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Abstract: The study is concerned with the development of a two-step hybrid linear multi-step method for direct 

solution of general second order initial value problem. Power series is adopted as the basis function, and the 

differential system arising from it are collocated at all grid and off-grid points, while the approximate solution is 

interpolated at the selected points. The scheme developed is tested for consistency and zero stability, and it was 

found to be convergent.The scheme is expanded term by term by Taylor series approach, also the efficiency of the 

methods is tested on some test problems, and the accuracy is compared with some existing result in literature. 
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1. INTRODUCTION  

The use of numerical methods in obtaining approximate solutions to differential equations cannot 

be overemphasized. This is because, the exaxt solution to some differential equations utilized in 

real life situations are difficut to arrive at. And when their exact solutions cannot be established, 
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the researcher is left with the option of obtaining an approximate via numerical approaches to be 

able to breakeven in hs/her studies. One of such researchers is [1] who utilised numerical 

approximation technique to examine an Unsteady 2-D Compressible Inviscid Flow with Heat 

Transfer with Slip Boundary Conditions Using MacCormack Technique.  

Hence, in this work, we considered the numerical solution of initial value problem of the form: 

 =)((0);=)();,,(= ayyayyyxfy   (1) 

 In practice, higher order ordinary differential equations of the form  

),...,",,(= 1− nn yyyxfy  are solved by reducing them to systems of first order differential 

equation of the form: 

 nyxbafayyxfy R ,],,[0,=)(),,(=   

before an approximate method is applied to solve the resulting equations as widely discussed by 

[2] and [3]. This method of reduction is very popular, however it is treated to be insignificant due 

to the increased dimension of the resulting first order after reduction; time wastage; 

computational burden and cost of implementation. Furthermore, the approach does not utilize 

additional information associated with the specific ordinary differential equation, and 

consequently, the oscillatory nature of the solution of the differential equation is always 

neglected. Thus, it would be more efficient to improve on the numerical method so that higher 

order ordinary differential equations could be solved without having to reduce to systems of first 

order.The principle was suggested by [4], [5], [6]. Actually, considerable attention has been 

devoted to solving higher order ordinary differential equation directly without reduction for 

instance: methods of linear multistep method (LMM) was considered by [7], [8], [9] and [10]. 

Subsequently, LMM was independently proposed by [11] and [12] in the predictor-corrector 

mode, based on collocation method.These authors proposed LMM with continuous coefficients 

where they adopted Taylor series algorithm to supply the starting values. Also,some notable 

scholars improved on the predictor-corrector method for solving higher order ordinary 

differential equations for instance: [13], and [14] proposed five-step and four-step methods 



3 

DIRECT SOLUTIONS OF GENERAL SECOND ORDER INITIAL VALUE PROBLEM 

respectively.They adopt a continuous LMM to obtain finite difference method, applied as a block 

for the direct solution of the form. [15] adopted a method of collocation and interpolation to 

develop a continuous LMM which is evaluated at different grid points to give discrete methods 

to generate independent solution. Others that adopted block methods include [16], [14]. One of 

the advantages is that it provides direct solution of implicit LMM without developing separate 

predictors. 

Although some of the aforementioned authors have made use of Taylor series, but little 

has been said with the use of Taylor series as the major method of implementation. So, Our idea 

is to use Taylor series algorithm to evaluate 1,2=,, jyy jnjn ++
  and ,...

2

3
,

3

2
,

3

1
,

2

1
=,, vyy vnvn ++

  

and calculate f  , "f  by the use partial derivative technique. Thus, two-step hybrid methods in 

the Taylor series mode are developed to solve second order ordinary differential equations 

directly.  

 Oganisation of the paper: 

The preliminary section captures the research topic, abstract and keywords. But section 1 

of the study discuses the general background to the study, justification and a few fndings from 

the existing literature. Meanwhile, section 2 addreses the basic materials and methods like the 

derivation of the research numerical method and the general analysis of the Properties of the 

Scheme (i.e., Order of Accuracy of the Method, Consistency of the Scheme, Zero Stability and 

Region of absolute stability of the method). Section 3 handled Results/ Numerical Experiments. 

