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Abstract. This paper compares the time complexity of the K-means and Fuzzy C-means (FCM) clustering algo-
rithms for different cluster counts. The algorithms’ performance is evaluated using several datasets, and the results
show that, while the FCM algorithm has a higher time complexity than the K-means algorithm in general, it may be
better suited for certain types of data and when a larger number of clusters are used. The paper concludes that both
algorithms have advantages and disadvantages, and that the choice should be based on the specific requirements of
the problem at hand.
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1. INTRODUCTION

Clustering is a data mining technique that involves grouping similar data points in a dataset
together. It is an unsupervised learning method that is used to discover natural patterns or
structures in data without the use of labeled data. Clustering algorithms such as K-means and
Fuzzy C-means are used to find clusters in a dataset, with each cluster represented by its centroid
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and each data point assigned to a cluster based on its similarity to the centroid. Clustering can
be used to identify customer segments, detect fraud, and segment images, among other things.
It is a powerful tool for uncovering hidden information in large datasets, and it can be used in
a variety of applications. However, when selecting a clustering algorithm for a specific task,
the algorithm’s time complexity should also be considered. Time complexity is a measure of
how long it takes an algorithm to run and complete its task, which is usually expressed in
terms of the size of the input. Big O notation is used to express the upper bound of the time
complexity, which is usually the worst-case scenario. We can make informed decisions about
which algorithm is best suited for a specific task and the resources available by understanding
the time complexity of clustering algorithms [11][16].

The time complexity of an algorithm refers to how long it takes the algorithm to run and
complete its task, which is typically measured in big O notation. A common example is O(n),
which means that the time required to run the algorithm grows linearly with the size of the
input. Some algorithms, such as O(logn), have a lower time complexity, which means that the
time required to run the algorithm increases logarithmically with the size of the input. Some
algorithms, on the other hand, have a high time complexity, such as O(nz), which means that
the time it takes to run the algorithm grows exponentially with the size of the input. When
selecting an algorithm for a specific task, the time complexity of the algorithm is an important

factor to consider [18].

2. BACKGROUND

A well-liked clustering algorithm that combines related data points is K-means. It functions
by defining spherical clusters, with each cluster represented by the mean of its individual points.
Until convergence, the algorithm repeatedly modifies the cluster means and redistributes data
points to the nearest cluster. K, the number of clusters, must be predetermined. Although the
approach can be sensitive to initial conditions and may not always find the global optimum,
it is computationally efficient. It is frequently employed in a number of industries, including

anomaly detection, market segmentation, and picture compression.
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K-Means is a popular clustering algorithm that was first proposed by Stuart Lloyd in 1957[13]
as a technique for vector quantization. However, the modern version of the algorithm was de-
veloped by MacQueen in 1967[14]. In the 1980s, several authors made significant contributions
to the understanding and implementation of the K-Means algorithm. For example, Forgy [6]
published a version of the algorithm that is more efficient for large data sets, and Hartigan and
Wong [9] proposed an algorithm for determining the optimal number of clusters. In the 1990s,
several authors extended the K-Means algorithm in different ways. For example, Kaufman and
Rousseeuw [15] proposed the "K-Medians™ algorithm, which is similar to K-Means but uses the
median instead of the mean as the center of a cluster. In the 2000s, authors such as Bradley and
Fayyad [4] proposed variations of the K-Means algorithm that are more robust to outliers. Also,
authors like Hamerly and Elkan [8] proposed a variant of k-means that is more efficient than
the traditional algorithm, the k-means|| algorithm. In recent years, authors like Arthur and Vas-
silvitskii [1] proposed a variant of k-means called k-means++ which improves the initialization

of the centroids to avoid poor local optima.

2.1. K-Means Clustering Algorithm. It divides a set of n items into k clusters using the
input parameter k, the number of clusters so that the resulting intra-cluster similarity is high
while the inter-cluster similarity is low. To define k centroids, one for each cluster, is the
main notion. These centroids should be positioned ingeniously because different locations yield
various effects. The preferable option is to situate them as far apart from one another as you can.
Next, each point from a particular data collection is taken and connected to the closest centroid.
The first step is finished and an early groupage is finished when there are no points still open.
At this stage, k new centroids must be recalculated. The identical data set points must now be
bound to the closest new centroid once we have these k new centroids. There has been created
a loop. This loop causes the k centroids to gradually shift positions until no more changes are
made, as we might observe. To put it another way, centroids are no longer in motion. Last but
not least, the objective of this procedure is to minimize an objective function, in this case, a
squared error function. The objective function:
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where ||xl(J )¢ j||2 is a chosen distance measure between a data point xl(/ ) and the cluster centre

cj, s an indicator of the n data points’ distance from their respective cluster centres.

(1) As initial centroids, choose k points.
(2) Create k clusters by assigning all points to the centroid that is closest to them.
(3) Calculate the centroid of each cluster again.

(4) Repeat, until the centroids stop changing.

