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Abstract. The problem of stability of electrical circuit systems is very important. One of the main factor that can

cause instability in a servo motor is insufficient resolution on the motor’s feedback device. This behavior could

seriously lead to erratic movement at low speed and the inability of a feedback to detect these small changes causes

instability in a servo motor system. In this paper, problems of such system stability provision is considered using

Lyapunov’s stability theory. By constructing appropriate Lyapunov functional, sufficient conditions which ensure

the stability of the state variables chosen xi(t), (i = 1,2,3) describing the system of the servo motor are obtained.
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1. Introduction

A servo motor is a useful component in many real control systems. The function of the servo

is to receive a control signal that represents a desired output position of the servo shaft and apply

power to its DC motor until its shaft turns that position. It uses the position sensing device to

determine the rotational position of the shaft. Technically, one can reduce this inability of the
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feedback to detect small changes by using feedback devices like resolver or pulse encoder [1].

This seems to work but is expensive, moreover it does not allow to discover the true cause of

instability. Be as it may, if these small changes are detected and eliminated experimentally, it

can appear at any moment. This undesirable problem can be detected theoretically and elimi-

nated at development stage. Hence, it is necessary to discover fundamentally using Lyapunov’s

stability theory. In this paper, we examine the stability of the electrical and control variables

behind the operation of the DC servo motor problem. The energy storage elements of a system

are what make the system dynamic. The flow of energy into and out of a storage elements

occurs at a finite rate is described by a differential equation relating the derivative of the en-

ergy storage variable (a state variable) to other power variable of the element. There are three

independent energy storages in servo armature circuit, the current source which stores energy

in electric voltage, the inductor which stores energy in a magnetic field and the motor angular

position which stores mechanical energy. The state variables are the energy storage variables

of these elements, V1,V2 and θ(t). According to [5] state variables are the minimum set of

variables that fully describe the system circuit and its response to any given set of inputs. By

this, it shows that the qualitative property of state-determined servo system represented in Fig.

1 is completely characterized by the stability of the set of xi(t),(i = 1,2,3) variables.

2. Preliminaries

We consider a servo system represented in Fig.1. The input signal to the motor is the armature

voltage V1(t) and the output signal is the angular position θ(t). The terms R and L1 are the

resistance and inductance of the armature winding in the motor respectively. The voltage V2 is
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the back em f generated internally in the motor by the angular motion and k2 is the motor back

em f constant. J is the inertia of the motor and load respectively. Here, the motor and the load

assumed not lumped together and B is the damping in the motor and load relative to the fixed

chassis. We supposed also that circuit elements (resistance and inductance) are always positive.

The first time derivative of the armature current di
dt and the angular position dθ

dt do exist. The

feed current i1 is finite but undefined. The applied torque T q is given by

T q :
Jd2θ(t)

dt2 +
Bdθ(t)

dt
− kmi1

N1

N2
= 0,(1)

where km is the torque constant that relates the torque to the armature current. N1 and N2 are

the number of turns of the motor and load respectively.

The mathematical equation of servo circuit system can be different depending on the choice of

state variables that are defined. The state variables chosen for this analysis are all real variables

representing energy stored in the system which are defined as the outputs of the integrators by

x1 = i1,

x2 = θ(t),

x3 =
dθ

dt
.(2)

Applying Kirchhoff’s law to the armature circuit in Fig. 1. and by KCL and KVL [4], we obtain

the following differential equation

di1
dt

=− k2N2

L1N1

dθ

dt
− R

L1
i1 +

1
L1

V1.

The case considered here is that of a natural process where dissipation is absent due to exter-

nal conductive connections. Thus, 1
L1

V1 = 0.

It follows that

di1
dt

=− k2N2

L1N1

dθ

dt
− R

L1
i1.(3)
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If we now substitute the state variables in (2) into equations (1) and (3), we obtain the fol-

lowing system of differential equations,

ẋ1 = −B
J

x1 +
km

J
N1

N2
x3,

ẋ2 = x1,

ẋ3 = − k2

L1

N2

N1
x1−

R
L1

x3.(4)

equation (4) is a linear heterogeneous system of three differential equations of the first order

which can be represented in matrix notation as

d
dt


x1(t)

x2(t)

x3(t)

=


−B

J 0 km
J

N1
N2

1 0 0

− k2
L1

N2
N1

0 − R
L1




x1

x2

x3

(5)

So (5) is a linear vector differential equation of order one,

Ẋ = AX ,(6)

where state vector X is a column vector, A is a 3× 3 matrix of constant co-efficients. A is not

symmetrical since the circuit is connected through connecting elements.