And finally, section 4 concludes the study followed by the references.  

 

2. MATERIALS AND METHODS 

2.1 Derivation of the method  

In this section, power series is considered as an approximate solution to the general second order 

problems:  
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 =)((0);=)();,,(=" ayyayyyxfy   (2) 

 And the series is of the form: 

 j

j

k

j

xaxy 
+12

0=

=)(  (3) 

The first and second derivative of (3)  are respectively given as:  

 1
12

=1

=)( −
+

 j

j

k

j

xjaxy  (4) 

 
2

12

2=

1)(=)(" −
+

− j

j

k

j

xajjxy  (5) 

Combining (2)  and (5) , we generate the differential system  

 ),,,(=1)( 2
12

2=

yyxfxajj j

j

k

j

− −
+

  (6) 

we develop the hybrid scheme using (3)  and (5)  as interpolation and collocation equations in 

this work. 

Collocating (6)  at selected grid and off-grid points, 2,0= 1 + ixx n
 and interpolating (3)  

at selected grid and off-grid points, it results into a system of equations: 

 2,0=1)( 2
12

2=

− +

−
+

 ifxajj in

j

j

k

j

 (7) 

 2,0=
12

2=

+

+

 iyxa in

j

j

k

j

 (8) 

It implies  

 nnnnnnn yxaxaxaxaxaxaa =6

6

5

5

4

4

3

3

2

210 ++++++  (9) 

 1

6

16

5

15

4

14

3

13

2

12110 = +++++++ ++++++ nnnnnnn yxaxaxaxaxaxaa  (10) 

 nnnnn fxaxaxaxaa =30201262 4

6

3

5

2

432 ++++  (11) 

 
2

1

4

2

16

3

2

15

2

2

14

2

132 =30201262
+++++

++++
nnnnn

fxaxaxaxaa  (12) 
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 1

4

16

3

15

2

14132 =30201262 +++++ ++++ nnnnn fxaxaxaxaa  (13) 

 
2

3

4

2

36

3

2

35

2

2

34

2

332 =30201262
+++++

++++
nnnnn

fxaxaxaxaa  (14) 

 2

4

26

3

25

2

24232 =30201262 +++++ ++++ nnnnn fxaxaxaxaa  (15) 

 Writing these system of equations in matrix form: 
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

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
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
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
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











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


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
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
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






+

+

+
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+
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2

3/2

1

1/2

1

6

5

4

3

2

1

0

4

2

3

2

2

22

4

3/2

3

3/2

2

3/23/2

4

1

3

1

2

11

4

1/2

3

1/2

2

1/21/2

432

6

1

5

1

4

1

3

1

2

11

65432

=

3020126200

3020126200

3020126200

3020126200

3020126200

1

1

n

n

n

n

n

n

n

nnnn

nnnn

nnnn
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nnnnnn

f

f

f

f

f

y
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a

a
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a

a

a

a
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xxxxxx

 (16) 

Using Gaussian elimination method, the unknown coefficients sa j '  can be obtained. 

Putting sa j '  back into (3)  gives a method of the form:  

 ,)()(=)(
0=0=

jnj

k

j

jnj

k

j

fxyxxy ++  +   (17) 

 where 2=k  and 2),0,,(= 
++++ jyyxff jnjnjnjn  

The coefficients )(tsi , )(tsj   are continuous coefficients obtained using the 

transformation )(
1

= 1−+− knxx
h

t , (0,1]t  

 .
1

=
hdx

dt
 

Then simplifying the continuous sj , sj   in (17)  
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





















−−++

−+−−

+++
−

+−−+

−+++
−

+

−

7236

3

3604530
=

459

2

45

4

159

2
=
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13

215

2

12

5
=

45

13

45

4

9

2

159

2
=

3036724572
=

1=

=

4365

2

3654

2

3

264

1

56354

2

1

5364

0

1

0
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ttttt
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ttttt

ttttt

t

t















 (18) 

Differentiating equation (18)  with respect to t'  gives 

 






















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−

+−−+

−+++
−

−
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4
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3

360

1
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6
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1

9

6
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5

9

8
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20
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2

2

15

12

12

20
='

45

13

45

24

9

6

15

5

9

8
='

