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Abstract. This paper introduces twisted (o, 8)-(¢@, #)-contraction type T-coupling and proves a theorem ensuring
existence and uniqueness of strong coupled coincidence and common fixed points in C*-algebra valued G-metric
spaces (-2 VGMS ). The findings generalize prior work, supported by examples, and demonstrate relevance
through applications to functional equations and homotopy theory.
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1. INTRODUCTION

Banach’s fixed-point theorem has evolved through weaker contractive conditions and diverse
metric spaces. Mustafa and Sims [1] introduced G-metric spaces, expanding its scope. Later,
Zhenhua, Jiang, and Sun[2] developed C*-algebra-valued metric spaces, while Shen et al. [3]
combined this with G-metrics to study fixed points in complete C*-algebra-valued G-metric
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spaces. These frameworks have led to significant results and applications, including differential
equations.

The study of coupled fixed points has rapidly advanced within metric fixed point theory. The
concept was first introduced by Guo et al. in 1987 [5]. In 2003, Kirk et al. [6] introduced cyclic
contractions, proving that such contractions possess fixed points. Following this, Bhaskar et al.
[7] established the coupled contraction mapping theorem.

In 2017, S. Binayak Choudhury et al. [8] introduced the notion of coupling between two non-
empty subsets in a metric space, showing that such couplings yield strong unique fixed points
under Banach-type or Chatterjea-type contractive conditions. This idea was extended by G. V.
R. Babu et al. [9] and S. Mary Anushia et al. [10] to complete S-metric spaces. Further gener-
alizations focused on relaxing classical contraction conditions using altering and ultra altering
distance functions, as proposed by Khan et al. [11] and Ansari et al. [12, 13]. Choudhury et al.
[14] posed open problems regarding couplings satisfying various inequalities. Aydi et al. [15]
addressed this by proving strong coupled fixed point results for (¢, y)-contraction type cou-
plings in complete partial metric spaces. Rashid ef al. [16] and D. Eshi et al. [17] advanced this
by introducing SCC-Map and ¢-contraction type T -coupling, establishing coupled coincidence
point theorems. Fuad Abdulkerim et al. [18] further contributed by proving fixed point results
for (¢, y)-contraction type T-coupling mappings.

The objective of this paper is to establish unique strong common coupled fixed point
(USCCFP) theorems in the context of -7/ VGMS, specifically for twisted (¢, B)-(¢, £)-
contractive type T-Coupling SCC-maps. Furthermore, we present applications to Functional
equations and homotopy theory, along with a discussion on the relevance and impact of the

results obtained.

2. PRELIMINARIES

This section provides a brief introduction to some fundamental aspects of C*-algebra theory
[19, 20].

Let o/ be a unital C*-algebra with the unit element 1,,. Define o, = {¢ € & : ¢ = ¢*}. An
element ¢ € .o/ is considered positive, denoted as ¢ = 0, if ¢ = ¢* and its spectrum

n(e) C [0,0). Here, 0, in o7 represents the zero element in <7, and 1 (¢) denotes the spectrum
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of ¢ . On .27, a natural partial ordering is defined by s < v if and only if v —s > 0,,. We denote
A ={eed e-0y}tand &' ={ec €& :c0=0eV0 € T}

Definition 2.1:([3, 4]) Let V be a non-empty set and denote the associated C*-algebra by 7.
A mapping p: VxV xV — o that satisfies the required conditions is referred to as a C*-
algebra-valued G-metric.

(i) pe+(s,,52,83) =04 if 51 = 57 = 59,

(ii) 04 < pe+(81,61,52) for all 1,8, € V with 1 # s, ,

o (61,92,53) = P (P[s1,82,83]) where P is a permutation of s, 87,53 (Symmetry),

)
)
(iii) pe(s1,51,52) = Pe+(s1,92,83) for all 51,857,553 € V with s1 # s3,
(iv)
)

P

(V) per(51,82,53) = Per(51,54,54) + Pe+(84,52,53) for all s1,87,53,64 € V (rectangle in-
equality)

Then the structure (V,.o7, p.+) is called a ¢*-o/ VGMS.

