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Abstract: In this article, we study the existence, uniqueness and exponential stability of random impulsive
semilinear integro-differential systems. The results are obtained by using the contraction mapping principle. finally,
an example is given to illustrate the applications of the abstract results.
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1. INTRODUCTION

Impulsive differential equations have become more important in recent years in some
mathematical models of processes and phenomena studied in physics, optimal control,
chemotherapy, biotechnology, population dynamics and ecology. There have been much research
activity concerning the theory of impulsive differential equations see [2-6]. The impulses may
exist at deterministic or random points. There are a lot of papers which investigate the properties

of deterministic impulses see [9] and the references therein.
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Thus the random impulsive equations gives more realistic than deterministic impulsive
equations. There are few publications in this field, Wu and Duan brought forword random
impulsive ordinary differential equations and investigated boundedness of soloutions to these
models by Liapunov’s direct function in [11] . Wu et al, studied some qualitative properties of
random impulses in [7,8,10]. In [12-14] the author studied the existence results for the random
impulsive neutral functional differential equations and differential inclutions with delays. In [13],
the authors generalized the distribution of random impulses with the Erlang distribution.

The stabilities like continuous dependence, Hyers- Ulam stability, Hyers- Ulam-Rassias
stability, exponential stability and asymptotic stability have attracted the attention of many
mathematicians see [15-18]. Motivated by the above mentioned works, the main purpose of this
paper is to study of random impulsive semilinear integrodifferential systems. We relaxed the
Lipchitz condition on the impulsive term and under our assumption it is enough to be bounded.

This article is organized as follows: In section 2, we recall some notations, definitions,
concepts of random impulsive semilinear integrodifferential systems, In section 3, the
assumptions, existence and uniqueness of solutions of random impulsive semilinear
integrodifferential systems, In section 4, we study the exponential stability of random impulsive
semilinear integrodifferential systems, In section 5, we provide an example to illustrate the

applications of the obtained result.

2. PRELIMINARIES

Let Il « Il denote the Euclidean norm in R™. If B is a vector or a matrix, its transpose is denoted

by BT; if b is a matrix, its Frobenius norm is represented by Il B Il = {trace (BTB)}%. Let R™ be
the n-dimensional Euclidean space and £ a nonempty set. Assume that &, is a random variable
defined from 2 to D, & (0, dy) for all k=1,2,...where 0<d; < +oo. Furthermore, assume that
8; and §; are independent with each other as i #j fori,j = 1,2,.... Let §, T ER be two constants
satisfying §< T. For the sake of simplicity, we denote Rs =[5, T].

We consider semilinear integro- differential systems with random impulses of the form
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X' () =Bx®) + FEx®)+ [[g(s,x5), t#En,t> 8, (2.1
XMik) = bre(6x) X(i) , kK=1,2,..., (2.2)
Xe, = %o (2.3)

Where B is a matrix of dimension n x n: the functions f,g : R™ x R"™ - R";, b, : D, —
R™*™ is a matrix valued function for each k =1,2,...; o=ty and ng =ny_1 + 6 fork=1.2,...,

here t, € R is arbitrary real number. Obviously, to=1o <M1 <... <N<...; x(Mg) = gm x(t)
Nk

according to their paths with the norm Il x Il = supg<s<¢ | X(s) | for each t satisfying § < s <
T.

Let us denote {A;,t = 0} by the simple counting process generated by {n, }, that is , {A; =
n} ={n, < t}, and denote F; the o — algebra generated by {A;,t = 0}. Then (2, P,{F;}) is
a probability space. Let B be the Banach space with the norm defined for any ¢ € B, || ¥||? =

(supeesry Ell Y(O)|1%), where (1), for any given t € [§,T].
Definition 2.1:For a given T € (6, +), a stochastic process {x(t), § <t < T} is called a
solution to equations (2.1)-(2.3) in (2, P, {F.}) , if

