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Abstract. This paper provides brief information about the K-means clustering algorithm and the Fuzzy C-means

clustering algorithm. We have defined mathematical expressions for K-means and FCM and have applied the

algorithms to a dummy dataset, comparing their differences for various numbers of clusters.
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1. INTRODUCTION

In several fields, including bioinformatics, pattern recognition, commerce, and image pro-

cessing, the clustering of objects according to their qualities has been intensively researched

[16, 23]. Additionally, it has become more critical due to the exponential growth of data in

several fields of knowledge. A complete dataset is a foundation for their analysis, justification,

and decision-making [1, 21].

The goal of clustering is to divide a set of n objects into smaller groups or clusters so that

each cluster contains objects with characteristics similar to and distinct from the objects in every
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other cluster. The description mentioned above fits the definition of a hard or traditional clus-

tering type, frequently associated with the K-Means algorithm [14]. Each item must, however,

belong to two or more groups in numerous domains, each with varying degrees of member-

ship [11, 12, 20]. Fuzzy C-Means is the algorithm that makes those mentioned above possible.

However, the complexity of FCM exceeds that of K-Means.

Zadeh’s [24] fuzzy set theory provides an idea of the membership uncertainty that is de-

scribed by a membership function. Bellman, Kalaba, and Zadeh [2] proposed the cluster anal-

ysis theory, while Ruspini [19] introduced the idea of fuzzy partitioning—more precisely, the

fuzzy clustering technique. These papers serve as the foundation for fuzzy clustering research.

Dunn [9] expanded the definition of hard grouping in 1973 to include early notions of fuzzy

means. Finally, Bezdek [4] expanded on Dunn’s strategy to create an unlimited family of Fuzzy

C Means algorithms in 1981.

2. BACKGROUND

The terminologies used in the paper are defined in this section, which also gives the reader

the background information they need to understand the debate that follows. The following

terms are used in this paper:

(1) A pattern (or feature vector), z, is a single object or data point used by the clustering

algorithm [10].

(2) A feature (or attribute) is an individual component of a pattern [10].

(3) A cluster is a set of similar patterns, and patterns from different clusters are not similar

[5].

(4) Hard (or Crisp) clustering algorithms assign each pattern to one and only one cluster.

(5) Fuzzy clustering algorithms assign each pattern to each cluster with some degree of

membership.

(6) A distance measure is a metric used to evaluate the similarity of patterns [10].

Definition 2.1 (Clustering Problem). [17] The following is a formal definition of the clustering

problem.

Let X = {x1,x2, . . . ,xn} is a subset of p - dimensional space, here n is number of elements in set
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X , then the clustering of X is the partitioning of X into k clusters {C1,C2. . . . ,Ck} satisfying the

following conditions :

(1)
k⋃

i=1
Ci = X

(2) Ci 6= φ ∀ i = 1,2, . . . ,k

(3) Ci∩C j = φ where i 6= j

Definition 2.2 (Euclidean Distance). [17] Let X = {x1,x2, . . . ,xn} is a subset of p - dimensional

space, here n is number of elements in set X . Euclidean distance defined as

d(xi,x j) =

√
p

∑
k=1

(xi,k− x j,k)2 = ‖xi− x j‖

3. PARTITIONAL CLUSTERING TECHNIQUES

Algorithms for partitional clustering are typically iterative and reach local maxima. The

phases of an iterative clustering method used by Hamerly and Elkan [7] for any data set X are:

(1) Take K cluster centroids randomly

say {m1,m2, . . . ,mk} are k cluster centroids.

(2) For each element xi ∈ X compute its membership u(m j|xi) to each centroid mk and its

weight w(xi)

(3) Recalculate the k cluster centroids, using

(1) m j =

∑
∀xi

u(m j|xi)w(xi)xi

∑
∀xi

u(m j|xi)w(xi)

Repeat this process up until a stopping requirement is met.