Example 2.2: ([3, 4]) Let V =R and define p.«: VXV XV — o as

Pe+(51,52,53) = ||51 —82||Ly + | |82 — 53| |Lor + ||53 — 81 ||y for all 51,57,53 € V, then (V, o7, pe+)

isa ¢*-a/VGMS. p.+ is a C*-algebra valued G-metric.

Definition 2.3:([3, 4))A €*-o/ VGMS (V, .o, p.+) is said to be symmetric if

Pe+(51,51,52) = Pe+(52,52,51) V61,80 €V

Definition 2.4: ([3, 4]) Assume that (V, o7, p.+) is a €*-o/ VGMS. According to <7 a sequence
{sx} in V is defined as:

(1) C*-algebra valued G-convergent to a point s € V if, for each 0,/ < &, there exist x,y € N

such that p.+(s,s,,5,) < €. We can also use different presentations for that as follows:
sy — s or lim p+(s,8y,5,) =0, or lims, =s.
X—roo X—>o0

(2) C*-algebra valued G-Cauchy sequence, if for 0., < €, there exists positive integer
x* € N such that p.+(sy,5y,5;) < €V x,y,2 > x* or pe+(8y,5y,5;) — 0 as x,y,z — oo or
||pe+ (5x,8y,52)[| = 0.

(3) Tt is referred to as being complete when a ¢*-o7/ VGMS (V, 7, p.+) is present. If each

Cauchy sequence in V converges to a point in V.
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Lemma 2.5: ([3, 4]) Let &/ be a C*-algebra with the identity element /, and v be a positive

element of .«7. Then

(i) There is a unique element u € .7, such that u> = v.
(ii

(iii

)
) The set o7, = {v*v/v € o/} with a conjugate-linear involution * : .o/ — .
) v,u € o/, and 0,y < v < uthen ||v]] <||u|.

(iv) If v € @4 with ||v|| < § then (I —v) is invertible and |[o(7 —v)~!|| < L.

3. MAIN RESULTS

Definition 3.1: Let (V, o7, p.+) is a €*-o/ VGMS and a pair (s,0) € V x V is called

(a) a CFP of mapping Q : V2 = Vif Q(s,0) =5, Q(v,5) = ;

(a;) a SCFP of mapping @ : V> — V if (5,0) is CFPand s = v i.e Q(s,5) =s;
(b)) aCCIPof Q:V?> - Vand T:V = VifQ(s,0) = Ts, Q(v,5) = To ;

(b;) aSCCIPof : V> = Vand T:V = Vifs=v.ie Q(s,5) = Ts;
(c) aCCFPof :V? - Vand T:V = VifQ(s,0) =Ts =5, Q(v,5) = To = v;
(c;/) aSCCFPof Q:V? »Vand T:V = Vifs=v.ie Q(s,5) =Ts=s;
(d) the pair (R, T") is weakly compatible (w-compt) if T'(Q(s,v)) = Q(Ts, Tv) and

T(Q(v,s)) = Q(Tvo, Ts) whenever Q(s,v) =Ts, Q) (v,5) = To.
Definition 3.2: Let (V,7,p) is a €*-o/ VGMS, .# and ¢ be two nonempty subsets of V.
Then a function @ : V2 — V is said to be a coupling with respect to .% and ¢ if Y(s,v) € ¥
and Q(v,s) € .# wheres € . andv € 4.
Definition 3.3: Let .7 and ¢ be two nonempty subsets of V. Any function T : V — V is said
to be
(i) acyclic (with respectto . and ¢) if T(.#) C 4 and T(¥Y) C .%.