Q) X(t) is F; - adapted,

(i) X() = BEZITT bi(8) D(t — to)xo + Ty TTEey (5[ @t — $)[F (5X(5)) +

Jy 9(8,xs)ds + [0 &t =)F (5X(6)) + 5 9(5,%5)1dS Uinymesn)(®)  LE [8,T],
(2.4)
where []7_,,(.) =1asm>n, H?=1bj( 8;) = b (6x) br—1(8k—1)...b;( 6;), Iz() is the index

1,ift €B

function, ie., Iz(t) = {O ift ¢B

3. MAIN RESULTS
Existence and uniqueness
In this section we give the existence and uniqueness of the system (2.1) — (2.3). We start

with the following assumptions,
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()] The function f satisfies the Lipchitz condition. ie; for ¢,y € R"and § <t < T there

exists a constant L > 0 such that
Ellf(t, @) = f&WII? < LE || a —y]I?,

Ellf(t,0)]* < % ,where k > 0 is a constant.
(1) The condition m%X{]_[;Li 1b; (1,11 } is uniformly bounded if, there is a constant C
> 0 such that m%x{rﬁ?:i I1b; (8)I1}<C forall §;€ D; j=12,...

Theorem 3.1: Let the hypotheses (1), (11) hold. If the following inequality
A= M? max {1, C?}L(T — 6) 2 [1+ (T — &)]< 1, is satisfied , then the (2.1)-(2.3) has a
unique solution in B .

Proof: Let T be an arbitrary number § < T< +oo . First we define the nonlinear operator @ :

B - B as follows (B X)) = TALT, bi(8:) Dt~ to)xo + Tii [Ty bi( ) [, Pt~

OIF X)) + [; 9, xs)]ds + [[ ot =IF (X)) + [ 98, x6)1dS Uiy (®) 1 L €
[5,T],

It is easy to prove the continuity of @ . Now, we have to show that @ maps B into itself.

+o0 k
1 @0® 1< D 1] |58 Mo - ol
k=0 i=1

K k ni s
+ Zi:l”g b (oI [ 0 =) [Fsx(s)) + Of 9(8,x5)]llds

Ni-1

N

t
+ fn 19 =) [F X)) + [ 91N Vi O 1

0
< 2M? max{[Tiz; Il b; (8) 13}l +  2M? [max{ 1, [Tj= 1By (87 N? [, NI (5,%(s) ) +
Iy 98, xS I (O]
< 2M?C?||xo||* + 2M?*max {1,C?} [ftt0 ITE (s,%(5)) + [ 9(8, x5)]llds 12

< 2M2C2|lxo|1” + 2M*max {1,C7}(t= to)], 11 [F (5, x(5) ) + J; 98, xs)1l[ds
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EN(@)(®) 12 < 2M2C2|1xo |17 + 2M2max {1,C2HT — 8) [ Ell[f(5,x()) + [, (8, xp)]I12ds
< 2M2CPxol? + 4MPmax {LCZHT - 6)2G+3) + 4MPmax {LCZHT -
8) L{J,, EIIx()II*ds + f; Ellxs |12)ds.
Thus,

subcers E I (@ 2)(0) 12 < 2M?CP||xo|>  + 4MPmax  {1,C*}(T — 8)*k + 4M?max

{1,C?}(T — 8) L supe s, ElIx(S)|? + 4M?max {1, C*}(T — &) 3sup, s Ellxs||* forall t €

[8,T].
Therefore @ maps B into itself.

Now, we have to show @ is a contraction mapping

I (@ x)®—(@y)®) 12
m ;
j |PE = s [f (s,x(s)) + fg(&xa
Ni-1

+00 k
DINMITIC J

t
—[f(sy(s)) + Jg(&ya)]llds +J 1P CE = IITE (s, %x(s) )

0 Nk

N N

+ [ 9@x -Gy + [ 965 gy © 1

0 0

k ¢ N
< w2 (max(1,| |1, 5 117 ¢ ft 16X + [ 9@x] = [ 6.y()
’ j=1 0 0

+ [ 93N Vg 07

0

< M2 ma{l, C2Ht - &) [ If(sx(s)) + J3 9(8,xs)] = [f(sy(s)) +
I, 98, y)]II%ds
EN@ 0O - (@O 1P M? max{l, CHt - to) [, EIf(5,x()) + f; 9(8,%)] =

