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Abstract. A local base of the neighbourhood system associated with a fixed point is called a fixed filter base. The

possibilities of constructing fixed filter bases are discussed, which lead to a concept of fixed point at infinity.
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1. Introduction

A point in a metric space or a topological space is identified with its neighbourhood system

when topological extensions are studied (see, for example [2]). So, a fixed point of a mapping

may also be considered as a local base for the neighbourhood system. It is a filter base of

nonempty open sets containing the fixed point. If a local base for a neighbourhood system of a

point in a metric space is considered, then the diameter of the members of the local base tends
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to zero, when the local base is considered as a directed set under the inclusion relation. The

following convention is to be followed in the first two sections of this article.

Convention 1.1. A filter base U of nonempty open subsets of a metric space (X ,d) is called a

diametrically zero converging open filter base (or, DZCO-filter base) if the net (diam U)U∈U

of nonnegative extended real numbers converges to zero over the directed set U under the

inclusion relation. Here diam U = sup{d(x,y) : x,y ∈U}.

Thus, U is a DZCO-filter base in a metric space (X ,d), if

(i) U ∈U =⇒U 6= /0 and U is open;

(ii) U,V ∈U =⇒ there exists W ∈U such that W ⊆U ∩V ; and

(iii) diam U → 0 as U varies in the directed set U .

Definition 1.2. Let f : X → X be a given mapping on a metric space (X ,d). A DZCO-filter

base U in X is called a fixed filter base of f in X, if for given U ∈ U , there is a V ∈ U such

that f (V )⊆U.

If f : X → X is a mapping on a metric space (X ,d), x ∈ X is a fixed point of f , and f

is continuous at x, then U =
{

B
(
x, 1

n

)
: n = 1,2, . . .

}
is a fixed filter base of f in X , when

B
(
x, 1

n

)
=
{

y ∈ X : d(x,y)< 1
n

}
. Continuity is essential to ensure that existence of a fixed point

implies existence of a fixed filter base.

Example 1.3.

Define f : R→R by f (x) = 1+x for x 6= 0 and f (0) = 0, when R is the real line endowed with

the usual metric. This function f has the unique fixed point zero at which f is not continuous.

But there is no fixed filter base of f in R.

On the other hand the existence of a fixed filter base need not imply the existence of a fixed

point.

Example 1.4.
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Define f : (0,1)→ (0,1) by f (x) = x
2 , for x ∈ (0,1) with the usual metric on (0,1). Then f

has a fixed filter base U =
{(

0, 1
n

)
: n = 1,2, . . .

}
. This function f has no fixed point in (0,1).

But a fixed point may be realized in the completion of (0,1).

Proposition 1.5. Let f : (X ,d)→ (X ,d) be a function with a fixed filter base U in a complete

metric space (X ,d). Suppose to each U ∈ U , there is a V ∈ U such that V , the closure of

V , is contained in U. Then there is a fixed point x ∈ X such that U is a local base for the

neighbourhood system for x.

Proof. Since (X ,d) is complete and diam U → 0 as U varies in U , then
⋂

U∈U
U = {x} for

some x ∈ X . By our hypothesis, the equality
⋂

U∈U
U = {x} is also true. To each U ∈U , there is

a V ∈U such that f (V )⊆U . Thus f (x) ∈U,∀U ∈U . This proves that x is a fixed point of f .

Since diam U → 0 as U varies in U , x ∈U and U is open for every U ∈U , and
⋂

U∈U
U = {x},

then the filter base U should be a local base to the neighbourhood system for x. �

Proposition 1.6. Let f : (X ,d)→ (X ,d) be a continuous function with a fixed filter base U in

a compact metric space (X ,d). Then there is a fixed point x ∈ X such that x ∈U ,∀U ∈U .

Proof. Note that
⋂

U∈U
U = {x}, for some x ∈ X . To each U ∈U , there is a V ∈U such that

f (V )⊆U ; and by the continuity of f , f (x) ∈ f (V )⊆ f (V )⊆U are true. Thus f (x) ∈
⋂

U∈U
U =

{x} so that f (x) = x. This completes the proof. �

Example 1.7.

Consider the continuous function f : [0,1]→ [0,1] defined by f (x) = 1
2x, ∀x ∈ [0,1], when

[0,1] is endowed with the usual metric. The filter base U =
{
(0, 1

n) : n = 1,2, . . .
}

is a fixed

filter base of f and 0 is a fixed point of f such that 0 is in the closure of (0, 1
n), for each n. But

(0, 1
n) is not a neighbourhood of 0, for any n.

Convention 1.8. A DZCO-filter base U in a metric space is called a DZCOR-filter base, if for

each U ∈U , there is a V ∈U such that V ∈U.

Definition 1.9. A DZCOR-filter base U in a metric space (X ,d) is called a fixed R-filter base

of a function f : X → X, if it is a fixed filter base of f in X.
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The filter base
{(

0, 1
n

)
: n = 1,2, . . .

}
and

{[
0, 1

n

)
: n = 1,2, . . .

}
are fixed filter bases for the

function given in example 1.7. The first one is not a fixed R-filter base, whereas the second one

is a fixed R-filter base.

2. Construction of fixed filter bases

Theorem 2.1. Let f : X → X be a mapping on a metric space (X ,d) such that d( f (x), f (y))≤

kd(x,y) ∀x,y∈ X and for some fixed k ∈ (0,1). If x1 ∈ X is fixed, and xn+1 = f (xn), n = 1,2, . . . ,

are defined, then
{⋃

i≥n
B(xi,kn) : n = 1,2, . . .

}
is a fixed base of f in X.