2.2. Fuzzy C-Means Clustering. Fuzzy C-means (FCM) is a data clustering technique in
which each data point belongs to a cluster to some extent defined by a membership grade.
Bezdek first proposed this technique in 1981 [2, 3] as an improvement on previous clustering
methods [5]. It describes how to divide data points that populate a multidimensional space
into a specific number of clusters. The main advantage of fuzzy ¢ - means clustering is that it
allows data points to gradually join clusters as degrees in [0, 1]. This allows you to express that
data points can belong to more than one cluster. The FCM optimises the following objective

function:

k p
(2) Jrem Z Z xlam]

where g denotes the fuzziness exponent, and ¢ > 1. The algorithm becomes more fuzzy as the
value of g increases; u;; is the membership value for the i'" pattern in the j' cluster satisfying
the following constraints:
(D) uj; >0,i=1,2,...,pand j=1,2,...k
k
(2) Z Uji— 17 = 1727"'7p
j=1

For FCM the membership function is denifend as

3) u(mjlx;) =

and weight function is defined as

4) w(x;) =1
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As a result, FCM features a constant weight function as well as a soft membership function.
FCM generally outperforms K-Means [8] and is less impacted by the existence of data uncer-
tainty [12]. The user must yet define the number of clusters in the data set, just like in K-Means.

Additionally, it could reach local optimum [10].

3. TiIME COMPLEXITY

When evaluating clustering algorithms for practical applications, understanding their com-
putational complexities is crucial for determining their scalability and efficiency, particularly
with respect to handling large datasets and high-dimensional data. In this context, the time

complexities of algorithms play a significant role in assessing their computational demands.

3.1. Complexity of K-Means Algorithm. The K-Means algorithm has a time complexity of
O(ncdi), where:

e n: Number of data points
e ¢: Number of clusters
e d: Number of dimensions or features

e i: Number of iterations

In the best-case scenario, where the algorithm converges in a small number of iterations, the
time complexity reduces to O(ncd). This occurs because the number of iterations (i) becomes
constant. However, in the worst-case scenario, where the algorithm either fails to converge or
the data is poorly separated, the time complexity escalates to O(ncdi), potentially leading to

significantly higher computational overhead.

3.2. Time Complexity of Fuzzy C-Means Algorithm. The time complexity of the Fuzzy
C-Means (FCM) algorithm is generally considered to be O(nc?di) (see [7]), where:

e n: Number of data points
e ¢: Number of clusters
e d: Number of dimensions or features

e i: Number of iterations
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The algorithm requires multiple iterations to converge, and each iteration involves updating
the membership values for each data point and the cluster centroids. The calculation of the
membership values and the cluster centroids is the most computationally intensive part of the
algorithm, which is why the time complexity is affected by the number of iterations, data points,

clusters, and features.

4. COMPARISON

Execution Time vs. Size of Input Dataset for Different Numbers of Clusters (KMeans vs FCM)
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FIGURE 1. Execution Time

Fig. 1 illustrates the relationship between the execution time and the number of data points
in the dataset for both the K-Means and Fuzzy C-Means (FCM) clustering algorithms. Each
algorithm is evaluated across varying numbers of clusters, ranging from 2 to 5. In the legend,
the K-Means results are depicted by dotted lines, while the FCM results are represented by solid
lines. Each cluster count is differentiated by a distinct color and line style. As the number of data
points increases, the execution time for both algorithms tends to rise due to the computational
complexity associated with processing larger datasets. Notably, the plot highlights any perfor-

mance differences between K-Means and FCM across different cluster counts. The comparison
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allows for insights into how each algorithm scales with increasing dataset sizes and varying
numbers of clusters. Additionally, the use of different line styles and colors aids in clearly dis-
tinguishing between the results for different algorithms and cluster configurations. Overall, the
plot provides a comprehensive visualization of the execution time trends for K-Means and FCM
under different experimental conditions, offering valuable insights for assessing their practical

scalability and performance characteristics.

5. CONCLUSION

The key difference in time complexity between FCM and K-means lies in the additional factor
of ¢?, representing the computational overhead introduced by fuzzy membership calculations.
This implies that as the number of clusters increases, the computational demand of FCM grows
quadratically. The comparison of execution times for both algorithms (Fig. 1) reveals that the
performance of K-Means and FCM is comparable. Despite the slight differences in execution
time observed in our experiments, the choice between the two algorithms ultimately depends on
the specific requirements of the clustering task. For exclusive clustering tasks where data points
are expected to belong to distinct clusters, K-Means remains a suitable choice due to its com-
putational efficiency and simplicity (see [17, 19]). On the other hand, for scenarios where data
points may exhibit membership to multiple clusters simultaneously, as in overlapping clustering
tasks, FCM offers a more flexible approach. By assigning membership values to data points,
FCM accommodates the inherent fuzziness in the dataset, allowing for more nuanced clustering
results. Therefore, the selection of the most appropriate algorithm hinges on factors such as
the nature of the data, the desired level of granularity in cluster assignments, and computational

constraints.
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