

Available online at http://scik.org
Engineering Mathematics Letters, 1 (2012), No. 1, 58-64 ISSN 2049-9337

SOME OPERATIONS ON CONVEX AND CONCAVE FUNCTIONS

W. T. SULAIMAN*
Department of Computer engineering, College of Engineering, University of Mosul, Iraq

Abstract

Several new results concerning operations on convex and concave functions are obtained.

Key words : Hermite-Hadamard inequality, Convex functions, Concave functions,
Integral inequality
Mathematics Subject Classification: 52A40, 52A41

1. Introduction

A real-valued function f is said to be convex on a closed interval I if $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$, for all $x, y \in I, 0 \leq t \leq 1$. If the inequality is reversed, the f is called concave. It is known that f is convex if $f^{\prime \prime}(x) \geq 0$.

The inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

which holds for all convex mapping $f:[a, b] \rightarrow \mathfrak{R}$, is known in the literature as Hadamard inequality. In [2], Fejér generalized Hadamard's inequality by giving the following :

Theorem 1.1. If $g:[a, b] \rightarrow \mathfrak{R}$ is non-negative integrable and symmetric to $x=\frac{a+b}{2}$, and if f is convex on $[\mathrm{a}, \mathrm{b}]$, then

[^0]\[

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right)_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \tag{2}
\end{equation*}
$$

\]

2. Lemmas

The following lemmas are needed for our aim

Lemma 2.1. Let

$$
\begin{equation*}
(a-b)(c-d) \geq 0 \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{(a+b)}{2} \frac{(c+d)}{2} \leq \frac{a c+b d}{2} . \tag{4}
\end{equation*}
$$

Proof. By (3),

$$
\begin{aligned}
& a d+b c \leq a c+b d \\
\Rightarrow & a c+b c+a d+b d \leq 2(a c+b d) \\
\Rightarrow & \frac{(a+b)}{2} \frac{(c+d)}{2} \leq \frac{a c+b d}{2}
\end{aligned}
$$

Lemma 2.2. If $c, d>0$, and

$$
\begin{equation*}
a+b \leq a \frac{d}{c}+b \frac{c}{d} \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{a+b}{c+d} \leq \frac{a d+b c}{2 c d} \tag{6}
\end{equation*}
$$

Proof. By (6),

$$
\begin{aligned}
& a c d+b c d \leq a d^{2}+b c^{2} \\
\Rightarrow & 2 a c d+2 b c d \leq a c d+b c d+a d^{2}+b c^{2} \\
\Rightarrow & 2 c d(a+b) \leq(c+d)(a d+b c) \\
\Rightarrow & \frac{a+b}{c+d} \leq \frac{a d+b c}{2 c} .
\end{aligned}
$$

3. Results

Theorem 3.1. Let $f, g: I \subset \mathfrak{R} \rightarrow \mathfrak{R}$ be positive convex functions such that for all $a, b \in I$,

$$
\begin{equation*}
(f(a)-f(b))(g(a)-g(b)) \geq 0 \tag{7}
\end{equation*}
$$

then $f g$ is convex. If

$$
\begin{equation*}
(f(a)-f(b))(g b)-g(a)) \geq 0 \tag{8}
\end{equation*}
$$

then $f g$ is concave.

Proof. Applying Lemma 2.1, we have

$$
\begin{aligned}
f g\left(\frac{a+b}{2}\right) & =f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) \leq \frac{f(a)+f(b)}{2} \frac{g(a)+g(b)}{2} \\
& \leq \frac{f(a) g(a)+f(b) g(b)}{2}=\frac{(f g)(a)+(f g)(b)}{2} .
\end{aligned}
$$

The proof of the other part is similar.

Theorem 3.2. Let $f, g: I \subset \mathfrak{R} \rightarrow \mathfrak{R}$, be positive functions, fis convex and g is concave, $\quad g(a), g(b) \neq 0$ and satisfying

$$
\begin{equation*}
f(a)+f(b) \leq f(a) \frac{g(b)}{g(a)}+f(b) \frac{g(a)}{g(b)}, \quad \forall a, b \in I . \tag{9}
\end{equation*}
$$

Then f / g is convex.

