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Abstract. In this paper, we present the derivation and implementation of a new quarter-step computational hybrid

block method for first-order modeled differential equations. The block method was developed using Laguerre

polynomial of degree five as our basis function via interpolation and collocation techniques. We went further

to apply the quater-step method developed on some modeled first order differential equations. The paper also

analysed the basic properties of the method derived. From the results obtained, it is obvious that the method is

computationally reliable.
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1. Introduction

In recent times, classic application of differential equations is found in many areas of science

and technology. They can be used for modeling of physical, technical or biological processes

such as in the study of growth, decay, epidemic, electricity, among others. The main questions
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of modern technology are how to increase the accuracy of calculations considering short com-

putational time and how to decrease necessary mathematical operations.This paper presents a

quarter-step computational hybrid block method for the integration of modeled first order prob-

lems of the form,

(1) y′ = f (x,y), y(a) = η , f : R×R→ R

The following standard theorem lays down sufficient conditions for a unique solution of (1)

to exist; we shall always assume that the hypotheses of this theorem are satisfied.

Theorem 1.1 (Lambert [1]): Let f (x,y), where f : R×R→R, be defined and continuous for

all (x,y) in the region Ddefined by a ≤ x ≤ b, −∞ < y < ∞, where a and b are finite and let

there exist a constant L such that,

(2) ‖ f (x,y)− f (x,y∗)‖≤ L‖y− y∗‖

holds for every (x,y),(x,y∗) ∈ D. Then for η ∈ R,there exists a unique solution y(x) of the

problem (1), where y(x) is continuous and differentiable for all (x,y∗) ∈ D. The requirement

(2) is known as Lipchitz condition and the constant L as a Lipchitz constant.

It is important to note that, researchers have proposed different computational methods for

the solution of problems of the form (1) ranging from predictor-corretor methods to hybrid

methods. Despite the success recorded by the predictor-corrector methods, its major setback-

s are that the predictors are in reducing order of accuracy, high cost of developing separate

predictor for the corrector, high cost of human and computer time involved in the execution,

Sunday et al. [2].Block methods were later proposed to carter for some of the setbacks of the

predictor-corrector methods. It is important to state that Milne in 1953 first developed block

method to serve as a predictor to a predictor-corrector algorithm before it was later adopted as a

full method. Block method has the advantage of generating simultaneous numerical approxima-

tions at different grid points within the interval of integration, Sunday [3]. Another advantage

of the block method is the fact that it is less expensive in terms of the number of function

evaluations compared to the linear multistep and the Runge-Kutta methods. Its major setback
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however is that the order of interpolation points must not exceed the order of the differential

equations, thus when equations of lower order are developed, the accuracy of the developed

method is reduced. This led to the development of hybrid methods which permit the incorpo-

ration of function evaluation at off-step points which affords the opportunity of circumventing

the ”Dahlquist Zero-Stabilty Barrier” and it is actually possible to obtain convergent k−step

methods with order 2k+ 1 up to k = 7.The method is also useful in reducing the step number

of a method and still remain zero-stable, see Sunday et al. [4], Adesanya et al. [5], Sunday et

al. [6], Sunday et al. [7] and Sunday et al. [8].

Definition 1.1 Jain et al. [9] : Laguerre polynomial yn(x) is defined as,

(3)
5

∑
n=0

yn(x) =
5

∑
n=0

ex

n!
dn

dxn (x
ne−x)

In particular, y0(x) = 1,y1(x) = x−1, y2(x) = x2−4x+2, ...The Laguerre polynomial yn(x)

are orthogonal with respect to the weight function w(x) = e−x on [0,∞).

Many scholars used different basis functions for the solution of problems of the form (1). For

instance, Sunday et al. [10], Sunday et al. [11] and Sunday et al. [12] used basis functions which

are the combination of power series and exponential functions to develop block integrators for

the solution of (1). Sunday et al. [7] and Sunday et al. [6] also used Chebyshev and Legendre

polynomials as basis functions respectively to develop hybrid methods for the solution of (1).

