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Abstract. In this paper we consider a class of semilinear discrete (difference) inclusions in a Hilbert space. As

is well-known, the discrete inclusions, in particular, are mathematical models of discrete-time switched systems.

For the considered inclusions we suggest explicit exponential stability conditions. Our results are new even in the

finite-dimensional case. An illustrative example is given.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

This paper deals with the stability of discrete (difference) semilinear inclusions in a Hilbert

space. Such inclusions, in particular, are mathematical models of discrete-time switched sys-

tems with distributed parameters, cf. [7].

The literature on the stability of discrete inclusions is rather rich, but mainly inclusions in the

finite dimensional case have been investigated, cf. [1, 2], [8]-[14] and references given therein.
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At the same time, to the best of our knowledge, the stability theory of nonlinear infinite

dimensional discrete inclusions is at early stage of the development. In the present paper we

derive explicit exponential stability conditions for a class of discrete inclusions in a Hilbert

space. We also obtain a norm estimate for the solutions of the considered inclusions. Our

results are new even in the finite-dimensional case.

Let H be a complex separable Hilbert space, with a scalar product (., .), the norm ‖.‖ =√
(., .) and unit operator I. By B(H ) we denote the set of all bounded linear operators in

H . For an A ∈B(H ), σ(A) is the spectrum, ρs(A) is the spectral radius; A∗ is the operator

adjoint to A, and ‖A‖= suph∈H ‖Ah‖/‖h‖ is the operator norm. In addition, AI = (A−A∗)/2i

and N2(A) := (traceA∗A)1/2 is the Hilbert-Schmidt norm of a Hilbert-Schmidt operator A. The

ideal of the Hilbert-Schmidt operators is denoted by SN2. For a positive number r ≤ ∞ put

ω(r) = {x ∈H : ‖x‖ ≤ r}.

Let F = { f1, ..., fm1} be a finite set of mappings f j : ω(r)→H ( j = 1, ...,m1) and A =

{A1, ...,Am} be a finite set of operators from B(H ). As is well-known [7], a wide class of

switched nonlinear systems can be described by the discrete inclusion

uk+1 ∈ {Buk + f (uk) : B ∈A , f ∈F} (k = 0,1,2, ...) (1.1)

with a given u0 ∈H . Note that the existence of the solutions for differential and differential-

difference inclusions requires that the nonlinearity satisfies some rigorous conditions, but the

solutions of the considered discrete inclusion are defined recurrently directly from (1.1) and

solution estimates derived below.

We assume that

‖ f j(x)‖ ≤ ν‖x‖ ( f j ∈F , j = 1, ...,m1;x ∈ ω(r)) (1.2)

with a non-negative constant ν independent of j.

The zero solution to inclusion (1.1) under condition (1.2) is said to be exponentially stable, if

there are constants d0 ≥ 1, d1 ∈ (0,1) and d2 > 0, such that any solution uk to (1.1) satisfies the

inequality, ‖uk‖ ≤d1dk
2‖u0‖ (k = 1,2, ...), provided the condition ‖u0‖< r/d2 holds. If r = ∞,

then the last inequality can be omitted.
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Let A ∈B(H ) be a Schur-Kohn stable operator, i.e. ρs(A) < 1. As is well-known, cf. [4],

there exists a linear operator X = X(A), such that

X−A∗XA = I. (1.3)

Note that ‖X‖> 1. Now we are in a position to formulate the main result of the paper.

Theorem 1.1. Let condition (1.2) hold and there be an A ∈B(H ) with ρs(A)< 1, such that

2‖A‖‖A−A j‖+‖A−A j‖2 +2ν‖A j‖+ν
2 < 1− 1

‖X‖
(A j ∈A ; j = 1, ...,m). (1.4)

Then the zero solution to inclusion (1.1) is exponentially stable.

The proof of this theorem is presented in the next section. In particular, in (1.4) one can take

A = A j ∈A for some index j.