(ii) aself-cyclic (with respectto .# and ¢) if T'(.#) C .# and T(¥9) C 9.
Definition 3.4: Let . and ¢ be two nonempty subsets of a -/ VGMS (V,.«7,p.~) and a
self map T': V — V is said to be (self-cyclic compatible map) SCC-Map with respect to .# and
9, if

(i) T is self-cyclic with respect to .# and ¢ i.e T(.#) C . F and T(9) C 9

(ii) T(#) and T(¥) are closed in V.
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Definition 3.5: Let (V,o7,p.+) be a €*-o/VGMS, T :V — V and o, : V> — &7, be a

functions then T is called a twisted (o, )-adm, if for all s,e € V

o(s,s,¢) = 1y o(Te, Te, Ts) =1,

B(s,s,e) = 1, B(Te, Te, Ts) =1,

Example 3.6: Let (V, o7, p.+) be a €*-o/ VGMS where V = R", &/ = M,(C), the algebra of
n X n complex matrices,
Per: VXV XV — o as pe+(51,92,53) = ||81 — 52||* Loy + | |52 — 53| 2Ly + ||53 — 51]|*1s for
all s1,5,,53 € V where [, is the n x n identity matrix in /. Let T : V — V be defined by
T(x) = Ux where U € M,,(C) is a unitary matrix (i.e., U*U = UU* = I ). Define functions
a,B: V3 — o/, by a(s1,52,53) =A+pe(51,52,53), PB(51,52,53) = B+ pe+(51,52,53) where
A,B € o/, are positive definite matrices such that A = I,, B = [ .

Now, verification of twisted admissibility, Suppose for some s,¢ € V, we have

o(s,s,e) =1y, PB(s,s,¢) > I, Then, since U is unitary and preserves norms,
o(Te, Te,Ts) =A+pe+(Ue,Ue,Us) = A+ pe(e,¢,8) = Iy

and similarly, B(Te, Te, Ts) = B+ p.+(e,e,5) = I,. Hence, T is a twisted (o, f)-admissible
mapping.
Definition 3.7: A function ¢ : &7, — o7, is called an altering distance function if the following

properties are satisfied:

(a) ¢ is monotonically non-deceasing and continuous;

(b) ¢(s) =0, if and only if s = 0.

The family of all altering distance functions is denoted by €.

Definition 3.8: Let .# and ¢ be two nonempty subsets of a €*-o/VGMS (V, .o, p+) and
T:V — Vis aSCC-map on V (with respect to .# and ¢). Then a coupling Q : V> — V
is said to be generalized twisted (¢, B)-(¢, £)-contractive mapping of T-coupling type (i) or
(if) or (iii) (with respect to .# and ¥) if there exist altering distance functions @, © € Q and
a,B : V3 — o7/, such that forall 5,3 € .% and e,v € ¥,

(A) Generalized twisted (a,)-(¢, #)-contractive mapping of T-coupling type (i), if there
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exist a € o with ||a|| < 1 such that

o(Ts,Ts, Te)B(To, To, T3)¢ (P (R(s,0),R(s,0), Q(e,3)))

= @ (a"M(s,v,¢,3)a) — @2 (a*M(s,v,¢,3)a)

(B) Generalized twisted (o, 3)-(¢@, £)-contractive mapping of T-coupling type (ii), if there

exist a,b € o/ with ||a|| < 1 and 0 < ||b|| < 1 such that

(a(Ts, Ts, Te)B(To, To, Tj) + b) PP (R0 Qlo.0).Qe4)))
< (1, + b) P& Mls0.e3)a) = plaM(s0.¢.3)a)

(C) Generalized twisted (e, B)-(¢, #)-contractive mapping of T-coupling type (iii), if there

exist a,b € o/ with ||a|| < 1 and ||b|| > 1 such that
(9 (P (Q(s,0), Q(5,0), QYe,))) +p) e TOPERAR A

=@ (a™M(s,0,¢,3)a) — @2 (a"M(s,0,¢,3)a) +b

where M (s,0,¢,3) = max{ pe (Ts, Ts, Te),pes (To, To, T3) } )

Theorem 3.9: Let .# and ¢ be a nonempty closed subsets of a complete ¢*-oZ/ VGMS
(V,o ,pe), T:V =V is a SCC-map on V (with respect to .# and ¥), and a coupling
@Q : V? — V is said to be generalized twisted («, B)-(¢, £)-contractive mapping of T-coupling

type (i) or (ii) or (iii) (with respect to .# and ¢) and assume that

39.1
39.2

(3.9.1) T(F)NT(Y) £ 0and Q(F x¥) C T(¥), Q¥ x F) C T(F);
(3.92) T
(3.9.3) Q and T have a CCIP in . x ¥,
(3.9.4)
(3.9.5)

is a twisted («, B)-admissible mapping,

3.9.4) {Q, T} is w-compatible pairs,

3.9.5) if {s,} ; € .F and {v,}_ | € ¥4 with a(Ts,, Ts,q1,Tsyq1) = Ly
ﬁ(Tnn,Tan,TnnH) = 1, for all n and lim,,_,.. Ts, = T's € T(.%#) and
lim,, 0o Tv, = Tv € T(¥) then ot(Ts,, Ts, Ts) = 1, B(To,, To, To) =1,.