In this paper, we shall employ Laguerre polynomial as a basis function in developing the new

quater-step computational hybrid block method for the solution of (1).

2. Preliminaries: Derivation of the Quarter-step Computational Hybrid
Method

We shall derive a new quarter-step hybrid method of the form,

(4) A(0)Ym = Eyn +hd f (yn)+hbF(Ym)

using a Laguerre polynomial of degree 5 as our basis function. This is given by,



4 J. SUNDAY, D. YUSUF AND J. N. ANDEST

(5) y5(x) = 720−1800x+1200x2−300x3 +30x4− x5

We interpolate (5) at point xn+s, s = 0 and collocate its first derivative at points xn+r, r =

0
( 1

16

) 1
4 , where s and r are the numbers of interpolation and collocation points respectively.

This leads to the system of equatons,

(6) XA =U

where

A = [a0 a1 a2 a3 a4 a5]
T

U =
[
yn fn fn+ 1

16
fn+ 1

8
fn+ 3

16
fn+ 1

4

]T

and

X =



720 −1800xn 1200x2
n −300x3

n 30x4
n −x5

n

0 −1800 2400xn −900x2
n 120x3

n −5x4
n

0 −1800 2400xn+ 1
16
−900x2

n+ 1
16

120x3
n+ 1

16
−5x4

n+ 1
16

0 −1800 2400xn+ 1
8
−900x2

n+ 1
8

120x3
n+ 1

8
−5x4

n+ 1
8

0 −1800 2400xn+ 3
16
−900x2

n+ 3
16

120x3
n+ 3

16
−5x4

n+ 3
16

0 −1800 2400xn+ 1
4
−900x2

n+ 1
4

120x3
n+ 1

4
−5x4

n+ 1
4


Solving (6), for a′js, j = 0(1)5 and substituting back into the basis function gives a continuous

linear multistep method of the form,

(7) y(x) = α0(x)yn +h

1
4

∑
j=0

β j(x) fn+ j, j = 0
(

1
16

)
1
4

where
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(8)



α0(t) = 1

β0(t) = 1
45(24576t5−19200t4 +5600t3−750t2 +45t)

β 1
16
(t) = 32

45(−3072t5 +2160t4−520t3 +45t2)

β 1
8
(t) =− 8

15(−6144t5 +3840t4−760t3 +45t2)

β 3
16
(t) = 32

45(−3072t5 +1680t4−280t3 +15t2)

β 1
4
(t) =− 2

45(−12288t5 +5760t4−880t3 +45t2)


t = x−xn

h , α(t) and β (t) are continuous functions. Evaluating (7) at t = 1
16

( 1
16

) 1
4 gives a

discrete computational method of the form (4), where

Ym =
[
yn+ 1

16
yn+ 1

8
yn+ 3

16
yn+ 1

4

]T
, yn =

[
yn− 3

16
yn− 1

8
yn− 1

16
yn

]T

F(Ym) =
[

fn+ 1
16

fn+ 1
8

fn+ 3
16

fn+ 1
4

]T
, f (yn) =

[
fn− 3

16
fn− 1

8
fn− 1

16
fn

]T

A(0) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , E =


0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1



d =


0 0 0 251

11520

0 0 0 29
1440

0 0 0 27
1280

0 0 0 7
360

 , b =


323

5760
−11
480

53
5760

−19
11520

31
360

1
60

1
360

−1
1440

51
640

9
160

21
640

−3
1280

4
45

1
30

4
45

7
360


It is important to note here that the computational method developed above is implicit in

nature, meaning that it requires some starting values before it can be implemented. Starting

values for yn+ j, j = 1
16

( 1
16

) 1
4 are predicted using the Taylor series up to the order of each

individual scheme.