30

5

36

3

72

1

45

6

72

4
='

1='

1='

3254

2

2543

2

3

53

1

5247

2

1

4253

0

1

0

tttt

tttt

ttt

tttt

tttt















 (19) 

Simplifying equation (22), we have:  

 



















+−−−

−+−−

+++−

+−−+

−+++−

1}203048{60
360

1
='

1}302415{40
45

1
='

13}6048100{
60

1
='

13}243015{40
45

1
='

}603054820{
360

1
='

3254

2

2543

2

3

53

1

5243

2

1

4253

0

tttt

tttt

ttt

tttt

tttt











 (20) 

Putting 1=t , which implies evaluating x  at 2+nx  gives  
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 }162616{
60

=2
2

11

2

32

2

12 n
n

n
n

nnnn fffff
h

yyy +++++−
+

+
+

+++  (21) 

 with the order 6=6C , error constant 0.084082=8 −C , and interval of absolute stability 

10.0,0)(=)( −X  

With first derivative :  

 }3112126240{59
360

='
2

11

2

32

2

12 n
n

n
n

nnnn fffff
h

yyy +++++−
+

+
+

+++  (22) 

Implementation of the method using Taylor series algorithm to evaluate 

jnvnvnvnjnjn ffyyyy ++++++ ,,',,', , 

where, 

1,2=sj  and 
2

3
,

2

1
=sv  and,  

 ),',,(= vnvnvnvn yyxff ++++
 

such that  

 .....
4!

)(

3!

)(

2!

)(
=

432

++++++ nnnnnvn f
vh

f
vh

f
vh

yvhyy  (23) 

 and,  

 ....
4!

)(

3!

)(

2!

)(
=

432

+++++
+ nnnnnvn f

vh
f

vh
f

vh
vhfyy  (24) 

Also,  

 .....
2!

)(
=)(=

2

++++
+ nnnnjn f

jh
fjhfjhxyf  (25) 

From, ),,(= nnnn yyxff   1,2=),,,(= )()( iyyxff nnn

ii   

Finding the partial derivative ,..., ff   as follows 

 f
y

f
y

x

f

x

f
f

dx

df


++











==  (26) 
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 ,)2(==
2

2

EDyCfBfyA
dx

fd
f ++++  (27) 

where, 

 
yy

f
f

yx

f
A




+



 22

=  (28) 

 
yx

f
B



2

=  (29) 

 
y

f
f

y

f
y

x

f
C




+




+




=  (30) 

 
2

2
2

2

2
2

2

2

)(
)(=

y

f
f

y

f
y

x

f
D




+




+




 (31) 

 
y

f
fE



=  (32) 

2.2 Analysis of the Properties of the Scheme 

We shall consider the analysis of the basic properties of our methods which includes the order, 

the region of absolute stability and the zero stability of the methods. 

Order of Accuracy of the Method 

The local truncation error with −k step linear multistep method which is in line with the work of 

[16], is taken to be linear difference operator   defined by 

 )]()([=]);([
0=

jxyhjxyhxy njnj

k

j

+−+   (33) 

 Thus,Expanding (21)  as Taylor series about point x and comparing coefficients of kh , 

hence the method is of order 6=p  with error constant 0.084082=2 −+qC  

 ),(...)()()(=]),([ 210 n

p

pnnn xyCxyCxyCxyChxyL ++++  (34) 

 where 0,1,...,=, pCp  are the constant coefficients given as:  
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















+−− −− 





)]1)(([
!

1
=

=

=

1

0=

1

0=0=

0=

1

0=

0

qj

p
k

j

j

p
k

j

j

k

j

p

j

k

j

j

k

j

qjppj
p

C

and

jC

C







 (35) 

In line with [3], −k step, linear multistep (21)  has order p  if 

pp CCCC ==...== 110 −  and 01 +pC ,where, 01 +pC  is the error constant. Subjecting our 

schemes to equations 35 , it is therefore established that linear multistep scheme is of order 

6=p , relatively small error constant 0.084082− . 

Consistency of the Scheme 

A linear multistep method is consistent if the following conditions are satisfied: 

    1.  The order 1p  .  

    2.  (1)=(1)0,=(1) pp  .  