(3.9.6) a(Ts, Ts*, Ts*) = I, and B(Te, Te*, Te*) = I, whenever, T's # T's* and Te # Te*.
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Then @@ and T have a USCCFP in . x 9.

Proof Since .# and ¢ are non-empty subsets of V and @ is generalized twisted (a, f3)-
(¢, g2)-contractive mapping of T-coupling with respect .% and ¢, then for sg € .% and ¢ € 4
such that o/(Q(so,¢0), R (s0,¢0), Te) = Iy and B(Q(eo,50), R (e0,50), T's0) = L, we define

the sequence {s,} and {e, } in .# and ¢ respectively such that

Tspr1 = Qep,50) Tepr1 = Qsp,e0) Vo€ NU{O}.

If for some v, Ts,.; = Te, and Teyy; = Ts, then, we have T'sy, = Teyy = Q(sy,¢y) and
Tey, = Tsp+1 = Q(ey,5p). This show that (sy,¢y) is a coupled coincidence point of @ and T.
So, we are done in this case. Thus we assume that T's, | = Te, and Te,. | # T'sy, forall v > 0.
Since T is a twisted (@, B)-adm, then a(eg,s1,51) = a(eo, Tsg, Tsp) = 1. then
o(s2,82,¢1) = a(Tsy, Tsy, Teg) = 1,y = a(e2,53,83) = o(Tey, Tsp, Tsp) = 1.
By repeating similar process, we obtain
o (Tsy, Tsy, Tey—1) = 147, a(Tey, Tsy41, TSp41) = 1oy Vo EN.
Similarly, we have B(Tey, Tey, Tsp—1) = 1o, B(Tsy, Teyr1, Teps1) = 1y Vo €N, and
again a(ey,e,50) = o(Tep, Teg,80) = 1, then at(sy,e2,¢2) = a(Tsg, Tey, Tey) = 1,y =
o(e3,e3,57) = a(Tep, Tey, Tsy) = 1,,. By repeating similar process, we obtain
o (Tsy_1, Tey, Tey) = 1o, t(Teysq, Teyr1, Tsy) =1 Vo eEN.
Similarly, we have 3(Te,_1, Tsy, Tsp) = 1o/, B(Tsy11,Tey, Tey) =1, Vo eN.
Also, o(eg,50,50) = 1. then
o(sy,s1,¢1) = o(Tsg, Tsg, Teg) = 1,y = o(ez,52,52) = ot(Tey, Tsy,Tsy) = 1,. By re-
peating similar process, we obtain &¢(Ts,_1, Tsy_1,Tey_1) = 1, 0t(Tey, Tsy, Tsy) = 1, V
peN
Similarly, we have B(Tey_1,Tey_1, Tsy—1) = 1/, B(Tsp, Tey, Tey) = 1, Vo EN.

Now, we distinguish the following cases:
Case(i): Let QQ be a generalized twisted (@, B)-(¢, #)-contractive mapping of T-coupling type
(i) with respect .# and ¢ . Then by condition (A) in definition (3.8), and the fact that s, € .#

and ¢, € ¢ for all v, we have

¢ (Pt (Tsp, Tepy1, Tepr1)) = @ (P (Qlep—1,50—1), RS0, ¢0), Q(5p,¢0)))
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= @ (P (Q(sp,e0)), Q(s0,0),Q(ev—1,50-1))
=< a(Tsy, Tsy, Tey—1)B(Tey, Tey, Tsp_1)
@ (P (R(s0,¢0)), RS0, ¢0), Qleo—1,50-1))
< @ (a™M(sy, e, ey_1,50—1)a) — 2 (a " M(sy, ey, ey_1,5p—1)a)

where

M(ﬁmen, en_l’ﬁn_l) - max{ Pc (star]rﬁthr]ret)—l) s Pe (TQU7T207T50—1) } )
Using the properties of £, we have