[f(s,y()) + f, 9(8,y)]ll%ds



ANU SOURIAR
< M2 max{1, C2H(T - 8) L{J E|Ix(s) — y()I|?ds + f; Ellxs = ys |1*}ds
Taking the supremum over t, we get,
(@ x)®—(@y)®I17< M? max{l, C2H(T — 8)2LIx(s) —y()II* +(T — &) °Lllxs —
vsll?]
Thus,
H(@0)® - (@N®I1Z< A{lIx6) —yG)II? + llxs — ysll*}
Since 0 < A < 1. This shows that the operator € satiafies the Contraction mapping principle and

therefore, @ has a unique fixed point which is the solution of the system (2.1)- (2.3).

4. Exponential stability

In this section, we study the exponential stability of the solution of the system (2.1)-(2.3). Let
P:[0,0) > R be any F; - adapted process which is almost surely continuous in t and we
assume that f(t,0) =0, for any t > §, so that the system (2.1)-(2.3) admits a trivial solution.
Definition 4.1. Equations (2.1)-(2.3) is said to be exponentially stable in the mean square , if
there exist positive constants C; and A > 0 such that

E|lx(s)II” < CiE||xolI?e™C7%) |5 < s,
We now make the following additional assumption:
(D) : ||p(s)|| < Me™7=50), s > s, where M > 1 and y > 0.
Theorem 4.1. Suppose that all the conditions of theorem (3.1) and (I11) hold. Then the system
(2.1)-(2.3) is exponentially stable in the mean square, if the following inequality holds
max{1,C2} M2L/(y— o) <y 4.1)

Proof. Let @ be the map defined in theorem 3.1. In order to prove the exponential stability of
the solution of (2.1)-(2.3) by contraction mapping principle, first we have to prove the continuity
of @on[6,T]. Letx € B and t; =t, and |h|be sufficiently small, then by using hypotheses
(D-(1IT) and condition (4.1), we have

(@ 1)t +h) - (® 0)(t1) ={ EAZITT, bi(8) Dty + h = to)xg + i, T, by(8) [ @ty +h—
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O 6XE) ) + J3 9@ xlds + [ 0ty +h=IF (5X6) )+ f; 9@ xS Upgymey(ta + W3

PZollTE1 bi(8) @ty = to)xo + Tiey[Tfey B(8) [ @t = If 6x©) ) + [ g@mx)lds +
[} @t = IF X)) + f3 9@ xS gy (2}
Thus,
(@ x)(tx +h) - (@ x)(t1) = TiZollliy bi( &) Pty +h = to)xo + Ty [Ty b( &) [ D(ty +h~
OF 6XE) ) + [ g@mxlds + [1 0t +h=F $X6) ) + f3 9@ xS 1 Uy (2 + 1) -
I (@) 1+ TESMI1 i(8) [Pty +h = to)= Dty — to)]xo + [ [Pty +h—5) = D(t; —
EEXEN*, g x)lds  +[[O(t; +h — ) = Dty = sfEX(E)*; g(r,xlds]+ [ oty +

h=$)[f(sx(5)) + [, 9T x)1ds 1, (t + h).

EN(@®x)(t+h) — (@B x)(t) 1I?<2E 1 17+ 2E I I, II? (4.2)
Where
L = YiZolllie bi(8;) @t +h—to)xy + X I15.; bi(5) f,Zi_ICD(t1+h—S)[f (sx(s) ) +