Proof. Since

$$
\begin{align*}
& f\left(\frac{a+b}{2}\right) \leq \frac{f(a)+f(b)}{2} \tag{10}\\
& \frac{g(a)+g(b)}{2} \leq g\left(\frac{a+b}{2}\right) \tag{11}
\end{align*}
$$

then on multiplying (9) and (10), we obtain

$$
f\left(\frac{a+b}{2}\right)\left(\frac{g(a)+g(b)}{2}\right) \leq \frac{f(a)+f(b)}{2} g\left(\frac{a+b}{2}\right),
$$

which implies

$$
\frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)} \leq \frac{\frac{f(a)+f(b)}{2}}{\frac{g(a)+g(b)}{2}}
$$

Therefore, by Lemma 2.2,

$$
\begin{aligned}
(f / g)\left(\frac{a+b}{2}\right) & =\frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)} \leq \frac{f(a)+f(b)}{g(a)+g(b)} \leq \frac{f(a) g(b)+f(b) g(a)}{2 g(a) g(b)} \\
& =\frac{1}{2}\left(\frac{f(a)}{g(a)}+\frac{f(b)}{g(b)}\right)=\frac{(f / g)(a)+(f / g)(b)}{2} .
\end{aligned}
$$

A positive function is said to be log-convex if $\log f$ is convex. Concerning this type of functions, we have the following result

Theorem 3.3. If $f: I \subset \mathfrak{R} \rightarrow \mathfrak{R}$ is a positive convex function and if $c \geq 1$, then $c^{f(x)}$ is convex.

Proof.

$$
c^{f\left(\frac{a+b}{2}\right)} \leq c^{\frac{f(a)+f(b)}{2}}=c^{\frac{f(a)}{2}} c^{\frac{f(b)}{2}} \leq \frac{1}{2}\left(\left(c^{\frac{f(a)}{2}}\right)^{2}+\left(c^{\frac{f(b)}{2}}\right)^{2}\right)=\frac{c^{f(a)}+c^{f(b)}}{2}
$$

Corollary 3.4. Let $f, g: I^{+} \subset \mathfrak{R} \rightarrow \mathfrak{R}, f$ is log-convex and g is convex. If

$$
\begin{equation*}
((\log f)(a)-(\log f)(b))(g(a)-g(b)) \geq 0, \quad \forall a, b \in I^{+} \tag{12}
\end{equation*}
$$

then the function f^{g} is convex.

Proof. By Theorem 3.1, $(\log f) g$ is convex. The result follows by an application of Theorem 3.3, with $c=e$.

Theorem 3.5. Let $f: I \subset \mathfrak{R} \rightarrow \mathfrak{R}$ be positive concave. Then $1 / f$ is convex.

Proof. For $a, b \in I$, we have

$$
\begin{aligned}
& 2 f(a) f(b) \leq f^{2}(a)+f^{2}(b) \\
\Rightarrow & 4 f(a) f(b) \leq(f(a)+f(b))^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{2 f(a) f(b)}{f(a)+f(b)} \leq \frac{f(a)+f(b)}{2} \leq f\left(\frac{a+b}{2}\right) \\
& \Rightarrow(1 / f)\left(\frac{a+b}{2}\right) \leq \frac{f(a)+f(b)}{2 f(a) f(b)}=\frac{(1 / f)(a)+(1 / f)(b)}{2}
\end{aligned}
$$

Theorem 3.6. Let $f: I \subset \mathfrak{R} \rightarrow \mathfrak{R}$ be positive convex such that f^{-1} exist. Then f^{-1} is concave. If f is concave, then f^{-1} is convex.

Proof. We have for $a, b \in I$,

$$
\begin{aligned}
\frac{a+b}{2} & =\frac{f\left(f^{-1}(a)\right)+f\left(f^{-1}(b)\right)}{2} \\
& \geq f\left(\frac{f^{-1}(a)+f^{-1}(b)}{2}\right)
\end{aligned}
$$

which implies

$$
f^{-1}\left(\frac{a+b}{2}\right) \geq\left(f^{-1} f\right)\left(\frac{f^{-1}(a)+f^{-1}(b)}{2}\right)=\frac{f^{-1}(a)+f^{-1}(b)}{2} .
$$

The proof of the other part is similar.