Definition 1.2. We will say that inclusion (1.1) is quasi-linear, if

limw→0‖ f j(w)‖/‖w‖= 0 ( f j ∈F , j = 1, ...,m). (1.5)

Corollary 1.3. Let (1.1) be quasi-linear and there be an A ∈B(H ) with ρs(A)< 1, such that

2‖A‖‖A−A j‖+‖A−A j‖2 < 1− 1
‖X‖

(A j ∈A ; j = 1, ...,m). (1.6)

Then the zero solution to inclusion (1.1) is exponentially stable.

Indeed, according to (1.5) we have

‖ f j(w)‖ ≤ ν̂(r)‖w‖ (w ∈ ω(r))

with a ν̂(r)→ 0 as r→ 0. So for a sufficiently small r we have condition (1.2) with a sufficiently

small ν . Now Theorem 1.1 yields the required result.

2. PROOF OF THEOREM 1.1

Rewrite (1.1) as the equation

uk+1 = Bkuk +hk(uk) (k = 0,1, ...), (2.1)

where for each k, Bk ∈ A and hk(.) ∈ F . So for any k we have Bk = A j ∈ A and hk(.) =

f j1(.) ∈F for some j ≤ m, j1 ≤ m1.
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Lemma 2.1. Let condition (1.2) be fulfilled with r = ∞ and condition (1.4) hold. Then for any

solution uk of (2.1) one has

(Xuk,uk)≤ ck
0(Xu0,u0) (k = 1,2, ...), (2.2)

where

c0 = 1− 1
‖X‖

+ max
A j∈A

(2‖A‖‖A−A j‖+‖A−A j‖2 +2ν‖A j‖)+ν
2 < 1.

Proof. Multiplying (2.1) by X and doing the scalar product, we have.

(Xuk+1,uk+1) = (X(Bkuk +hk(uk)),Bkuk +hk(uk)) = (XBkuk,Bkuk)+Φk(uk),

where

Φk(x) = (Xhk(x),Bkx)+(XBk(x),hk(x))+(Xhk(x),hk(x)) (x ∈H ).

But according to (1.3)

B∗kXBk = (A+Zk)
∗X(A+Zk) = A∗XA+Wk = X− I +Wk,

where Zk = Bk−A and Wk = Z∗k XA+A∗XZk +Z∗k XZk. Thus,

(Xuk+1,uk+1) = (XBkuk,Bkuk)+Φk(uk) = ((X− I +Wk)uk,uk)+Φk(uk)

≤ (Xuk,uk)− (uk,uk)+‖Wk‖(uk,uk)+ |Φk(uk)|. (2.3)

Take into account that due to (1.2),

|Φk(x)| ≤ ‖X‖(2‖Bk‖‖hk(x)‖‖x‖+‖hk(x)‖2)≤ ‖X‖(2‖Bk‖ν +ν
2)‖x‖2

and, in addition,

‖Wk‖ ≤ ‖X‖(2‖A‖‖A−Bk‖+‖A−Bk‖2) (Bk ∈A ).

Thus |Φk(x)|+‖Wk‖‖x‖2 ≤ bk‖X‖‖x‖2, where

bk = 2‖A‖‖A−Bk‖+‖A−Bk‖2 +2ν‖Bk‖+ν
2.

Since X ≥ I, X is invertible. From (2.3), according to (1.4) it follows

(Xuk+1,uk+1)≤ (Xuk,uk)− (1−‖X‖bk)(uk,uk)≤ (Xuk,uk)− (1−bk‖X‖)(
1
‖X‖

Xuk,uk)
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≤ (Xuk,uk)(1−
1
‖X‖

+2‖A‖‖A−Bk‖+‖A−Bk‖2 +ν‖Bk‖+ν
2)≤ c0(Xuk,uk).