3. Aalysis of Basic Properties of the Quarter-Step Computational Method
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To justify the applicability and accuracy of the proposed computational method, we need

to examine its basic properties which include order of accuracy, consistency, root condition,

convergence, symmetry and region of absolute stability.

3.1. Order of Accuracy and Error Constant. The block method (4) is said to be of uniform

accurate order p, if p is the larget positive integer for which c0 = c1 = c2 = ... = cp = 0 but

cp+1 6= 0, Lambert [1]. Thus, c0 = c1 = c2 = c3 = c4 = c5 = 0, c6 =
[
−1.1176×10−9 6.6227×10−10 1.1176×10−9 −3.1537×10−11]T

.

Therefore, the quarter-step computational method is of accurate fifth order.

3.2. Root Condition and Zero Stability. Definition 3.1 (Lambert [1]): The block method (4)

is said to satisfy root condition, if the roots zs,s = 1,2, ...,k of the first characteristic polynomial

ρ(z) defined by ρ(z) = det(zA(0)−E) satisfies |zs| ≤ 1 and every root satisfying |zs| = 1 have

multiplicity not exceeding the order of the differential equation. The method (4) is said to be

zero-stable if it satisfies the root condition. Moreover, as h→ 0,ρ(z)= zr−µ(z−1)µ , where µ is

the order of the differential equation, r is the order of the matrices A(0) and E (see Awoyemi et

al. [13] for details). We shall now verify whether or not our quarter-step computational method

satisfies root condition.

(9) ρ(z) =

∣∣∣∣∣∣∣∣∣∣∣∣
z


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−


0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣
= 0

ρ(z) = z3(z− 1) = 0 =⇒ z1 = z2 = z3 = 0, z4 = 1. Hence, the quarter-step computational

method (4) is said to satisfy root condition.

Theorem 3.1 (Lambert [1]) : The necessary and sufficient condition for the method given by

(4) to be zero-stable is that it satisfies the root condition.

3.3. Consistency. According to Fatunla [14], consistency controls the magnitude of the local

truncation error committed at each stage of the computation.The computational quarter-step

method (4) is consistent since it has order p = 5≥ 1.
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3.4. Convergence. The quarter-step computational method (4) is convergent by consequence

of Dahlquist theorem below.

Theorem 3.2: (Dahlquist [15]): The necessary and sufficient conditions that a continuous

LMM be convergent are that it be consistent and zero-stable.

3.5. Region of Absolute Stability. Definition 3.3 (Lambert [1]): The linear multistep method

(7) is said to have region of absolute stability RA, where RA is a region of the complex h−plane,

if it is absolutely stable for all h ∈ RA. The intersection of RA with the real axis is called the

interval of absolute stability.

In ploting the stability region, we shall adopt the boundary locus method. The stability poly-

nomial of the newly derived quarter-step computational method is given by,

h(w) = −h4
(

1
327680

w3− 1
327680

w4
)
−h3

(
5

24576
w4 +

5
24576

w3
)

(10)

−h2
(

7
1024

w3− 7
1024

w4
)
−h
(

1
8

w4 +
1
8

w3
)
+w4−w3(11)

The stability region is shown in Figure 1.

Lambert [1] showed that the stability region for L-stable schemes must encroach into the

positive half of the complex plane. Thus, the stability region in the Figure 1 is L-stable.

4. Main results: Numerical Experiments

We shall consider the following real-life problem by modelling them into equations of the form

(1). We shall use the following notation in the the tables below.

ERR=|Exact Solution - Computed Solution|

Problem 4.1 (Mixture Model):

In an oil refinery, a storage tank contains 2000 gal of gasoline that initially has 100 lb of an

additive dissolved in it. In the preparation for winter, gasoline containing 2 lb of additive per

gallon is pumped into the tank at a rate of 40 gal/min. The well-mixed solution is pumped out
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FIGURE 1. Stability region of the quarter-step method

at a rate of 45 gal/min. Using a numerical method, how much of the additive is in the tank 0.1

min, 0.5 min and 1 min after the pumping process begins?