« (Tsy, T'sy, Tep—1),

(L Sy, Leyt1, Leptq = a’ max a
(P(p (T 7T v+ aT b+ )) (P * pc ( ’ ’ ’ 1)
Pex (TQU,TQU,Tﬁg_])

Again using the properties of ¢, we get

* Tﬁ ,Tﬁ ,Te -1),
Q) per(Tsp, Tegy1, Tepr1) = a"max Per (T, Ty, Teo1) a.

Per (Tey, Tey, Tsy—1)
Now, using by condition (A) in definition (3.8), and the fact that s, € .%# and ¢, € ¢ for all v,

we have
@ (per(Tey, Tsp11, Tso11)) = @ (Pes (Q(S0—1,¢0-1), R(en,50), R(ev,50)))
=< a(Tsy_1,Tey, Tey)B(Tep—1, Tsy, Tsyp)
@ (P (R(s0-1,00-1), R(ev,50), R(ev,50)))
= @ (a"M(sy_1,e0_1,0p,50)a) — 2(a"M(5y_1,¢0_1,0p,5p)a)

where

M(sp—1,¢0-1,¢0,50) = max{ Per (Tsy_1, Tey, Tey),per (Tey—1, Ty, Tsyp) } .
Now, using the properties of ¢ and £, we get

* Tﬁ — 7Te ’Te ,
) pet (Tey, Tspq1, Tspy 1) =< a"max Pes (Tso—1, Teo, Tey) "
pC* (Tet)*last,Tsn)
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By using (1) and (2), we get

Per (T, Tey1, Tepr1) N Per (Tsp—1, Tey, Tey),
max =< a"max a.

Per(Tey, Tspp1, Tspy1) Per (Tep—1, Tsy, Tsy)

Per(Tsp, Tegs1, Tept1) ,
Put A, = max ¢ 7 ’ , we obtain

pC* (Teb7 T50+1 ) T5U+1)
AU j a*An_la

< (a")*Ao-2(a)’

= (a")"Ao(a)".

For each v € N, we may see the following by keeping in mind the property where if a,b € o7,

then a = b gives u*au < u*bu.
3) Ay = (a%)"Ao(a)"

Case(ii): Let ( be a generalized twisted (a, B)-( ¢, #)-contractive mapping of T-coupling type
(ii) with respect .# and ¢ . Then by condition (B) in definition (3.8), and the fact that s, € .%

and ¢, € ¢ for all v, we have
(1&{+b)‘P(pc*(Tﬁan%-«—hT%—o—l)) — (1&{_|_b)‘P(Pc*(Q(en—l750—1)’Q(ﬁmen),Q(ﬁm%)))

— (lﬂ + b)(p(pc* (Q(sv760))5Q(50760)7Q(eb—1 550—1))

< (a(Tsn,Tsn,Teu,l)B(Ten,Ten,Tsn,l)+b)(p(pf*(Q(5“’RU))’Q(E"’E")’Q(Q"*I’5“*1))

j (1(!2{+b)@(a*M(ﬁmemenfl75n71)a)_ﬁ(a*M(ﬁn79n7%71>5n71)a)'

Then we have
o (Pc* (Tﬁn, Tept1, Ten+1)) =0 (G*M(ﬁn, Co, %7175»71)60 - {O(G*M(ﬁm €y, %fla%—l)a) .
Similarly,

O (per(Tey, Tsyr1, Tspy1)) = @ (Q*M(ﬁnflaenflv%yﬁn)a) - W(G*M(%flv%fl,%;ﬁn)a) .
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For all v € N, we can deduce by induction from Eq. (1) and Eq. (2), we get
C)) Ay = (a")"Ao(a)”

