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Abstract. High Energy Laser (HEL) propagation through turbulent atmosphere is examined via numerical simula-

tion. The beam propagation is modeled with the paraxial equation, which in turn is written as a system of equations

for a quantum fluid, via the Madelung transform. A finite volume solver is applied to the quantum fluid equations,

which supports sharp gradients in beam intensity. The atmosphere is modeled via a coupled advection-diffusion

equation whose initial data have Kolmogorov spectrum. In this model the combined effects of thermal blooming,

beam slewing, and deep turbulence are simulated.
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1. INTRODUCTION

This article considers atmospheric effects on the propagation of continuous wave High En-

ergy Lasers (HEL). The understanding of laser propagation is important in an ever increasing

array of applications including targeting, wireless communication, remote sensing, the creation

of Bose-Einstein Condensate, gravity-wave measurements, and many more [1, 2, 3, 4]. For

applications involving atmospheric propagation, continuous wave lasers exist with powers in
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the kilowatts [5], a number which is certain to increase with time. In laboratory settings, pulse

lasers have been developed with powers reaching the staggering petawatts [6, 7]. In this work

we develop a numerical solver for the propagation of continuous wave HEL, which is capable

of handling three important environmental interactions: scintillation by random media, thermal

blooming, and beam slewing (by wind). In the context of this solver the combined effect of

these interactions is presented.

It is unreasonable to directly simulate the dynamics of the atmosphere at the scale of laser

wavelengths. Instead, as is typical, we use a statistical description of the atmosphere. To model

a turbulent atmosphere, we use a random temperature field with prescribed spectrum. This

temperature field then induces a random refractive index. In this work, the beam propagates

through a random refractive index for its entire length. This contrasts much of the previous

work on propagation through random media which focuses discretely placed phase screens

[8, 9, 10, 11, 12, 13]. The statistics of the temperature field are designed to match an expression

for the expected intensity, as formulated by [14].

Even in a statistical description of the atmosphere, one may take into account the effect of

the beam heating the air it passes through. The resulting change in refractive index feeds back

upon the beam, an effect known as thermal blooming. Thermal blooming is a well documented

phenomenon [15], whose relevance to laser propagation in the atmosphere gains importance

as laser’s become more powerful. As a simple coupling, we append an advection-diffusion

equation for the temperature, in which heating from the laser appears as a forcing term. The

temperature feeds back on the beam propagation via the refractive index.

The beam’s propagation is modeled using the paraxial, or Schrödinger, equation. This stan-

dard model can be derived directly from Maxwell’s equations when backscatter effects are

neglected [16]. The numerical method used here is based in reformulation of the paraxial equa-

tion, via the Madelung transformation [17, 18, 19, 20]. This formulation divides the complex

field into two real valued fields that are smoother than the original complex field. The trans-

formed equations are similar to the equations of isentropic gas dynamics, but have an extra term

called the quantum pressure. This approach was previously used in chemistry [21] and has been

suggested for optics [18]. The Madelung transformed fluid equations are evolution equations
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in propagation distance, whereas the temperature equation is an evolution equation in time. We

evolve these equations alternatively in space-time, using a simple splitting scheme.

The remainder of the paper is organized as follows. In section 2, the equations modeling

the beam propagation and temperature field are presented. In section 3, the numerical methods

used for simulation are presented. Also in this section is a description of the technique used

to generate the random smooth fields and an example of a beam’s propagation through random

media with thermal blooming and a side-wind. In section 4, we conclude and present future

research areas.

2. FORMULATION

In this section, we present the model equations used to study High Energy Laser (HEL) prop-

agation through the air. These equations are the paraxial equation for the beam propagation,

coupled with a forced advection-diffusion equation for the temperature fluctuations in the at-

mosphere. The forcing term in the temperature equation models the heating of the beam, and

allows for the study of thermal blooming. The advection term models allows for the model-

ing of side-wind. Random initial temperature distributions serve as the model for a turbulent

atmosphere.