    3.  0=
0= j

k

j
 .  

    4.  j

k

jj

k

j
j   0=0=

= .  

Zero Stability of the Method 

Equation (26)  has its first characteristic polynomial to be :  

 12=)( 2 +− rrr  (36) 

 Hence, the method is zero stable since the polynomial have roots 1=r  twice 

Region of absolute stability of the method 

In order to establish the region of absolute stability, we apply the boundary locus method as in 

[18] and which from the method implies that  

 
)(

)(
=)(

r

r
h




  (37) 
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 Where, 

  isincoser i +==  (38) 

 From scheme (25) , we have:  

 12=)( 2 +− rrr  (39) 

 1]162616[
60

1
=)( 1/23/22 ++++ rrrrr  (40) 

 so that;    

 
)(

)(
=)(










i

i

e

e
h  (41) 

 
1162616

1]260[
=

1/23/22

2

++++

+−

rrrr

rr
 (42) 

 

]2252
3

4
1377

3

4
1377

3

5
810

3

5
8102472[47

1]2222670[
=

Acosisincosisincosisincos

isincosisincos

+++++++

+−−+







 (43) 

   Where from equation (43) 

47
3

2
810

3

2
810

3

2
1377

3

2
13772252= +++++


 isincosisincosisinA  

Meanwhile, considering the values of   for 1800   at intervals of 30 , gives the region 

of absolute stability to be 

10,000,0)(−  

 

3. RESULTS/ NUMERICAL EXPERIMENTS  

We test the accuracy of the proposed scheme on some numerical problems, and the results are 

compared with existing methods. 

Problem 1:  

 
32

0.1
=0.5,=(0)1,=(0),)(= 2 hyyyxy   (44) 
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      Exact solution 

)
2

2
(

2

1
1=)(

x

x
logxy

−

+
+  

The numerical results of the problem is shown in tables 1, compared with the error in [6] which 

is of order 6. 

       Table  1: Results and errors for problem (42) 

 )(x    YEX   YC     ERRNew  

        0.2   77310753001.10033534   77310753001.10033534    0000.00000 +e  

          0.4   4054816001.20273255   4054817001.20273255    
15101.110223 −  

      0.6    42031119001.30951960   42031138001.30951960    
15102.886580 −  

           0.8   01936035001.42364893   01936412001.42364893    
15104.751010 −  

           1.0   43340586001.54930614   43340588001.54930614    
14102.310063 −  

 

   

 Note: YEX = Y-exact, YC  = Y-computed, ERRNew = Error in new method 
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Problem 2:  

 0.01=1,=(0)0,=(0)),(= hyyyy −  (45) 

      Exact solution 

xexy −1=)(  

The numerical results of the problem is shown in table 2, compared with the error in [1] of order 

6.   

Table 2: Results and errors for problem (43) 

)(x    YEX   YC   ERRNew  

             0.2   80000000000.22140275−   058070370380.22140275−   118.979947 −  

           0.4   76412703500.49182469−   66515867900.49182469−   10109.8968836 −  

              0.6   03905091100.82211880−   74595215400.82211879−   9102.930988 −  

              0.8   028492467901.22554092−   21617215001.22554092−   9106.330746 −  

              1.0   84590455001.71828182−   067194335801.71828181−   8101.173961 −  

 

   

 Note: YEX = Yexact, YC = Ycomputed, ERRNew = Error in new method 
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4. DISCUSION/CONCLUSION 

A Linear Multistep method which implements a Taylor’s series algorithm is developed for the 

direct solution of general second order initial value problems of ordinary differential equations 

without reduction to systems of first order differential equation. In this study also, the derivatives 

of continuous scheme to any order was computed, implementing Taylor’s series algorithm.  

The accuracy of the method developed was tested with two test problems, and their 

corresponding results were compared with those of Awoyemi (2005) in reference [6] and 

Adesanya (2011) in reference [1] each of order 6. 

Moreovewr, the outcome of the comparison of the method to the results of exact solution using 

the examples of [12] and [17] showed that, the method is efficient and thus recommends it for 

similar purpose(s) in research. 
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