Jy 9@ x)lds + [ @ty +h = $)F (X)) + 5 9@ 2108 1 Uyt + 1) = Iy (t1) ]
Iy = TiZollliy bi(8)[P(ty + h = to)= D(ty — to)|xo+[,)" [@(ts +h—s) = B(ts —
EEXEN*f, 9 x)ds + [[@(t; +h = 5) = Dty = S]fsX(6) + [; g(x,xlds 1+ [ oty +

h—s)[f(s,x(s)) + fosg(r, x)1ds ]Iy, npe)(t + ).
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k
m,gﬂ_[ ||bi(6i)||2}] 16ty + b= EI? ENloll? (T ey (tr + 1)

i=1

E||L? < <2E

2
~ i i) (tl))

k 2 400 t,
+2 rr;jgx{l, [ ||b]-(6,-)||}] (E PN AR ED R CEDI I IEE6)
j=1

k=0 "to

s 2
+ f 9(t,x7)|lds x (I[nk s ) = I e (G ))>
0

< [ZCZMZe‘ZV(“*h‘to) E||xoll? + 2max{1, C?}(t;

ty s
— to)E f e =9I £ (5, x(s)) + f 9(0,x0)] ||2ds]
t
0

0

X E (I mery @+ 1) = Iy e (61)) > 0 as h > 0.

And,
k
E||L,||*> < 3E ml?x{l_[ 1b; T l|p(ts + h — to) — p(t — t)I? E||x0||2}]

=1 ) ,

+3F rx;%x{1,ﬂ ||bj(6j)||}]

j=1

+0 t,

X E lp(ty + h—s)— Pty — I IIf(s x(s))
k=0 "to

S 2

4 f 906, x)] sl n .yt + )
0

N

2
Y0t +h
o <Z J; 19+ =l x0+ fg(T' X)) STy ) (B + h)>
0

k=0 "1
t
< 3C% [|gp(ty + h —to) = d(t — to)lI* Ellxoll® + 3max|1.C?| (& — to)E X [, lp(ts +h—5) —

ti+h

¢t = DN NI (5,x(5)) + [; 9@ x)] 17ds + 3(RE [ N1ty + h = 9IIPIIf (5, %()) +
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S
Jo 9@ x)] |I%ds
t
< 3C%||p(ty + h —tg) — p(t — to)lI* Ellxoll* + 3 max|1.C?| (t; — to) X ftol lp(ts +h—s)—

(ts — I? Elx()2ds + 3Lk [ ¢ty + h— )IPElIx(s)]|*ds — 0as h - 0.

21
Thus, the right - hand side of (4.2) tendsto O as h — 0 . Hence @ is continuous on [§,T]. Next,
we have to show that @ maps 8B into itself. Let £ is a positive constant such that 0 < § <.

ef C=t) Bl (@x) (D)1

k
< 2eP(t=to) m,gX{ﬂ ”bi(di)”Z} lp(t — t)II*Elxo I
i=1
2

k
t
+ 2e8¢0 Imacd [ [igipity| B [ It +h—s)
L
j=1

to

= ¢t = I f (s, x(s)) + JQ(T, x)ds Ty mpe) ()
0

e E||(sx)(®D)|? < 5 + 1, (4.3)
Where,

k
I = 2 et mgx{]_[nbi(&)nZ} (e — to) IPEllxo 12
i=1

< 2C2M2eP(t=t0) g=2v(t=t0) E||x,||2 = 0 as t — o, (4.4)

and

2

k
t
Lo =2 ef fmaxd | In@pig| B{ | e = N1 x(s))
) =1 to

2

N
+ [ 9 x1dS I e ®
0

2
<2max {1,¢%} efE- £( JEM eV | f(s,x()) + [; g(z, %) llds )
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y(t-s) y(t=s)

2
<2max (1,2} M7 P (1 e e f (s () + [y g(manlds )

0

<2 max {1,C?} M? ef(t=to) (ftl; e V(t=9) ds ) (ftz e VESE |If(s,x(s)) + fosg(r, xT)||2ds)

2 max {1,€%} M2 eP(t-to)

< - (J5 eI ENf(s,x() + f; 9(m.x0) + [; 9@ x0)|12ds)

2 max {1,C2} M2 e~(r=B)(t-to) ft

_ _ _ S
Y . eV=Ps=to) a0 || f(s,x(s)) + [, g(z,x,)II?ds

2 max {1,€%} M2 e=(r=B)(t=to), ft

- o er=B)(s—to) pBGs—toE llx(s)||>ds (4.5)

