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Abstract. In this paper, we discuss the unique common fixed point of two pair of weakly commuting mappings on

a complete multiplicative b-metric space, which satisfy the following inequality:

d(Sx,Ty)≤ [k{max{d(Ax,By),d(Ax,Sx),d(By,Ty),d(Sx,By),d(Ax,Ty)}}]λ ,

where A and S are weak commutative, B and T also are weak commutative. Our result improve and generalize the

results of X. He et al. [3].
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1. INTRODUCTION

The study for the fixed point of contractive mappings is a famous topic in metric spaces. Fixed

point theory is, in fact, a simple, powerful, and useful tool for research area. In addition to an

acceptable contraction condition, the metrical common fixed point theorems usually include
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constraints on commutativity, continuity, completeness, and appropriate containment of ranges

of detailed maps. Since Banach [1] proved the Banach contraction principle in 1922.

Bashirov [2] introduced the usefullness of multiplicative calculus with some interesting appli-

cations. With the help of multiplicative absolute value function, they defined the multiplicative

distance between two nonnegative real numbers as well as between two positive square matri-

ces. In 1976, Jungck [4] introduced the notion of commuting maps to prove the existence of a

common fixed point theorems on a metric space

In 2012, Ozavsar et al.[5] investigate the multiplicative metric space by remarking its topo-

logical properties and introduced the concept of multiplicative contraction mapping and some

fixed-point theorem of multiplicative, contraction mappings on multiplicative metric space.

They recently proved a common fixed-point theorem for four self-mappings in multiplicative

metric spaces.

We present some definition and result in common fixed-point theorem for commuting map-

pings in complete multiplicative b-metric space. For, we have introduced the notion of multi-

plicative b-metric space.

2. PRELIMINARIES

Definition 2.1. [3] Let X be a nonempty set. A multiplicative metric is a mapping d : X×X →

R+ satisfying the following conditions:

(i) d(x,y)≥ 1, ∀x,y ∈ X and d(x,y) = 1 i f and only i f x = y;

(ii) d(x,y) = d(y,x), ∀x,y ∈ X ;

(iii) d(x,y)≤ d(x,z)d(z,y), ∀x,y ∈ X ,

(multiplicative triangle inequality).

We use the following definition for our main result:

Definition 2.2. Let X be a nonempty set. A multiplicative b-metric is a mapping d : X×X→R+

satisfying the following conditions:

[B1] d(x,y)≥ 1 for all x,y ∈ X and d(x,y) = 1 if and only if x = y;

[B2] d(x,y) = (y,x) for all x,y ∈ X ;
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[B3] d(x,y)≤ b.d(x,z).d(z,y) for all x,y,z ∈ X (multiplicative triangle inequality),

where b≥ 1.

Definition 2.3. [3] Let (X ,d) be a multiplicative metric space, {xn} be a sequence in X and

x ∈ X . If for every multiplicative open ball Bε(x) = {y | d(x,y) < ε}, ε > 1, there exists a

natural number N such that n≥N , then xn ∈B(x). The sequence {xn} is said to be multiplicative

converging to x, denoted by xn→ x (n→ ∞).

Definition 2.4. [3] Let (X ,d) be a multiplicative metric space and {xn} be a sequence in X . The

sequence is called a multiplicative Cauchy sequence if it holds that for all ε > 1 , there exists

N ∈ N such that d(xn,xm)< ε for all m,n > N.

Definition 2.5. [3] We call a multiplicative metric space complete if every multiplicative Cauchy

sequence in it is multiplicative convergence to x ∈ X .

Definition 2.6. [3] Suppose that S,T are two self-mappings of a multiplicative metric space

(X ,d); S,T are called commutative mappings if it holds that for all x ∈ X , ST x = T Sx.

Definition 2.7. [3] Suppose that S,T are two self-mappings of a multiplicative metric space

(X ,d); S,T are called weak commutative mappings if it holds that for all x ∈ X , d(ST x,T Sx)≤

d(Sx,T x).

