vertices and each block of A_2 has $p \ge 3$ vertices. Then $A_1^{\rm I} \cong E_e$ and $S_e^{\rm I} = E_e \cup Q_e$ where Q_e is minimal edge dominating set of $\langle E(G) \setminus (E_e \cup N(E_e)) \rangle$. In B(G), $X_1 \neq \phi$ and $S_e = X_1 \cup X_2^I$ where X_2^I is the minimal edge dominating set of induced subgraph $\langle E(B(G)) \setminus (X_1 \cup N(X_1)) \rangle$. Obviously $|S_e| \leq |S_e^{\rm I}| + \left|\frac{m-1}{2}\right|$ where *m* is number of end blocks of *G*. From Lemma 8, each block $B_i \in A_1$ has $p \ge 3$ vertices and each B_i of $A_2^I \subseteq A_2$ has exactly 2 vertices. Then $A_2^I \cong E_e$ and $S_e^I = E_e \cup Q_e$ where Q_e is minimal edge dominating set of $\langle E(G) \setminus (E_e \cup N(E_e)) \rangle$ in G. In B(G), $S_e = X_1 \cup X_2^I$ where X_2^I is the minimal edge dominating set of induced subgraph $\langle E(B(G)) \setminus (X_1 \cup N(X_1)) \rangle$. Then $|S_e| \leq |S_e^I| \leq |S_e^I| + \left|\frac{m-1}{2}\right|$ gives the result. From lemma 10, each block of A_1 and A_2 has exactly two vertices. Then $A_1 \cup A_2 = E_e$ in G. Hence $S_e^{\rm I} = E_e \cup Q_e$ where Q_e is minimal edge dominating set of $\langle E(G) \setminus (E_e \cup N(E_e)) \rangle$. In B (G), $S_e = X_1 \cup X_2^{\mathrm{I}}$ where where $|A_1| = |X_1|$ and $X_2^{\mathrm{I}} \subset X_2$. Clearly, $|S_e| \leq |S_e^{\mathrm{I}}|$ gives $\gamma_{eb}^{\mathrm{I}}(G) \leq \gamma_e^{\mathrm{I}}(G) \leq \gamma_e^{\mathrm{I}}(G) + \left|\frac{m-1}{2}\right|$. **Theorem 5**: Every endblock adjacent to exactly one block in G is in every γ_{eb}^{I} – set. **Proof**: Set of endblocks, each one is adjacent to exactly one block in G forms a set $H_e \subseteq H$ in B(G) where H_e is set of all end vertices of degree 1 and H is set of all vertices in B(G). Clearly $|H_e| = |X_1|$ where X_I is set of all endedges belongs to γ_{eb}^I – set. Hence the result. Further theorems provide relations between $\gamma(B(G))$, $\gamma_{eb}^{\rm I}(G)$ and number of blocks n of G. **Theorem 6**: For any connected graph G with $n \ge 2$ blocks, $\gamma(B(G)) \le \gamma_{eb}^{\rm I}(G)$. **Proof**: Let $H = H_e \cup H_n$ be set of all vertices in B(G) where H_e is set of all endvertices and H_n is set of all nonendvertices. Let X_1 is set of all endedges and $X_2 = E(B(G)) \setminus X_1$ in B(G). We consider the following cases. Case 1: Suppose $H_e = \emptyset$, $H_n \neq \emptyset$. Then $X_1 = \emptyset$. Let $D_b = \{b_i\}$, i < n be the vertex dominating set of B(G). Let $F \subset X_2^I$ where X_2^I is the minimal edge dominating set of B(G) and $X_2^I = F \cup Q_f$ where Q_f is the minimal edge dominating set of $\langle E(B(G)) \setminus (F \cup N(F)) \rangle$ such that F and N(F) are incident with $b_i \in D_b$. Since $X_1 = \emptyset$, each vertex of D_b is associated with at least one edge of X_2^I clearly $|D_b| \leq |X_2^I|$ gives the result. Case 2: Suppose $H_e \neq \emptyset$, $H_n \neq \emptyset$. We consider following subcases. **Subcase 2.1**: Suppose B(G) has exactly one cutvertex. Then $X_1 \neq \emptyset$, $X_2 = \emptyset$ or $X_1 \neq \emptyset$, $X_2 \neq \emptyset$ or $X_1 = \emptyset$, $X_2 \neq \emptyset$. Clearly $|D_b| = 1 \le |X_1|$ or $|X_1 \cup X_2^I|$ or $|X_2^I|$ gives $\gamma(B(G)) \le \gamma_{eb}^I(G)$. **Subcase 2.2:** Suppose B(G) has more than one cutvertices. Then $X_1 \neq \emptyset$, $X_2 \neq \emptyset$. Let $N(H_e) = H_e^{\rm I}$. Then $D_b = H_e^{\rm I} \cup H_n^{\rm I}$ where $H_n^{\rm I}$ is γ – set of $\langle H_n \setminus (N(H_e^{\rm I}) \cup H_e^{\rm I}) \rangle$ and $X_1 \cup X_2^{\rm I}$ forms $\gamma_{eb}^{\rm I}$ – set where $X_2^{\rm I}$ is $\gamma^{\rm I}$ – set of $\langle X_2 \setminus (X_1 \cup N(X_1)) \rangle$. Clearly $|H_e^{\rm I} \cup H_n^{\rm I}| \le |X_1 \cup X_2^{\rm I}|$ gives the result. **Theorem 7**: For any connected graph G with $n \ge 2$ blocks, $((B(G)) + \gamma_{eb}^{I}(G) \le n$. **Proof**: We consider the following cases. Case 1: Suppose B(G) has endedges. Let $X_1 = \{q_1, q_2, ..., q_m\}$ be set of all endedges in B(G). Let $\{E(B(G)) \setminus X_1\} = X_2$ and $X_2^I \subseteq X_2$ is γ^I - set of $\langle X_2 \setminus (X_1 \cup N(X_1)) \rangle$. Then $X_1 \cup X_2^I$ forms γ_{eb}^I - set in B(G). Let $X_1^{\rm I}=\{q_1,q_2,\ldots,q_i\}$, $i\leq m$ be the set of edges adjacent to X_1 . Then $H_2^{\rm I}=\{b_i\}$, ${\rm i}\leq {\rm m}$ denote the γ -set of the induced subgraph $\langle X_1\cup X_1^{\rm I}\rangle$. Further let $E(B(G)) \setminus X_1 \cup X_2^I = X_3$ such that $H_3 = \{b_j\}, j < n$ be the set of vertices incident to the edges of $\langle X_3 \rangle$ but not to the edges of $\langle X_1 \cup X_1^I \rangle$. Suppose $H_3^{\rm I} \subseteq H_3$ denotes minimal vertex dominating set of $\langle X_3 \rangle$. Then $H_2^{\rm I} \cup H_3^{\rm I}$ is minimal vertex dominating set of B(G). Clearly, $\left|X_1 \cup X_2^{\mathrm{I}}\right| + \left|H_3^{\mathrm{I}} \cup H_2^{\mathrm{I}}\right| \le n$. Hence $\gamma(B(G)) + \gamma_{eb}^{\mathrm{I}}(G) \le n$. Case 2: If B(G) has no endedges, let D_b be the minimal vertex dominating set of B(G). Let $S_e = \{q_1, q_2, \dots, q_l\}$, l < n be the γ_{eb}^I - set of B(G). Suppose $D_2 = \{b_t\}, t < n$ be the set of vertices incident to the edges of S_e . Assume $\forall b_i \in D_b$ are incident with some $q_i \in S_e$, $D_2 \setminus D = D_2^I$ and $D_2^I \cong V - D_b$, then $\left|D_2^I\right| + \left|D_b\right| = n$ otherwise $\left|D_2^I\right| + \left|D_b\right| < n$. Hence from all the cases $\gamma(B(G)) + \gamma_{eh}^{I}(G) \leq n$. **Theorem 8**: For any connected graph G, $\gamma_{eb}^{I}(G) \leq \left|\frac{p}{2}\right|$ **Proof**: Let $S_e = \{q_1, q_2, \dots, q_l\}$ be the γ_{eb}^I -set of B(G) and $X_1 = \{q_1, q_2, \dots, q_m\}$ be the set of all endedges in B(G), $X_2 = E(B(G)) \setminus X_1$. We consider the following cases. Case 1: If $X_1 = \phi$, then \exists a set $X_2^{\mathsf{I}} \subseteq X_2$ such that every edge of $X_2 \setminus X_2^{\mathsf{I}}$ is adjacent to at least one edge of X_2^{I} . Hence X_2^{I} forms γ_{eb}^{I} - set of B(G) and since each block of G contains at least two vertices, the result is obvious. Case 2: If $X_1 \cong S_e$, then clearly $|X_1| \leq \left\lfloor \frac{p}{2} \right\rfloor$ because each $q_i \in X_1$ contains at least two blocks of G and each block of G has at least two vertices. Case 3: If $X_1 \subset S_e$, then $X_1 \cup X_2^I$ forms γ_{eb}^I set where $X_2^I \subset X_2$ is the dominating set of $\langle X_2 \setminus (X_1 \cup N(X_1)) \rangle$. Clearly $|X_1 \cup X_2^I| = |S_e| \leq \left|\frac{p}{2}\right|$. #### **Conflict of Interests** The authors declare that there is no conflict of interests. #### REFERENCES - [1] Harary F., Graph Theory, Adison Wesley, Reading Mass (1972). - [2] Mitchell S. and Hedetniemi, S.T., Edge Domination in Trees, Congr Numer, 19(1977), 489-509. - [3] Muddebihal M. H. & Sedamkar A.R., End Edge Domination in Graphs, Pacific-Asian journal of Mathematics, 3(2009), 125-133. - [4] Muddebihal M. H., Srinivas T. and Abdul Majeed, Bonds on Domination Number of Block Graphs of Graphs, J. Comp. & Math. Sci. 3(2) (2012), 225-231.