Hence (2.2) follows, as claimed. �

Lemma 2.2. Under the hypothesis of Theorem 1.1, let

‖u0‖<
r

(‖X−1‖‖X‖)1/2 . (2.4)

Then for any solution uk of equation (2.1) one has

‖uk‖ ≤ (‖X−1‖‖X‖)1/2ck/2
0 ‖u0‖ (k = 1,2, ...). (2.5)

Proof. First let r = ∞. We have

1
‖X−1‖

(uk,uk) =
1

‖X−1‖
(X−1Xuk,uk)≤ (Xuk,uk).

Hence and from the latter lemma we get

(uk,uk)≤ ‖X−1‖(Xuk,uk)≤ ‖X−1‖ck
0(Xu0,u0).

This implies (2.5). So for r = ∞ the lemma is proved.

Now let r < ∞. By the Urysohn theorem [3, p. 15], there is a scalar-valued function ψr

defined on H , such that

ψr(w) = 1 (w ∈H ,‖w‖< r) and ψr(w) = 0 (‖w‖ ≥ r).

Put hkr(t,w) = ψr(h)hk(w). Consider the equation

vk+1 = Bkvk+1 +hkr(vk),v(0) = u0. (2.6)

Besides, (1.2) yields the condition

‖hkr(w))‖ ≤ ν‖w‖ (w ∈H ;k ≥ 0)

for some j≤m. A solution vk of equation (2.6) satisfies the estimate (2.5). Since c0 < 1, accord-

ing to (2.4) and (2.5), ‖vk‖ < (‖X−1‖‖X‖)1/2‖u0‖ < r. So solutions of (2.6) and (2.1) under

(2.4) coincide. This proves the required result. �

The assertion of Theorem 1.1 follows from Lemma 2.2.
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3. AUXILIARY RESULTS

In this section we suggest norm estimates for the powers and resolvents of some operators. In

Section 4 these estimates give us bounds for solutions of the discrete Lyapunov equation (1.3)

with concrete operators.

3.1. The finite dimensional case. . Let H = Cn-the n-dimensional Euclidean space. So

B(H ) = Cn×n-the set of n×n-matrices. For an A ∈ Cn×n put

g(A) = [N2
2 (A)−

n

∑
k=1
|λk(A)|2 ]1/2,

where λk(A) (k = 1, ...,n) are the eigenvalues of A, counted with their multiplicities and enu-

merated in an arbitrary order. The following relations are valid [6, Section 3.1]: g2(A) ≤

N2
2 (A)− |trace A2|. If A is a normal matrix: AA∗ = A∗A, then g(A) = 0. Moreover, g2(A) ≤

2N2
2 (AI). Due to Example 3.3 from [6] for any A ∈ SN2 we have

‖A j‖ ≤
j

∑
k=0

j!ρ j−k
s (A)gk(A)

( j− k)!(k!)3/2 ( j = 1,2, ...).

Furthermore, by Theorem 3.2 from [6] for any A ∈ Cn×n we have

‖Rλ (A)‖ ≤
n−1

∑
k=0

gk(A)
(dist(A,λ ))k+1

√
k!

(λ 6∈ σ(A)).

3.2. Hilbert-Schmidt operators. In the infinite dimensional case for an A ∈ SN2 put

g(A) = [N2
2 (A)−

∞

∑
k=1
|λk(A)|2 ]1/2,

where λk(A) (k = 1,2, ...) are the eigenvalues of A, counted with their multiplicities and enu-

merated in the non-increasing order of their absolute values. Moreover, in the infinite dimen-

sional case also g2(A)≤ 2N2
2 (AI) and g2(A)≤ N2

2 (A)−|trace A2|, cf [6, Section 7.1]: If A is a

normal Hilbert-Schmidt operator: AA∗ = A∗A, then g(A) = 0. Due to Corollary 7.4 from [6] for

any A ∈ SN2 we have

‖A j‖ ≤
j

∑
k=0

j!ρ j−k
s (A)gk(A)

( j− k)!(k!)3/2 ( j = 1,2, ...). (3.1)

Furthermore, by Theorem 7.1 from [6] for any A ∈ SN2 we have

‖Rλ (A)‖ ≤
∞

∑
k=0

gk(A)
(dist(A,λ ))k+1

√
k!