Definition 2.8. [3] Let (X ,d) be a multiplicative metric space. A mapping f : X → X is called

a multiplicative contraction if there exists a real constant λ ∈ [0,1) such that d( f (x1), f (x2))≤

d(x1,x2)pλ for all x,y ∈ X .

3. MAIN RESULTS

In this section, we prove some common fixed point results for generalized contraction map-

pings satisfying commutative conditions:

Theorem 3.1. Let S,T,A and B be self-mappings of a complete multiplicative metric space X;

they satisfy the following conditions:

(i) SX ⊂ BX ,T X ⊂ AX;
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(ii) A and S are weak commutative, B and T also are weak commutative;

(iii) One of S, T , A and B is continuous;

(iv) d(Sx,Ty)≤ [k{max{d(Ax,By),d(Ax,Sx),d(By,Ty),d(Sx,By),d(Ax,Ty)}}]λ ,

λ ∈ (0, 1
2) ∀x,y ∈ X ,

where b≥ 1 such that limm,n→∞(kb)
h

1−h
(m−n)

= 1.

Then S,T,A and B have a unique common fixed point.

Proof. Since SX ⊂ BX , and T (X)⊂ AX , for an arbitrary chosen point x0 in X we obtain x1 in

X. For this x1 ∈ X , we may obtain x2 ∈ X ; etc. Continuing in this way we obtain a sequence

{yn} ∈ X ,

∃x2 ∈ X such that T x1 = Ax2 = y1,. . . ;

∃x2n+1 ∈ X such that Bx2n+1 = y2n,

∃x2n+2 ∈ X such that T x2n+1 = Ax2n+2 = y2n+1,. . . ; ∀n = 0,1,2....∞.

define a sequence {yn} ∈ X . Now

putting x = x2n, y = x2n+1 in condition (iv) we obtain

In order to show {yn} a Cauchy sequence, let us put x2n for x, and x2n+1 for y in condition (iv),

and using (1) we have;

d(y2n,y2n+1) = d(Sx2n,T x2n+1)

≤ [k (max{d(Ax2n,Bx2n+1),d(Ax2n,Sx2n),d(Bx2n+1,T x2n+1),d(Sx2n,Bx2n+1),

d(Ax2n,T x2n+1)}]λ

= [k (max{d(y2n−1,y2n),d(y2n−1,y2n),d(y2n,y2n+1),(y2n,y2n),d(y2n−1,y2n+1)})]λ

≤ [k (max{d(y2n−1,y2n),d(y2n−1,y2n),d(y2n,y2n+1),

1,d(y2n−1,y2n) . d(y2n,y2n+1)})]λ

≤ [k (max{bd(y2n−1,y2n) . d(y2n,y2n+1),bd(y2n−1,y2n) .d(y2n,y2n+1),

bd(y2n−1,y2n) . d(y2n,y2n+1),1,bd(y2n−1,y2n) . d(y2n,y2n+1)})]λ

= [k (max{bd(y2n−1,y2n) . d(y2n,y2n+1)})]λ , (using B1,as d(x,y)≥ 1∀x ∈ X)

≤ kλ bλ [d(y2n−1,y2n)]
λ . [d(y2n,y2n+1)]

λ
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=⇒ d1−λ (y2n,y2n+1)≤ kλ bλ . dλ (y2n−1,y2n)

=⇒ d(y2n,y2n+1)≤ (kb)
λ

1−λ d
λ

1−λ (y2n−1,y2n).

Let λ

1−λ
= h, where λ ∈ (0, 1

2) then

d(y2n,y2n+1)≤ (kb)hdh(y2n−1,y2n).