We choose to approximate the beam’s propagation by the paraxial equation, as in [20]. As

an approximation to Maxwell’s equations this amounts to neglecting backscattering and polar-

ization, and assuming small changes in the refractive index. From this point forward, consider

x ∈ R2 to be the x,y-coordinate directions parallel to the plane containing the aperture and

z ∈ [0,Z] to be the coordinate in the propagation direction. We write the refractive index as,

(1) n = n0 +n1(x,z),

where n0 is the average value of the refractive index and n1 a small real valued perturbation,

(2) n0 >> n1.

We expect the change in the refractive index due to thermal blooming to be about 10−9 [9].
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The paraxial equation for the beam propagation is

∂V
∂ z

=
i

2kn0

(
4H +P(x,z)k2)V (x,z),(3a)

V (x,0) =V0(x),(3b)

where4H is the Laplacian in the xy-plane and P(x,z) is the potential, defined as

(4) P(x,z) = 2n0n1(x,z).

This equation has been numerically simulated previously using, for example, the Fourier-split

step method [8, 9, 10, 13]. For propagation through turbulent media, the field V often develops

sharp gradients, for which pseudospectral methods are ill-suited. We handle these gradients by

working in the Madelung transformed paraxial equation [21].

From the field, V , in equation (3), the beam’s intensity, I, is defined as,

(5) I(x,z) =V (x,z)V (x,z)eikn0z−ikn0z

=V (x,z)V (x,z)e−2kIm(n0)z = ρ(x,z)e−2kIm(n0)z.

We will denote ρ(x,z) as the rescaled intensity.

Equation (3) can be rewritten in a way to mimic a fluid equation. We will rewrite the field

V (x,z) by using,

(6) V (x,z) =
√

ρ(x,z)eiθ(x,z).

where ρ is the rescaled intensity and θ is the phase. Both ρ and θ are real valued fields.

Madelung introduced this transform in order to move from a linear (and nonlinear) Schrödinger

equation to hydrodynamic type system of equations [22, 23]. Note that absorption is still in-

cluded in the simulation due to equation (5). The Madelung transform of equation (3) yields a

fluid-like form of the paraxial equation,

∂ρ

∂ z
+

1
k

∇H · (ρv) = 0,(7a)

∂v
∂ z

+
1
k
(v ·∇H)v =

k
2

∇H

(
P(x,z)+

∇2
H
√

ρ

k2√ρ

)
,(7b)
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in which v = ∇Hθ . In equation (7), Im(n0n1) has been neglected. Since θ is multivalued, the

gradient is numerically evaluated as,

(8) v = ∇Hθ =
∇Heiθ

ieiθ .

An alternative way would be to follow the method in [24]. Note that equation (7a) is invariant

to rescaling of ρ , therefore for potentials which are independent of ρ , a low power laser will

propagate along the same path as a high power laser. When thermal blooming is included, the

potential will depend on ρ and this is no longer the case.

As the power of the laser increases, with all other aspects fixed, the amount of energy the laser

loses to the medium in the form of heat also increases. This heating feeds back into the dynamics

of the laser, at leading order, via the effect of temperature on the refractive index. Since the

speed of light is much larger than the speeds associated with the change in temperature, the

equation system (7) can be solved using a fixed temperature. The solution of (7) will then play

the role of a known forcing in an evolution equation for temperature. We choose to model the

temperature fluctuation T with a convection–diffusion equation,

(9) ρcp

(
∂

∂ t
+u(x,z, t) ·∇−α4

)
T = εI

where u(x,z, t) is some known velocity profile, modeling wind, where ε is the absorptivity, I the

power of the beam per unit area [9]. Such a model is reasonable in the case where the timescale

over which the laser operates is small relative to the time it takes for convective-driven fluid

motion and that such motions are small relative to the background wind (otherwise one should

also simulate the velocity field).

Note that the absorptivity is related to the complex part of the refractive index by the Beer-

Lambert Law, [25],

(10) Im(n0) =
ε

2k
.

The above equation is used to determine the value of Im(n0). To complete the connection

between equation (7) and (9) one needs to specify a closure between refractive index and tem-

perature. We posit that the variation of the refractive index depends linearly on the temperature
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fluctuation, as in [9],

(11) n1 =−10−6T.