(λ 6∈ σ(A)). (3.2)
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By the Schwarz inequality

(
∞

∑
j=0

b jg j(A)
b j√ j!x j )

2 ≤
∞

∑
k=0

b2k
∞

∑
j=0

g2 j(A)
b2 j j!x2 j =

1
1−b2 exp [

g2(A)
b2x2 ] (x > 0,b ∈ (0,1)).

Taking b2 = 1/2 and making use of (3.2), we arrive at the inequality

‖Rλ (A)‖ ≤
√

2
dist(A,λ )

exp [
g2(A)

(dist(A,λ ))2 ] (λ 6∈ σ(A)). (3.3)

Similarly, making use of Theorems 7.2 and7.3 from [6] one can consider the Shatten-von Neu-

mann operators.

3.3. Operators with Hilbert-Schmidt components. In this subsection we suppose that AI =

(A−A∗)/(2i) ∈ SN2. Introduce the quantity

gI(A) :=
√

2

[
N2

2 (AI)−
∞

∑
k=1

(ℑ λk(A))2

]1/2

(ℑ λk(A) =
1
2i
(λk(A)−λk(A)).

Obviously, gI(A)≤
√

2N2(AI). Due to Example 10.2 from [6],

‖A j‖ ≤
j

∑
k=0

j!ρ j−k
s (A)gk

I (A)
( j− k)!(k!)3/2 (AI ∈ SN2; j = 1,2, ...). (3.4)

Furthermore, by Theorem 9.1 from [6] under condition (3.9) we have,

‖Rλ (A)‖ ≤
∞

∑
k=0

gk
I (A)

(dist(A,λ ))k+1
√

k!
(3.5)

and

‖Rλ (A)‖ ≤
√

e
dist(A,λ )

exp [
g2

I (A)
2(dist(A,λ ))2 ] (λ 6∈ σ(A)). (3.6)

Some other classes of operators can be considered, in particular, via norm estimates for operator

functions from [6].
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4. SOLUTION ESTIMATES FOR THE DISCRETE LYAPUNOV EQUATION

As it is well-known ( see for instance [4], [5, Sec. 7.1]), if ρs(A)< 1, then for any C∈B(H ),

there exists a linear operator X = X(A,C), such that

X−A∗XA =C. (4.1)

Moreover,

X(A,C) =
∞

∑
k=0

(A∗)kCAk (4.2)

and

X(A,C) =
1

2π

∫ 2π

0
(Ie−iω −A∗)−1C(Ieiω −A)−1dω. (4.3)

Due to representations (4.2) and (4.3) we have

‖X(A,C)‖ ≤ ‖C‖
∞

∑
k=0
‖Ak‖2. (4.4)

and

‖X(A,C)‖ ≤ ‖C‖
2π

∫ 2π

0
‖(eitI−A)−1‖2dt,

respectively. From the latter inequality it follows

‖X(A,C)‖ ≤ ‖C‖ sup
|z|=1
‖(zI−A)−1‖2. (4.5)

Let there be monotonically increasing non-negative continuous function φ(x) (x≥ 0), such that

φ(0) = 0, φ(∞) = ∞ and

‖(λ I−A)−1‖ ≤ φ(1/dist(A,λ )) (λ 6∈ σ(A)),

where dist(A,λ ) = infs∈σ(A) |s−λ |. If ρs(A) < 1 and |z| = 1, then obviously, dist(A,z) ≥ 1−

ρs(A) and therefore, ‖(Iz−A)−1‖ ≤ φ(1/(1−ρs(A))). Now (4.5) implies

‖X(A,C)‖ ≤ ‖C‖φ 2
(

1
1−ρs(A)