Similarly, putting x = x2n+2, y = x2n+1 on (iv), we may obtain

d(y2n+1,y2n+2)

= d(Sx2n+2,T x2n+1)

≤ [k max{d(Ax2n+2,Bx2n+1),d(Ax2n+2Sx2n+2),d(Bx2n+1,T x2n+1),d(Sx2n+2,Bx2n+1),

d(Ax2n+2,T x2n+1)}}]λ

≤ [k (max{d(y2n+1,y2n),d(y2n+1,y2n+2),d(y2n,y2n+1),d(y2n+2,y2n),d(y2n+1,y2n+1)})]λ

≤ [k (max{d(y2n,y2n+1),d(y2n+1,y2n+2),d(y2n,y2n+1).d(y2n,y2n+1),

d(y2n+1,y2n+2),1)})]λ

≤ [k (max{bd(y2n,y2n+1).d(y2n+1,y2n+2),bd(y2n,y2n+1).d(y2n+1,y2n+2),bd(y2n,y2n+1).

d(y2n+1,y2n+2),bd(y2n,y2n+1).d(y2n+1,y2n+2),1)})]λ

= [k (max{bd(y2n,y2n+1).d(y2n+1,y2n+2)})]λ

≤ kλ bλ [d(y2n,y2n+1)]
λ .[d(y2n+1,y2n+2)]

λ .

This implies that d1−λ (y2n+1,y2n+2)≤ kλ bλ . dλ (y2n+1,y2n)

d(y2n+1,y2n+2)≤ (kb)
λ

1−λ d
λ

1−λ (y2n+1,y2n).

Let λ

1−λ
= h, where λ ∈ (0, 1

2) then

(3.1) d(y2n,y2n+1)≤ (kb)h.dh(y2n−1,y2n),

(3.2) d(y2n+1,y2n+2)≤ ((kb)h.dh(y2n,y2n+1).

From (3.1) and (3.2), we obtain d(yn,yn+1) ≤ (kb)hdh(yn−1,yn), n = 1,2,3, ... which induc-

tively implies that
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d(yn,yn+1)≤ (kb)h[(kb)hdh(yn−2,yn−1)]
h

= (kb)h+h2
[dh2

(yn−2,yn−1)]

≤ (kb)h+h2
[(kb)hdh(yn−3,yn−2)]

h2

= (kb)h+h2+h3
[dh3

(yn−3,yn−2)]

...

≤ (kb)h+h2+h3+...+hn
[dhn

(y0,y1)]

≤ (kb)
h

1−h [dhn
(y0,y1)], h+h2 +h3 + ...+hn ≤ h

1−h
.

Let m,n ∈ N such that m≥ n, then for Cauchy sequence, we get

d(ym,yn)

≤ d(ym,ym−1).d(ym−1,ym−2)...d(yn+1,yn)

≤ (kb)
h

1−h dhm−1
(y0,y1).(kb)

h
1−h dhm−2

(y0,y1)...(kb)
h

1−h dhn
(y0,y1)]

≤ {(kb)
h

1−h}(m−n){dh[(m−1)+(m−2)+...+n]
(y0,y1)}

= {(kb)
h

1−h}(m−n){dh(m−n)[(m−1)− 1
2 (m−n−1)]

(y0,y1)}

≤ {(kb)
h

1−h}(m−n)dhm(m−n)
(y0,y1), since (m−1)+(m−2)+ ...+n≤ m(m−n) where m > n,

= Bdhm(m−n)
(y0,y1), where B = {(kb)

h
1−h}(m−n)→ 1 as n→ ∞.

This implies that d(ym,yn)→ 1 as m,n→ ∞. Hence {yn} is a multiplicative Cauchy sequence

in X .

By the completeness of X, there exists z ∈ X such that yn→ z as n→ ∞.

We claim that z is a coincidence point of the pair A, S for, putting x = z and y = x2n+1 in the

inequality (1) we have

Moreover, since

{Sx2n}= {Bx2n+1}= {y2n} and {T x2n+1}= {Ax2n+2}= {y2n+1},
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are subsequence of {yn}, so we obtain

lim
n→∞

Sx2n = lim
n→∞

Bx2n+1 = lim
n→∞

T x2n+1 = lim
n→∞

Ax2n+2 = z.

Taking condition (ii) and (iii) we obtain following cases;

Case 1: Suppose that A is continuous then

lim
n→∞

ASx2n = lim
n→∞

A2x2n = Az.

Since A and S are weakly commuting , then

d(ASx2n,SAx2n)≤ d(Sx2n,Ax2n).