The Lyapunov functional approach has been a powerful tool to ascertain the stability of crit-

ical variables of dynamic systems. Today, this method is widely recognized as an excellent

tool not only in the study of differential equations but also in the theory of control systems,

dynamic systems, systems with lag, power system analysis and so on [8]. The major difficulty

in applying the method of Lyapunov to the analysis of qualitative properties of critical vari-

ables characterizing the system of electrical circuits is the lack of straight forward procedure

for finding appropriate Lyapunov functionals. Moreover, how do we construct those appropri-

ate Lyapunov functionals? no author has discussed them thus far. It is in general a difficult

task. Similar problem is shared with ordinary differential equations of high orders [6]. Thus,

our problem in Fig. 1. is best treated since it has been reduced to stability problem according

to Lyapunov’s equations in (4). This Lyapunov method lies in constructing a scalar function

Ψ such that is positive definite and its derivative Ψ̇ along the system (4) under consideration
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is negative definite. When these properties of Ψ and Ψ̇ are shown to be satisfied according to

Lyapunov’s theory [2, 3, 9], then the behavior of the servo motor system circuit is known. The

construction of a Lyapunov function Ψ, which is a quadratic form satisfying the requirements

for Ψ and Ψ̇ for discussing the stability of the xi(t),(i = 1,2,3) variables of the linear vector

differential equation (6) is obtained. It must be noted here that the physical meaning of Lya-

punov function is not considered. In known cases Lyapunov functions were obtained as abstract

mathematical approach results. see [7]. Also, in this analysis we assume that physical meaning

availability is not connected with function efficiency.

3. Assumptions

In addition to the basic assumption imposed on the elements B, J, L1, k2, km and R in (4), we

suppose that the followings hold,

(i): Bk2km > BJL1 + Jk2km,

(ii): kmN1R > 2JL1N2 +BL1N2 + JN2R.

To establish our result, we use the following scalar function Ψ = Ψ(x1,x2,x3) defined by

2 ˙Ψ(x1,x2,x3) =
N2

kmL1N1

(
JL1 +BL1 + JR+ k2km

)
x2

1

+
N2

N1

(
BR+ k2km

kmL1

)
x2

2 +
kmN1

JN2
x2

3

+
2JRN2

kmL1N1
x1x2 +2x2x3 +2x1x3.(7)

From (7), it is immediate that Ψ(0,0,0) = 0. Next, we re-arrange (7) as follows

2Ψ(x1,x2,x3) =
JN2

kmN1

(
1+

k2km

JL1

)
x2

1 +
BRN2

k2L1N1
x2

2

+

(
kmN1

JN2
− L1N1

k2N2
− kmN1

BN2

)
x2

3 +
JRN2

kmL1N1
(x1 + x2)

2

+
L1N1

k2N2

(
k2N2

L1N1
x2 + x3

)2

+
BN2

kmN1

(
x1 +

kmN1

BN2
x3

)2

.
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That is,

2Ψ(x1,x2,x3) ≥
JN2

kmN1

(
1+

k2km

JL1

)
x2

1 +
BRN2

k2L1N1
x2

2

+

(
kmN1

JN2
− L1N1

k2N2
− kmN1

BN2

)
x2

3.(8)

It is obvious from (8) that the function Ψ defined in (7) is a positive definite function provided

that the Assumption (i) hold. Hence, there is a positive constant ξ1 > 0 sufficiently small such

that

Ψ(x1,x2,x3)≥ ξ1(x2
1 + x2

2 + x2
3).

Now, let d
dt Ψ(x1(t),x2(t),x3(t)) = Ψ̇ denote the derivative of Ψ = Ψ(x1(t),x2(t),x3(t)) along

the system of (4). Then, by straight forward calculation from (7) and (4), we obtain after

simplification,

Ψ̇(x1,x2,x3) = − N2

kmL1N1

{
Bk2km +BL1(2J+1)+BR(J+1)+ J2L1(2+R)

JL1

}
x2

1

−
{

kmN1R
JL1N2

− 2JL1 +BL1 + JR
JL1

}
x2

3

−
{

2JL1 +BL1 + JR
2JL1

}
(x1− x3)

2.(9)

It follows that,

Ψ̇(x1,x2,x3)≤ 0,

provided that Assumption (ii) hold and (9) is equal to zero if and only if x1 = x3 = 0. Since

Assumption (ii) hold and the last addend of (9) is certainly negative, then

Ψ̇(x1,x2,x3)<−ξ2(x2
1 + x2

3),

for some ξ2 > 0.

Thus, the analysed servo motor system circuit shown in Fig. 1 is asymptotically stable ac-

cording to Lyapunov’s theory if the inequalities in Assumption (i) and (ii) hold from time to to

t = (t− to)→ ∞.
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Conclusion

The application of Lyapunov’s theory to analysis of electrical circuit systems is rarely scarce.

The Lyapunov’s direct or second method allow us to predict and characterize the behaviour of

system of servo motor and its response as well eliminate the undesirable cases of small changes

due to the motor feedback by relatively simple mathematical approach.
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