Let y be the amount (in pounds) of additive in the tank at time t. We know that y = 100 when

t = 0. Thus, the initial value problem modeling the mixture process is,

(12)
dy
dt

= 80− 45
(2000−5t)

y, y(0) = 100

with the theoretical solution,

(13) y(t) = 2(2000−5t)− 3900
(2000)9 (2000−5t)9

Source: [10]
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The numerical and graphical results for problem 4.1 is presented in Table 4.1 and Figure 2

respectively.

Problem 4.2 (Decay Model):

A certain radioactive material is known to decay at a rate proportional to the amount present.

If initially there is 50 milligrams of the material present and after two hours it is observed

that the material has lost 10 percent of its original mass. Calculate the mass of the material

remaining at time t: 0≤ t ≤ 1.

Let N denote the amount of the material present at time t. The initial value problem modeling

the problem above is,

(14)
dN
dt

=−0.053N, N(0) = 50

with the exact solution,

(15) N(t) = 50e−0.053t

Source: [16]

The numerical and graphical results for problem 4.2 is presented in Table 4.2 and Figure 3

respectively.

Problem 4.3 (Growth Model):

A bacteria culture is known to grow at a rate proportional to the amount present. After one

hour, 1000 strands of the bacteria are observed in the culture; and after four hours, 3000 strands.

Find the number of strands of the bacteria present in the culture at time t : 0≤ t ≤ 1.

Let N(t) denote the number of bacteria strands in the culture at time t, the initial value

problem modeling this problem is given by,

(16)
dN
dt

= 0.366N, N(0) = 694

The exact solution is given by
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(17) N(t) = 694e0.366t

Source: [16]

The numerical and graphical results for problem 4.3 is presented in Table 4.3 and Figure 4

respectively.

Problem 4.4 (SIR Model):

The SIR model is an epidemiological model that computes the theoretical number of people

infected with a contagious illness in a closed population over time t. The name of this class

of models derives from the fact that they involve coupled equations relating the number of

susceptible people S(t), number of people infected I(t) and the number of people who have

recovered R(t). This is a good and simple model for many infectious diseases including measles,

mumps and rubella [17]. It is given by the following three coupled equations,

(18)


dS
dt = µ(1−S)−β IS
dI
dt =−µI− γI +β IS

dR
dt =−µR+ γI


where µ, γ and β are positive parameters. Define y to be,

(19) y = S+ I +R

and adding the equations in (17), we obtain the following evolution equation for y,

(20) y′ = µ(1− y)

Taking µ = 0.5 and attaching an initial condition y(0) = 0.5 (for a particular closed popula-

tion), we obtain,

(21)
dy
dt

= 0.5(1− y), y(0) = 0.5
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whose exact solution is,

(22) y(t) = 1−0.5e−0.5t

Source: [10]

The numerical and graphical results for problem 4.4 is presented in Table 4.4 and Figure 5

respectively.

Table 4.1 : Showing the result for problem 4.1

t Exact Solution Computed Solution ERR t/sec

0.1000 107.7662301168311400 107.7662301168309500 1.847411e−013 0.0069

0.2000 115.5149409193027200 115.5149409193028600 1.421085e−013 0.0087

0.3000 123.2461630508842100 123.2461630508845500 3.410605e−013 0.0105

0.4000 130.9599271090915000 130.9599271090911000 3.979039e−013 0.0125

0.5000 138.6562636455414600 138.6562636455413700 8.526513e−014 0.0144

0.6000 146.3352031660151600 146.3352031660153600 1.989520e−013 0.0162

0.7000 153.9967761305115300 153.9967761305114800 5.684342e−014 0.0180

0.8000 161.6410129533037400 161.6410129533038600 1.136868e−013 0.0198

0.9000 169.2679440029992300 169.2679440029996000 3.694822e−013 0.0216

1.0000 176.8775996025960900 176.8775996025958600 2.273737e−013 0.0233
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Table 4.2 : Showing the result for problem 4.2