Let n→ ∞, we get limn→∞ d(SAx2n,Az)≤ d(z,z) = 1, i.e., limn→∞ SAx2n = Az.

Putting Ax2n and x2n+1, respectively for x and y in condition (iv) of Theorem 3.1, and using the

continuity of A, we respectively obtain,

d(SAx2n,T x2n+1)≤ [k{max{d(A2x2n,Bx2n+1),d(A2x2n,SAx2n),

d(Bx2n+1,T x2n+1),d(SAx2n,Bx2n+1),d(A2x2n,T x2n+1)}}]λ .

Let n→ ∞, we can obtain

d(Az,z)≤ [k{max{d(Az,z),d(Az,Az),d(z,z),d(Az,z),d(Az,z)}}]λ

= [k{max{d(Az,z),1}}]λ

= kλ dλ (Az,z).

This implies that d(Az,z) = 1, i.e.,Az = z.

Putting x = z, and y = x2n+1, we obtain

d(Sz,T x2n+1)

≤ [k{max{d(Az, ,Bx2n+1),d(Az,Sz),d(Bx2n+1,T x2n+1),d(Sz,Bx2n+1),d(Az,T x2n+1)}}]λ .
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Let n→ ∞ we can obtain

d(Sz,z)≤ [k{max{d(Az,z),d(z,Sz),d(z,z),d(Sz,z),d(z,z)}}]λ

= [k{max{d(Sz,z),1}}]λ

= kλ dλ (Sz,z),

which implies that d(Sz,z) = 1, i.e., sz = z,

z = Sz ∈ SX ⊆ BX , so ∃z∗ ∈ X such that z = Bz∗

d(z,T z∗) = d(Sz,T z∗)

≤ [k{max{d(Az,Bz∗),d(Az,Sz),d(Bz∗,T z∗),d(Sz,Bz∗),d(Az,T z∗)}}λ

= [k{max{d(z,T z∗),1}}]λ

= kλ dλ (z,T z∗),

which implies d(Sz,z) = 1 i.e., T z∗ = z.

Since B and T are weakly commuting mappings then

d(Bz,T z) = d(BT z∗,T Bz∗)≤ d(Bz∗,T z∗) = d(z,z) = 1,

so Bz = T z,

d(Sx2n,T z)≤ [k{max{d(Ax2n,Bz),d(Ax2n,Sx2n),d(Bz,T z),d(Sx2n,Bz),

d(Ax2n,T z),d∗(Ax2n,Bz),d∗(Sx2n,T z)}}]λ .

d(z,T z) = d(Sz,T z)

≤ [k{max{d(Az,Bz),d(Az,Sz),d(Bz,Sz),d(Sz,Bz),d(Az,T z)}}]λ

= [k{max{d(z,T z),1}}]λ

= kλ dλ (z,T z),

which implies d(T z,z) = 1 i.e., T z = z.

Case 2: Suppose that B is continuous , we can obtain the same result by the way of case 1.
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Case 3: Suppose that S is continuous then limn→∞ SAx2n = limn→∞ S2x2n = Sz.

Since A and S are weak commutative, then d(ASx2n,SAx2n)≤ d(Sx2n,Ax2n).

Let n→ ∞ then limn→∞ (ASx2n,Sz)≤ d(z,z) = 1, i.e., limn→∞ ASx2n = Sz,

d(S2x2n,T x2n+1)≤ [k{max{d(ASx2n,Bx2n+1),d(ASx2n,S2x2n),d(Bx2n+1,T x2n+1),

d(S2x2n,Bx2n+1),d(ASx2n,T x2n+1)}}]λ .

Let n→ ∞ we can obtain

d(Sz,z)≤ [k{max{d(Sz,z),d(Sz,Sz),d(z,z),d(Sz,z),d(Sz,z)}}]λ

= [k{max{d(Sz,z),1}}]λ

= kλ dλ (Sz,z),

which implies d(Sz,z) = 1 i.e., Sz = z. Now

z = Sz ∈ SX ⊆ BX , so ∃z∗ ∈ X such that z = Bz∗

d(S2x2n,T z∗)

≤ [k{max{d(ASx2n,Bz∗),d(ASx2n,S2x2n),d(Bz∗,T z∗),d(S2x2n,Bz∗),d(ASx2n,T z∗)}}]λ .