)
. (4.6)

In particular, if A is normal, then ‖A‖= ρs(A) and from (4.4.) it follows

‖X(A,C)‖ ≤ ‖C‖ 1
1−ρ2

s (A)
. (4.7)

Relations (3.1) and (4.4) yield.
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Corollary 4.1. Let A ∈ SN2. Then

‖X(A,C)‖ ≤ ‖C‖
∞

∑
j=1

(
j

∑
k=0

j!ρ j−k
s (A)gk(A)

( j− k)!(k!)3/2

)2

. (4.8)

If A is normal, then (4.8) gives us inequality (4.7). Furthermore, (4.6) and (3.6) imply

‖X(A,C)‖ ≤ ‖C‖ 2
(1−ρs(A))2 exp [

g2(A)
(1−ρs(A))2 ] (A ∈ SN2). (4.9)

Relations (3.4) and (4.4) yield

Corollary 4.2. Let AI ∈ SN2. Then

‖X(A,C)‖ ≤ ‖C‖
∞

∑
j=0

(
j

∑
k=0

j!ρ j−k
s (A)gk(A)

( j− k)!(k!)3/2

)2

. (4.10)

If A is normal, then from (4.10) we get (4.7).

Furthermore, (4.5) along with (3.5) and (3.6) give us the inequalities

‖X(A,C)‖ ≤ ‖C‖
∞

∑
j=0

(
g j

I (A)√
j!(1−ρs(A)) j+1

)2

(AI ∈ SN2),

and

‖X(A,C)‖ ≤ ‖C‖ e
(1−ρs(A))2 exp [

g2
I (A)

(1−ρs(A))2 ],

respectively. Similarly one can consider the finite dimensional case.

Let us point the lower bound for X(A,C): if C =C∗ > 0, then (4.1) gives us the inequality

(X(A,C)x,x)≥
∞

∑
k=0

(CAkx,Akx)≥ λmin(C)
∞

∑
k=0

λmin((A∗)kAk)(x,x)

≥ λmin(C)(1+λmin(A∗A))(x,x) (x ∈H ).

Here λmin(C) means the smallest eigenvalue of C.

5. AN EXAMPLE

Let L2 = L2(0,1) be the space of square integrable complex functions defined on [0,1]. Con-

sider the inclusion (1.1) with H = L2(0,1), (A ju)(y) = a j(y)u(y) and

[ f j(u)](y) = (
∫ 1

0
K j(y,s)u(s)ds)2p (u ∈ L2, j = 1,2; p > 1; y ∈ [0,1]),



10 MICHAEL GIL’

where a j(y) are bounded measurable functions, K j(., .) : [0,1]2→ C are kernels satisfying the

conditions

η j := (
∫ 1

0
(
∫ 1

0
|K j(y,s)|2ds)2pdy)1/2 < ∞.

By the Schwarz inequality

|
∫ 1

0
K j(y,s)u(s)ds|2 ≤

∫ 1

0
|K j(y,s)|2ds‖u‖2.

So

‖ f j(u)‖= (
∫ 1

0
| f j(u)](y)|2dy)1/2 ≤ ‖u‖p

η j (u ∈ L2).

Thus for any r <∞ condition (1.2) holds with ν = rp−1 max j=1,2 η j and therefore the considered

system is quasi-linear. Assume that

ρs(A j) = sup
y
|a j(y)|< 1 ( j = 1,2).

We have ‖A1−A2‖ = q := supy |a1(y)− a2(y)|. Operators A1,A2 in the present example are

normal and consequently, ‖A1‖ = ρs(A1). With A = A1, due to (4.7), we can write ‖X‖ ≤
1

1−ρ2
s (A1)

. So if

2qρs(A1)+q2 < ρ
2
s (A1),

then making use of Corollary 1.3, we can assert that the considered inclusion is exponentially

stable.
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