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1. Introduction 

A real-valued function  f  is said to be convex  on a closed interval  I  if 

  ),()1()()1( yftxtfyttxf    for all  .10,,  tIyx  If  the inequality is 

reversed,  the  f  is called  concave.  It is known that  f  is convex  if .0)(  xf  

The inequality 
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which holds for  all convex mapping ],[: baf ,  is known in the literature as 

Hadamard inequality. In  [2],  Fejér  generalized  Hadamard's inequality by giving the 

following :  

    

   Theorem 1.1. If  ],[: bag  is non-negative integrable and symmetric to  

2
bax  , and if  f  is convex on [a,b],  then 
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2. Lemmas 

The following lemmas are needed for our aim 

 

   Lemma 2.1.  Let 

                                                     ,0)()(  dcba                                                    (3)  

then 
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Proof.   By  (3), 
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   Lemma 2.2.  If   ,0, dc   and 
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Proof.  By  (6), 
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3. Results 

   Theorem 3.1.  Let Igf :,  be positive convex functions such that for  all  

,, Iba   

                                              ,0)()()()(  bgagbfaf                                        (7)  

then  fg  is convex. If  

                                                ,0)())()(  aggbbfaf                                        (8) 

then  fg  is concave. 

 

                                           

Proof.  Applying  Lemma 2.1,  we have 
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The proof of the other part is similar. 

 

   Theorem 3.2.  Let Igf :, , be positive functions,  f is convex and  g  is 

concave,   0)(),( bgag and  satisfying 
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Then   f/g is convex. 

 

Proof.  Since 
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then on multiplying  (9)  and  (10),  we obtain 
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which implies 
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Therefore, by Lemma 2.2, 
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A positive function  is said to be  log-convex if  logf   is convex. Concerning this type 

of functions,  we have the following result 

    

   Theorem 3.3.   If  If :  is a positive convex function  and if ,1c  then 

)(xfc   is convex. 

Proof.     

            
22

1 )()(
2

2

)(
2

2

)(

2

)(

2

)(

2

)()(

2
bfafbfafbfafbfafba

f cc
cccccc























































 

 .    

   Corollary 3.4.  Let Igf :, ,  f is log-convex and g is convex. If 

                               Ibabgagbfaf ,,0)()())((log))(log(                   (12) 

then  the function  gf is convex. 

 

Proof.   By Theorem 3.1,  gf )(log  is convex.  The result follows by an application 

of  Theorem 3.3,  with  .ec   

           

   Theorem 3.5.  Let  If :  be positive concave. Then f/1 is convex. 

 

Proof.  For   ,, Iba   we have 

            )()()()(2 22 bfafbfaf   

       2)()()()(4 bfafbfaf   
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   Theorem 3.6.  Let  If :  be positive  convex such that  1f  exist. Then 

1f  is concave. If  f  is concave, then  1f is convex. 

 

Proof.  We have  for  ,, Iba   
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  The proof of the other part is similar.     

 

   Theorem 3.7.  Let Igf :,  be positive convex functions such that If  for  

all  ,, Iba   
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is satisfied, then   fg  is convex.  If  both  f   and  g  are concave and  (13)  reverses, 

then  fg  is concave . 

 

Proof.  We have,  by  (13), via simple application, 
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   Corollary 3.8.  Let Igf :,  be positive functions such that f is convex and 

g  is concave,  then  f/g  is convex,  provided the following is satisfied for  all  ,, Iba   
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Proof.  As   g  is concave,   then  by  Theorem 3.5,   g/1   is convex.  The result 

follows by  Theorem  3.1  via  (14) .                             

 

   Theorem 2.9.  (a).  If  f   is convex and  g  is concave,   then  f-g is convex. 

(b).  If  f   is concave  and  g  is convex,   then  f-g is concave. 

 

Proof.  (a). 
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   Theorem 3.10.  Let Igf :,  be positive convex functions . Let 

.1,111  p
qp

 If  for  all  ,, Iba   
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then  fg   is convex.  If   f  and  g  are concave such that  ,10  p  and  (15) reversed, 

then  fg  is concave. 

Proof.   
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   Theorem 3.11.  Let Igf :,  be positive functions such that  f  convex and   

g   concave and  for  all  ,, Iba   
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then   f+g  is convex. 

 

Proof.   We have 
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