Theorem 3.7. Let $f, g: I \subset \mathfrak{R} \rightarrow \mathfrak{R}$ be positive convex functions such that If for all $a, b \in I$,

$$
\begin{align*}
\frac{f^{2}(a)+f^{2}(b)+g^{2}(a)+g^{2}(b)}{4} \leq & f(a) g(a)+f(b) g(b) \\
& +(f(a)-g(b))(g(a)-f(b)) \tag{13}
\end{align*}
$$

is satisfied, then $f g$ is convex. If both f and g are concave and (13) reverses, then $f g$ is concave.

Proof. We have, by (13), via simple application,

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) & \leq \frac{f^{2}\left(\frac{a+b}{2}\right)+g^{2}\left(\frac{a+b}{2}\right)}{2} \\
& \leq \frac{(f(a)+f(b))^{2}+(g(a)+g(b))^{2}}{8}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{f^{2}(a)+f^{2}(b)+g^{2}(a)+g^{2}(b)}{4}+\frac{f(a) f(b)+g(a) g(b)}{4} \\
& \leq \frac{f(a) g(a)+f(b) g(b)}{2}
\end{aligned}
$$

Corollary 3.8. Let $f, g: I \subset \mathfrak{R} \rightarrow \mathfrak{R}$ be positive functions such that f is convex and g is concave, then f / g is convex, provided the following is satisfied for all $a, b \in I$,

$$
\begin{equation*}
(f(a)-f(b))\left(\frac{1}{g}(a)-\frac{1}{g}(b)\right) \geq 0 \tag{14}
\end{equation*}
$$

Proof. As g is concave, then by Theorem 3.5, $1 / g$ is convex. The result follows by Theorem 3.1 via (14).

Theorem 2.9. (a). If f is convex and g is concave, then f - g is convex.
(b). If f is concave and g is convex, then f - g is concave.

Proof. (a).

$$
\begin{aligned}
(f-g)\left(\frac{a+b}{2}\right) & =f\left(\frac{a+b}{2}\right)-g\left(\frac{a+b}{2}\right) \\
& \leq \frac{f(a)+f(b)}{2}-\frac{g(a)+g(b)}{2} \\
& =\frac{(f-g)(a)+(f-g)(b)}{2}
\end{aligned}
$$

Theorem 3.10. Let $f, g: I \subset \mathfrak{R} \rightarrow \mathfrak{R}$ be positive convex functions. Let $\frac{1}{p}+\frac{1}{q}=1, p>1$. If for all $a, b \in I$,

$$
\begin{equation*}
\frac{(f(a)+f(b))^{p}}{p 2^{p}}+\frac{(g(a)+g(b))^{q}}{q 2^{q}} \leq \frac{f(a) g(a)+f(b) g(b)}{2} \tag{15}
\end{equation*}
$$

then $f g$ is convex. If f and g are concave such that $0<p<1$, and (15) reversed, then $f g$ is concave.

Proof.

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) & \leq \frac{1}{p} f^{p}\left(\frac{a+b}{2}\right)+\frac{1}{q} g^{q}\left(\frac{a+b}{2}\right) \\
& \leq \frac{1}{p}\left(\frac{f(a)+f(b)}{2}\right)^{p}+\frac{1}{q}\left(\frac{g(a)+g(b)}{2}\right)^{q} \\
& \leq \frac{f(a) g(a)+f(b) g(b)}{2}
\end{aligned}
$$

Theorem 3.11. Let $f, g: I \subset \Re \rightarrow \Re$ be positive functions such that f convex and g concave and for all $a, b \in I$,

$$
\begin{equation*}
\frac{f(a)+f(b)}{2}-f\left(\frac{a+b}{2}\right) \geq g\left(\frac{a+b}{2}\right)-\frac{g(a)+g(b)}{2} \tag{16}
\end{equation*}
$$

then $f+g$ is convex.

Proof. We have

$$
\begin{aligned}
\frac{f(a)+f(b)}{2}+ & \frac{g(a)+g(b)}{2}-f\left(\frac{a+b}{2}\right)-g\left(\frac{a+b}{2}\right) \\
& =\frac{f(a)+f(b)}{2}-f\left(\frac{a+b}{2}\right)+\frac{g(a)+g(b)}{2}-g\left(\frac{a+b}{2}\right)
\end{aligned}
$$

$$
\geq 0 .
$$

REFERENCES

[1] L. Fejér, Uber die Fourierreihen, II, Math. Naturwiss. Anz. Ungar. Akad. Wiss. Vol. 2, (1906), pp. 369-390. (In Hungarian).

[^0]: *Corresponding author
 Received March 29, 2012