3. NUMERICAL SIMULATION OF HEL THROUGH RANDOM MEDIA

In order to numerically simulate thermal blooming, we need to solve two partial differential

equations. The two partial differential equations are of different type and will be simulated

with different numerical algorithms. The beam propagation will be simulated by a hyperbolic

finite volume solver, see section 3.1, whereas the advection-diffusion equation will be simulated

using an upwind finite difference solver. Since the beam propagation happens on a much faster

time scale than the heating of the medium, it is possible to separate the two system of equations.

The refractive index is frozen and the light is assumed to travel instantaneously from the source

to the target.

3.1. Numerical Method. Equations (7a) and (7b) will be solved using the package CLAW-

PACK [26]. CLAWPACK requires an approximate Riemann solver for equations (7). Since the

left hand side of equation (7b) is a rescaled inviscid Burgers equation, The solver is straight

forward to implement.

For the transonic rarefaction wave solution, vr < 0 and vl > 0, we will use the entropy fix

described in [27],

A−∆v :=−(vr)2

2k
,(12a)

A+
∆v :=

(vl)2

2k
,(12b)

A−∆ρ :=−(ρv)r

k
,(12c)

A+
∆ρ :=

(ρv)l

k
,(12d)

where A±∆v are the fluxes of the velocity in the positive and negative direction and A±∆ρ are

the fluxes of the density in the positive and negative direction. The extension to two dimen-

sions is straightforward. The source term is approximated by the five-point stencil finite dif-

ference method. To prevent the numerical differentiation of the quantum pressure from being
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unbounded the following substitution will be used,

(13)
∇2

H
√

ρ

k2√ρ
=

∇2
HR+ |∇HR|2

k2 ,

where
√

ρ = eR. This prevents a numerical small divisor problem.

To numerically simulate the temperature equation (9), we use a finite difference method. The

advection term is calculated using first order upwind and the diffusion by the five-point stencil

finite difference method. The time stepping algorithm used is variable order Adams-Bashforth-

Moulton PECE, see [28], by the command ode113 in MATLAB. Note that the electromagnetic

field and the the temperature field can be solved using different grids. The fields are interpolated

using linear interpolation.

3.2. Generating refractive index for turbulent air. The traditional way to numerically sim-

ulate propagation through turbulent air is to use discretely placed phase screens, see [29]. While

phase screen method produces good results, it has not been rigorously shown that it gives the

same intensity profile as propagation through a continuous random medium. We instead gen-

erate a random refractive index with Kolmogorov statistics. The change in refractive index

for turbulent air is modeled as a passive scalar. Passive scalars have a similar correlation as

Kolmogorov-type turbulence, see [30]. We generate the refractive index by following [31], a

method for generating fractional Brownian motion,

(1) Generate a field of random complex numbers in Fourier space, by setting each Fourier

coefficient to,

(14) f̂ (k1,k2,k3) =


Uk1,k2,k2+iVk1,k2,k3

2 , k1 < N1,k2 < N2,k3 < N3,

Uk1,k2,k2, k1 = N1,or k2 = N2,or k3 = N3,

where Uk1,k2,k3 and Vk1,k2,k3 are independent standard normal random variables for all

k1,k2,k3. Since we want to find a real valued field, we use the complex conjugate to find

the f̂ (k1,k2,k3) for negative values of k1,k2,k3. N1,N2,N3 are the maximum resolved

Fourier coefficients in the variables x, y and z respectively.
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FIGURE 1. LEFT: The correlation function in z direction, of the refractive in-

dex, is depicted as a function of distance r, in units of the integral lengthscale L.

RIGHT: A realization of the random perturbation to the refractive index, n1, for

Kolmogorov turbulence is depicted for at one point in z. The average value of

the refractive index in the plane has been subtracted. The scale is in 10−4.

(2) Scale each Fourier coefficient, so that the three dimensional spectrum is set to, see [32],

(15) E(κ) =

(
κL√

(κL)2 + cL

)5/3+p0

κ
−5/3e−βκlK =

∮
κ

| f̃ (k1,k2,k3)|2κ
2 sinφdφdθ ,

where κ =
√

k2
1 + k2

2 + k2
3 the above parameters are

• L, integral length scale, here 50m,

• lK , Kolmogorov micro-scale, here 1mm,
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• cL, a positive constant, here 6.78,

• p0, a positive constant, determining the power of the three dimensional energy

function spectrum as κ → 0, p0 = 4,

• β = 5.2 and cη = 0 are positive constants.