The membership function u(m j|xi) in the aforementioned procedure quantifies the membership

of pattern xi to cluster k. The following restrictions must be fulfilled by the membership func-

tion, u(m j|xi):

(1) u(m j|xi)≥ 0, i = 1,2, . . . ,n and for all specified k

(2)
k
∑
j=1

u(m j|xi) = 1, i = 1,2, . . . ,n

Crisp clustering algorithms employ a hard membership function (i.e. u(m j|xi)∈{0,1}), whereas

fuzzy clustering algorithms employ a soft membership function (i.e. u(m j|xi) ∈ [0,1])[7].
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In Eq. 1, the weight function, w(zi), defines the amount of influence pattern zi has on recalcu-

lating the centroids in the next iteration, where w(zi) > 0 [7]. Zhang [25] proposed the weight

function.

An iterative clustering method may use several stopping criteria, such as:

• Stop when the centroid values have changed by less than a user-specified amount,

• The quantization error is sufficiently modest, or

• When an allotted number of iterations has been reached, stop.

Popular iterative clustering algorithms are described in the following by defining the member-

ship and weight functions in eq. 1.

3.1. The K-Means Algorithm. The K-Means clustering method is one of the most important,

extensively studied, and applied algorithms [15]. Its popularity is primarily due to how simple it

is to interpret the data. This algorithm divides a set of n items into k ≥ 2 clusters in an iterative

manner. As a result, the objects within a cluster are similar to one another and distinct from

those inside other clusters [18]. The K-means algorithm optimizes the objective function :

(2) JK−means =
k

∑
j=1

∑
∀xi∈C j

d(xi,m j)

As a result, the K-Means algorithm reduces the intra-cluster distance [7]. The K-Means al-

gorithm begins with K centroids (the initial values for the centroids are chosen at random or

derived from prior knowledge). The closest cluster is then assigned to each pattern in the data

set (i.e. closest centroid). The centroids are then recalculated in accordance with the associated

patterns. This procedure is carried out until convergence is achieved.

K-Means membership and weight functions are defined as

(3) u(m j|xi) =


1 if d(xi,m j) = argmin

j
{d(xi,m j)}

0 otherwise

(4) w(xi) = 1

K-Means has a hard membership function. Additionally, K-Means provides a constant weight

function, giving all patterns the same weight.
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3.2. The Fuzzy C-Means Algorithm. Fuzzy C-Means (FCM), sometimes known as fuzzy

K-Means, is a fuzzy variant of the K-Means algorithm that was proposed by Bezdek [3, 4]. The

least-square error criteria is the foundation of FCM. FCM beats K-Means because it assigns

each pattern to each cluster with a certain level of membership (i.e. fuzzy clustering). This

works better in practical settings where there are some cluster overlaps in the data set. The

FCM optimises the following objective function:

(5) JFCM =
k

∑
j=1

p

∑
i=1

uq
j,id(xi,m j)

where q denotes the fuzziness exponent, and q≥ 1. The algorithm becomes more fuzzy as the

value of q increases; u j,i is the membership value for the ith pattern in the jth cluster satisfying

the following constraints:

(1) u j,i ≥ 0, i = 1,2, . . . , p and j = 1,2, . . . ,k

(2)
k
∑
j=1

u j,i, i = 1,2, . . . , p

For FCM the membership function is denifend as

(6) u(m j|xi) =
‖xi−m j‖−2/(q−1)

k
∑
j=1
‖xi−m j‖−2/(q−1)

and weight function is defined as

(7) w(xi) = 1

As a result, FCM features a constant weight function as well as a soft membership function.

FCM generally outperforms K-Means [8] and is less impacted by the existence of data uncer-

tainty [13]. The user must yet define the number of clusters in the data set, just like in K-Means.

Additionally, it could reach local optimum [10].