Letting n→ ∞ using z = Sz = Bz∗ , we can obtain

d(z,T z∗) = d(Sz,T z∗)

≤ [k{max{d(Sz,z),d(Sz,Sz),d(z,T z∗),d(Sz,z),d(sz,T z∗)}}]λ

= [k{max{d(z,T z∗),1}}]λ

= kλ dλ (z,T z∗),

which implies that d(z,T z∗) = 1, i.e., T z∗ = z.

Since T and B are weak commutative, then

d(T z,Bz) = d(T Bz∗,BT z∗)≤ d(T z∗,Bz∗) = d(z,z) = 1, so Bz = T z,

z is a fixed point of T. For, we have on using condition (iv).

d(Sx2n,T z)≤ [k{max{d(Ax2n,Bz),d(Ax2n,Sx2n),d(Bz,T z),d(Sx2n,Bz),d(Ax2n,T z)}}]λ .
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Let n→ ∞ we can obtain

d(z,T z)≤ [k{max{d(z,T z),d(z,z),d(T z,T z),d(z,T z),d(z,T z)}}]λ

= [k{max{d(z,T z),1}}]λ

= kλ dλ (z,T z),

which implies d(z,T z) = 1 i.e., T z = z.

z = T z ∈ T X ⊆ AX , so ∃z∗∗ ∈ X , such that z = Az∗∗

d(Sz∗∗,z) = d(Sz∗∗,T z)

≤ [k{max{d(Az∗∗,Bz),d(Az∗∗,Sz∗∗),d(Bz,T z),d(Sz∗∗,Bz),d(Az∗∗,T z)}}]λ

= [k{max{d(z,z),d(z,Sz∗∗),d(Bz,Bz),d(Sz∗∗,z),d(z,z)}}]λ

= [k{max{d(Sz∗∗,z),1}}]λ

= kλ dλ (Sz∗∗,z).

This implies that d(Sz∗∗,z) = 1 i.e., Sz∗∗ = z.

Since S and A are weak commutative, then

d(Az,Sz) = d(ASz∗∗,SAz∗∗)≤ d(Az∗∗,Sz∗∗) = d(z,z) = 1, so Az = Sz.

We obtain Sz = T z = Az = Bz = z, so z is common fixed point of S, T , A and B.

Case 4: Suppose that T is continuous, we can obtain the same result by the way of case 3.

In addition we prove that S, T , A and B have a unique common fixed point. suppose that w ∈ X

is also a common fixed point of S, T , A and B then we obtain

d(z,w) = d(Sz,Tw)

≤ [k{max{d(Az,Bw),d(Az,Sz),d(Bw,Tw),d(Sz,Bw),d(Az,Tw)}}]λ

= [k{max{d(z,w),1}}]λ

= kλ dλ (z,w).

This is a contradiction as d(z,w)> 1, when z 6= w.

Thus z is a unique common fixed point of A,B,S,T ⊂ X . �
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Corollary 3.2. Let T be a mappings of a complete multiplicative metric space (X ,d) into itself

satisfying the following condition:

d(T x,Ty)≤ [d(x,y)]λ

for all x,y ∈ X, where λ ∈ (0, 1
2).

Corollary 3.3. Let S,T,A and B be self-mappings of a complete multiplicative metric space X;

they satisfy the following conditions:

(i) SX ⊂ BX ,T X ⊂ AX;

(ii) A and S are weak commutative, B and T also are weak commutative;

(iii) One of S, T , A and B is continuous;

(iv) d(Spx,T qy)≤ [k{max{d(Ax,By),d(Ax,Spx),d(By,T qy),d(Spx,By),d(Ax,T qy)}}]λ ,

λ ∈ (0, 1
2) ∀x,y ∈ X ,

where b≥ 1.

Then S,T,A and B have a unique common fixed point.
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