(3) Rescale f̂ from equation (14), in order to obtain the desired energy function spectrum.

(16) f̃ (k1,k2,k3) =

√
E(κ) f̂ (k1,k2,k3)

2πκ2

(4) Use the inverse fast Fourier transform to obtain the perturbation of the refractive index

in real space:

(17) n1(x,y,z) = F−1 [ f̃
]

This method is described in more detail for fractional Brownian noise in [33]. This construction

creates a refractive index correction n1(x,y,z) which is periodic, discrete in space and Gaussian.

In figure 1, a slice of one such realization is depicted in the xy-plane. The average has been

deducted from the field to highlight the perturbations. Even though the horizontal gradient is

small, the effect on propagation is large.

To test the randomness of a particular realization, we use the correlation function,

(18) F(r) =
∫ ∫ ∫

n1(x,y,z)n1(x,y,z+ r)dxdydz∫ ∫ ∫
n1(x,y,z)n1(x,y,z)dxdydz

,

which is approximated by,

(19) F(r)'
∑

N1
i=1 ∑

N2
j=1 ∑

N3
k=1 n1(xi,y j,zk)n1(xi,y j,zk + r)

∑
N1
i=1 ∑

N2
j=1 ∑

N3
k=1 n1(xi,y j,zk)n1(xi,y j,zk)

.

The approximate correlation function is shown in the left hand side of figure 1. For large

distances, the approximate correlation function will oscillate around zero. If more resolution is

used in z–direction, the size of the oscillations will decrease.

3.3. Numerical Results. As discussed above, our numerical method alternately solves (7)

with a finite volume method and (9) with a finite difference method. The numerical parameters

are Mx = My = 128 equally spaced points in the transverse directions, Mz = 61 z–planes, with

∆z=82m and ∆t=0.007s.
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FIGURE 2. Intensity of the beam after propagation through random temperature

field with sidewind vx =−0.5m/s and including the effect of thermal blooming.

The intensity is reported in units of 100 kW/m2. In the top row, from left to right,

t = 0s,0.015s, and 0.036s; in the bottom row t = 0.043s,0.05s and 0.65s.

The simulated physical parameter regime is similar to that of [9]. The propagation is sim-

ulated up to 5km. The absorptivity is set to 2 · 10−5m−1. The other parameters are for air at

27C◦, which has n0 = 1+3 ·10−4+3 ·10−12i, C =−1 ·10−6, ρ = 1 ·103g/m3, cp = 1.005, and

α = 0.0257. To start our beam with an initial radius of 10cm and power of 100kW/m2. In terms

of equation (7), we model this as initial data of the form,

(20) ρ = 5 ·105H
(

0.1−
√

x2 + y2
)
,

where,

(21) H(x) =
1

1+ e−2δx
.
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The δ used in the calculations was 200. No adaptive optics or regularization of the beam was

used.

In figure 2, we show the results of laser propagating through 5 km of air with thermal bloom-

ing. The initial temperature field was generated using the method described in section 3.2.

The temperature field evolves according to equation (9). At time t = 0, the laser propagates

through a random field and generates hotspots of very high intensity, e.g. scintillation. As time

progresses, the intensity field smooths due thermal blooming - the hotter the spots the more

pronounced the thermal blooming. For large time, figure 2, thermal blooming is the dominating

effect on propagation. In the last time slice, the intensity distribution retains some asymmetry

due to a combination of the initial temperature field and the sidewind.

4. CONCLUSIONS

HEL propagation was simulated using the paraxial equation coupled with an advection-

diffusion equation for the temperature field. The quantum fluid formulation, derived by [23],

was employed. This fluid formulation enables the use of shock capturing finite volume meth-

ods, allowing for simulation of steeper gradients than traditional solver methods, for example

split step Fourier method. The effects of beam slewing by wind, scintillation by random media,

and thermal blooming were simulated in concert. We observe that thermal blooming helps to

mitigate the scintillation of the random medium, and beam slewing counteracts thermal bloom-

ing.
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