I, <
For any x(t)€ B and € > 0, there exists at t; > 0, such that

ePG=tIE ||x(s)||? < € for t = t;. Thus from (4.5) we get

2 max {1,€%} M2 e=(r=B)(t-to), J.tl

I, <
4 ” to

eV=P)s~t0) eBG=IE ||x(s)||%ds +

2 max {1,€%} M2 e=(r=B)(t=to), J.t

- o eV=B)s=to) oBG—to)E ||x(s)||2ds

- 2 max {1,C?) Mj e~ (r—a)(t—to) [, ftt eV=B)(s=to) gals—tog ||x(g)||2ds
0

2max {1,C*JM’L (1
I (Y_ B) c. (4.6)

As e~ =PB(t-t) 0 as t — oo and the condition (4.1), there exists t, > t, such that for any

t >t,, we have

eV=P)s=t0) eBG—IE ||x(s)|%ds

2max {1,C?}M2L [ 1
< —_——_— — .
<e - (Y_ B) ¢ (4.7)

So from (4.6) and (4.7), we obtainI, < e, forany t>t,. Thatis

2 max {1,€%} M2 e~(r=B)(t-to), ftl
Y to

[,>0a t—ow. (4.8)
Thus from (4.3), (4.4) and (4.8) we have

ePELIE (@ x)(1)]|>? > 0ast - . (4.9)
Thus @ maps B into itself. Now, we have to show that @ is a contraction mapping. For any

X,y € B, we have
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K 2 .
Ell@® x)(@®) — (@ n®I? < [mg {]_[Ilbj(ﬁj)ll}] E ( f gt — sl

N

2
—f@J@D—fgwwwwkhmmmﬂ0>

0

0

f@J@D+IQUJJ

t

< max {1,C?} M?E (fto e V9 || f(s,x(s)) + fosg(é‘, x5) = f(s,9(s)) — fosg(é‘, y(g)llds)2

_y(t-95) _y(t-s)

2
< max {1, C?} MZE(f:O ez e z |f(sx(s))+ fosg(& x5) — f(s,9(s)) — fosg(&yg)ﬂds)

1,C2 M?L t
sup El(@ 0)(0) — (@ y)®)|? < "L j e sup [lx(s) ~ y(s)||ds
t <t=<

T<t<T )14 0

< max {1,C2} M2L

(Z5) sup Ellx(®) - y(©II?

14 S<t<T

Thus,

max {1,C?} M?L ( 1
Y y—B

Thus by (4.1), this shows that @ is contraction mapping. Hence @ has a unique fixed point

I@» - @I < )il = 112

x(t) € B, which is the solution of (2.1)-(2.3). This completes the proof.

5. Application

Let (0 € R™ be a bounded domain with smooth boundary 90 .

Us(X,8) = Uy (x,5) + f_tru(é?)u(s +0,x)d6,s # &, s =1,

u(x, &) = qi)Tulx, &) a.s.x € Q, (5.1)
u(lx,s) = o(x,s) a.s.x€ Q,-r <s <0,
u(x,s) =0 a.s.x € 9Q

Let X = L? (QO) , and 7, be a random variable defined on D, = (0, d;) for k = 1,2,..., where 0
<d, < 4o and u:[—r,0] » R is a positive function. Furthermore, assume that 7, follow

Erlang distribution, where k = 1,2,...; and 7; and 7; are independent with each other as i # j for
i,j =1,2,...; q is a function of k; &y = s¢ ; & = &1 + T for k=1,2,... and s, = R* isan

arbitrarily given real number.

2
Define B is an operator on X by Bu = % with the domain
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D(B) ={u € X|uand Z—Z are absolutely continuous, g%f €X,u=00nd0}

It is well known that B generates a strongly continuous semigroup S(s) which is compact,
analytic and self adjoint. Moreover, the operator B can be expressed as

B (W= XY= n*(u,u,) u, , u € D(B),

Where u, (w) = (%)1/2 sin(nw), n =1, 2,..., is the orthonormal set of eigenvectors of B and for
everyu € X,

S(s)u = Y-, exp(—n?s) < u, which satisfies I| S(s) II< exp(—m2(s — s0)), S >so. Hence S(s) is

a contraction semigroup.
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