Proof. Recall that B(x,r) = {y ∈ X : d(x,y)< r}. Write Bn,r =
⋃

i≥n
B(xi,r), when xn+1 =

f (xn), n = 1,2, . . . , and x1 is fixed. The inequalities

d(xn+2,xn+1)≤ kd(xn+1,xn)≤ k2d(xn,xn−1)≤ ·· · ≤ knd(x2,x1) and

d(xn,xm)≤ d(xn,xn+1)+d(xn+1,xn+2)+ · · ·+d(xm−1,xm)

for m > n imply that lim
n→∞

diam{xn,xn+1, . . .} = 0, and hence 0 ≤ limsup
n→∞

diam Bn,r ≤ 2r. If

x ∈ Bn,r then x ∈ B(xi,r) for some i ≥ n, and hence d(xi+1, f (x)) = d( f (xi), f (x)) ≤ kd(xi,x)

imply that f (x) ∈ B(xi+1,kr). So,

f (Bn+1,kr)⊆ f (Bn+1,r)⊆ f (Bn,r)⊆ Bn+1,kr ⊆ Bn+1,r ⊆ Bn,r.

Thus,
{

Bn,kn : n = 1,2, . . .
}

is a filter base of nonempty open sets such that

(i) lim
n→∞

diam Bn,kn = 0, and

(ii) f (Bn+1,kn+1)⊆ Bn+1,kn+1 ⊆ Bn,kn , for every n = 1,2, . . . .

So, {Bn,kn : n = 1,2, . . .} is a fixed filter base of f . This completes the proof. �

One may find a continuous extension of f to the completion of f , a fixed point of this exten-

sion as the limit of the sequence xn as in Banach contraction theorem, and thereby a fixed R-filter

base of f . When the construction of completion through Cauchy sequences (see comments fol-

lowing Proposition 2.1 in [1]) and the Banach fixed point iteration procedure (see Theorem 3.1

in [1]) are recalled, the following theorem is concluded.
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Theorem 2.2. Let f ,X ,d,k, and x1,x2, . . . be as in theorem 2.1. Suppose further that (X ,d) is

complete. Then {{
x ∈ X : lim

n→∞
d(xn,x)< 1

m

}
: m = 1,2, . . .

}
is a fixed R-filter base of f in X.

These illustrated constructions reveal the difficulties in constructing fixed filter bases and

their dependence on the construction of fixed points. It is expected that some good methods

will be developed.

3. Fixed point at infinity

The previous section gives a motivation to propose the next definition.

Definition 3.1. Let X be a locally compact Hausdorff space which is not compact. Let f : X→X

be a mapping. Then f is said to have a fixed point at infinity, if for each compact subset K1 of

X, there is a compact subset K2 of X such that f (X\K2)⊆ X\K1.

Theorem 3.2. Let X and f be as in the definition 3.1. Then f has a fixed point at infinity if and

only if the closure of inverse image of any compact subset of X is compact.

Proof. Suppose f has a fixed point at infinity. Let K1 be a compact subset of X . Then there is

a compact subset K2 of X such that f (X\K2)⊆ X\K1. So, f−1(K1)⊆ K2, and hence the closure

of f−1(K1) is compact, because K2 is compact.

Conversely assume that the closure of inverse image of any compact subset of X is compact.

Let K1 be a compact subset of X . Let K2 be the closure of f−1(K1) in X . Then K2 is compact

and f (X\K2)⊆ X\K1. �

Corollary 3.3. A homeomorphism from a locally compact Hausdorff space that is not compact

onto itself has a fixed point at infinity.

Proof. This is true because inverse image of a compact set is compact in this case. �
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The definition 3.1 agrees with the classical definition of point at infinity for one-point com-

pactification of a locally compact Hausdorff space that is not compact. However, it is possible

to extend the definition 3.1 and the theorem 3.2 to metric spaces in the following manner.

Definition 3.4. Let X be a metric space which is not bounded. Let f : X → X be a mapping.

Then f is said to have a fixed point at infinity, if for every closed and bounded set C1 in X, there

is a closed and bounded set C2 in X such that f (X\C2)⊆ X\C1.

Theorem 3.5. Let X and f be as in the definition 3.4. Then f has a fixed point at infinity, if and

only if inverse image of any bounded subset of X is bounded in X.

Proof. Suppose f has a fixed point at infinity. Let C1 be the closure of a given bounded set

B in X . Then C1 is also a bounded subset of X . Then, there is a closed and bounded set C2 in

X such that f (X\C2) ⊆ X\C1. Then f−1(B) ⊆ f−1(C1) ⊆ C2, and hence f−1(B) is bounded,

because C2 is bounded.

Conversely, assume that inverse image of any bounded set is a bounded set in X . Let C1 be

a closed and bounded subset of X . Let C2 be the closure of f−1(C1). Then C2 is closed and

bounded and f (X\C2)⊆ X\C1. �

Corollary 3.6. Let f : (X ,d)→ (X ,d) be a mapping on an unbounded metric space (X ,d) such

that

d(x,y)≤ kd( f (x), f (y)),∀x,y ∈ X ,

for some k > 0. Then f has a fixed point at infinity.

Remark 3.7. Since bounded sets are also defined in Hausdorff topological vector spaces (see

[3]), “metric spaces” can be replaced by “nonzero Hausdorff topological vector spaces” in

definition 3.4 and in theorem 3.5 in which unboundedness of topological vector spaces need not

be mentioned. The following corollary is the one corresponding to the corollary 3.6, but for

linear mappings.

Corollary 3.8. Let f : X → X be a linear mapping on a nonzero Hausdorff topological vec-

tor space X. Suppose, to each open neighbourhood U of 0 in X, there corresponds an open

neighbourhood V of 0 in X such that f−1(V )⊆U. Then f has a fixed point at infinity.
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