4. IMPLEMENTATION METHODOLOGY

Python’s NumPy rand function is used to create a sample 2D array, and the K- Means and

FCM default libraries in python are used to process the data. To highlight the differences be-

tween the two approaches, we run the procedure for k = 2, 3 and 4 cluster centroids.
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FIGURE 1. Data Set X
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(B) FCM

FIGURE 2. For k = 2 cluster centroids
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A B A B A B A B

1 -3.82693 8.503724 26 1.833638 11.12473 51 4.675634 5.970388 76 5.328734 2.925902

2 7.61827 4.871125 27 4.427849 2.911338 52 -7.25272 7.467995 77 -3.77595 11.92137

3 -4.00625 9.319323 28 -0.27475 12.74395 53 -3.7836 7.733529 78 1.915904 0.415851

4 6.900544 7.18935 29 6.075218 2.789878 54 5.623794 3.515327 79 9.770759 3.27621

5 5.265394 5.567812 30 3.912073 9.453635 55 -1.8438 3.752765 80 7.782642 4.040986

6 -1.51536 13.24389 31 -3.15312 8.370409 56 6.360464 -0.38401 81 3.411963 4.328266

7 5.400779 4.247924 32 -6.57513 7.034715 57 -2.24223 11.67806 82 4.196343 3.08431

8 0.375554 2.161718 33 -5.67443 10.04746 58 5.348142 1.768443 83 4.91392 0.588612

9 -3.5875 4.98962 34 1.521336 8.393401 59 2.193714 -0.27031 84 -2.70723 11.774

10 -4.81705 8.163952 35 -1.56425 4.165926 60 -2.49514 8.369172 85 2.111462 6.235489

11 -2.3235 5.096229 36 6.253736 7.996923 61 -3.1133 9.996346 86 -2.54632 6.105581

12 1.238264 -1.65809 37 5.116126 3.032792 62 2.311196 -2.19266 87 5.445828 0.008703

13 -3.80025 10.50633 38 -1.59822 11.69704 63 0.008158 9.918352 88 -4.16389 14.10805

14 -6.16171 9.555655 39 -4.73256 7.634454 64 0.326051 11.57531 89 -0.2472 5.656966

15 2.769811 2.611867 40 -1.93482 3.625193 65 -3.45166 6.808024 90 -5.00626 5.130451

16 2.485932 1.087501 41 -0.47842 9.485549 66 -1.5147 7.240207 91 1.718544 3.275549

17 4.805512 8.747085 42 6.877051 -1.41171 67 -2.26982 8.192016 92 -2.82723 8.186251

18 1.694924 3.299969 43 1.959504 4.137652 68 4.025356 3.936671 93 -4.43984 8.113215

19 4.799953 -1.17 44 5.941282 1.77289 69 -3.96604 10.42577 94 -9.7135 11.27452

20 -2.25686 3.548472 45 3.965062 -0.09961 70 -0.63674 1.900257 95 4.544421 -1.2407

21 5.228637 -1.45261 46 1.555011 7.589043 71 7.826017 -0.28371 96 -5.29448 9.878466

22 4.110886 2.802425 47 -2.60772 13.31706 72 2.209271 2.395914 97 8.497563 -1.88192

23 6.815217 -0.52765 48 -1.69487 9.732188 73 9.82689 2.453259 98 -4.16095 8.212128

24 7.289163 3.108317 49 -5.55162 5.724718 74 -6.40147 7.857511 99 -1.61797 7.95531

25 5.354557 4.123183 50 1.363794 3.778692 75 0.2193 2.480913 100 -4.37073 10.6964

TABLE 1. Sample 2D array X
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(B) FCM

FIGURE 3. For k = 3 cluster centroids
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FIGURE 4. For k = 4 cluster centroids
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5. CONCLUSION

In this study, we use the fuzzy C-Mean and K-Means algorithms to a 2D array with variable

cluster centroids. We note no difference between FCM and K-Means results for k = 2 cluster

centroids (see fig. 2). Both techniques have a small difference for k = 3 cluster centroids (see

fig. 3). However, both approaches provide a different clustering (partitioning) set for the data

set when applied to k = 4 cluster centroids (see fig. 4). Therefore, K-Means is advised for

cluster centroids with k = 2 or 3, however FCM provides more accurate findings for cluster

centroids with k > 3. We have discussed the quality of this cluster algorithms (see [22]).
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