t Exact Solution Computed Solution ERR t/sec

0.1000 49.7357010110004440 49.7357010110004370 7.105427e−015 0.0238

0.2000 49.4727991011126060 49.4727991011125990 7.105427e−015 0.0255

0.3000 49.2112868854045620 49.2112868854045540 7.105427e−015 0.0271

0.4000 48.9511570179809750 48.9511570179809610 1.421085e−014 0.0288

0.5000 48.6924021917767500 48.6924021917767430 7.105427e−015 0.0304

0.6000 48.4350151383518220 48.4350151383518150 7.105427e−015 0.0320

0.7000 48.1789886276869340 48.1789886276869200 1.421085e−014 0.0338

0.8000 47.9243154679805560 47.9243154679805340 2.131628e−014 0.0355

0.9000 47.6709885054468930 47.6709885054468640 2.842171e−014 0.0372

1.0000 47.4190006241149080 47.4190006241148790 2.842171e−014 0.0388

Table 4.3 : Showing the result for problem 4.3

t Exact Solution Computed Solution ERR t/sec

0.1000 719.8709504841319800 719.8709504841319800 0.000000e+000 0.0165

0.2000 746.7063189494632500 46.7063189494632500 0.000000e+000 0.0181

0.3000 774.5420569951836600 774.5420569951836600 0.000000e+000 0.0197

0.4000 803.4154564251550700 803.4154564251550700 0.000000e+000 0.0214

0.5000 833.3651992080965600 833.3651992080965600 0.000000e+000 0.0232

0.6000 864.4314093001880800 864.4314093001878500 2.273737e−013 0.0248

0.7000 896.6557063995159100 896.6557063995156800 2.273737e−013 0.0264

0.8000 930.0812617043808400 930.0812617043804900 3.410605e−013 0.0281

0.9000 964.7528557501631200 964.7528557501628900 2.273737e−013 0.0297

1.0000 1000.7169384022342000 1000.7169384022338000 3.410605e−013 0.0314
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FIGURE 2. Graphical results for problem 4.1

FIGURE 3. Graphical results for problem 4.2

Table 4.4 : Showing the result for problem 4.4

t Exact Solution Computed Solution ERR t/sec

0.1000 0.5243852877496430 0.5243852877496430 0.000000e+000 0.0518

0.2000 0.5475812909820201 0.5475812909820201 0.000000e+000 0.0537

0.3000 0.5696460117874711 0.5696460117874710 1.110223e−016 0.0554

0.4000 0.5906346234610092 0.5906346234610089 2.220446e−016 0.0570

0.5000 0.6105996084642976 0.6105996084642974 2.220446e−016 0.0587

0.6000 0.6295908896591411 0.6295908896591409 2.220446e−016 0.0604

0.7000 0.6476559551406433 0.6476559551406431 2.220446e−016 0.0623

0.8000 0.6648399769821805 0.6648399769821802 2.220446e−016 0.0640

0.9000 0.6811859241891134 0.6811859241891132 2.220446e−016 0.0656

1.0000 0.6967346701436834 0.6967346701436831 3.330669e−016 0.0674
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FIGURE 4. Graphical results for problem 4.3

FIGURE 5. Graphical results for problem 4.4

4.1. Discussion of Results. We considered four real-life modeled first-order problems of the

form (1). From the results obtained in the tables above, it is obvious that the quarter-step method

derived is compuationally reliable. The graphical results obtained also buttress the fact that the

computed results converge toward the exact solution.

5. Conclusion

We developed a quarter-step computational hybrid method for the solution modeled first-

order problems of the form (1) using Laguerree polynomial of degree five as our basis function.

The method developed was found to be L-stable and that explains why it performed well on

this class of problems. The method was also found to be zero-stable,consistent, convergent and

computationally reliable.
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