Case(iii): Let @3 be a generalized twisted (o, 3)-(¢, £)-contractive mapping of T-coupling
type (iii) with respect .# and ¢ . Then by condition (C) in definition (3.8), and the fact that

sy € .7 and ¢, € ¢ for all v, we have

@ (per (Tsp, Teps1, Teor1)) +b = @ (P (Qev—1,50-1), R(Sv,¢0), RS0, ¢0))) +b
= (p(pC*(Q(sbaeU))aQ(ﬁbaeb)v@(eb—lasn—l))+b
< ((P (Pc*(@(&x»%)),@@n, 20)7([9(%71’5071)) +b)OZ(TSU,TSmTRUfl)ﬁ(TemTemTﬁn—l)

= @ (a™M(sy,ep,ep_1,5p_1)a) — (" M(sy, ey, e9_1,5_1)a) +b.
Then we have
@ (P (Tsy, Teyr1, Teyr1)) < @ (a™M(sy,ep,e0_1,5p_1)a) — (@ M(sp, ep,e9_1,50_1)a) -
Similarly,
@ (per(Tey, Tsyr1, Tspr1)) =< @ (@ M(sp_1,ep_1,0p,50)a) — (@ M(5p_1,¢p_1,8p,50)a) -
For all v € N, we can deduce by induction from Eq. (1) and Eq. (2), we get
(5) Ay = (a")°Ag(a)’.
From Eq.(3), Eq.(4), Eq.(5) and using Lemma 2.5, we have

18]l < [lalP?llo]| = 0 as v — e

Thus, Ulgn Per(Tsy, Teyy1, Teys1) =0, and t}gn Pe(Tey, Tspy1, Tsy41) =0y
Now, we define a sequence {I'y} by I'y = p+(Tsy, Tey, Tey) and show that T, — 0, as

v — co. By using condition (A) in definition (3.8), and the fact that s, € .# and ¢, € ¢ for all v,
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we have

OTy) = @(pe(Tsy, Tey, Tey)) = @ (P (Qeo—1,50-1), R(S0-1,¢0-1), R(S0-1,¢0-1)))
= @ (P (Q(so—1,20-1)), Q(S0—1,e0-1),Q(ep—1,50-1))

a(Tsy—1,Tsy—1, Tey—1)B(Tep—1,Tep—1,Tsp-1)

PN

() (pC* (Q(%—la%—l))»@(sn—b eb—l)?@(eb—bsb—l))

A

¢ (@M (sp_1,ep—1,ep—1,50—1)a) — 2(a"M(8p_1,€p—1,Cp—1,50—1)a)
< @ (a*pe (Tsy—1,Tsy_1,Tey_1)a) — @2(a*per (Tsp_1, Tsy_1,Tey_1)a)
(6) < @(a*per (Tey—1,Tey_1,Tsp_1)a) — @ (a*per (Tey_1, Tey_1,Tsy_1)a)
and by condition (B) in definition (3.8), we have
(L +5)2T) = (1, 4 b)?e (Tse TeoTe0)) (1 py0pes (@ee-180-1) Rsw-1e-1) RAso1,60-1)
(1y -+ b) PP (Qse-10-1). Qo 1.60-1) Rlew-180-1)

= (a(TEU—l ) st—] 7Tetl—1 )B (Ten—l ) Ten—l ) Tﬁn—l) + b)(P(pc* (Qfso-120-1)),RE0-1,20-1)Qleo-1,50-1)

(7) < (1% 4 b)(p(a*p‘x (TQU,| JTey—1,Tsy_1 )a)—((o(a*p(7* (TBU,] JTey—1, Ty )a)

also, by condition (C) in definition (3.8), we have
O(Ty) +b =@ (pe+(Tsy, Tey, Tey)) +b
= @ (P (Qeo—1,50-1), Q(s0-1,¢0-1), R(S0-1,00-1))) + b
= @ (pe (Qsv-1,80-1)), R(S0-1,¢0-1), Qeo-1,80-1)) + b

(@ (P (Q50-1,€0-1)), Q501 00-1), Qeo—1,501)) + b) *Toe-rTootTeo ) (Teo Teot oo )

PN

A

o (a*M(ﬁnfl ;€o—1,Cp—1 75071)(1) - p(a*M(%A yCo—1,Cp—1 ,5071)a) +b

IA

(0] (a*pc* (Ten,l ,Tey_1, Tsn,l)a) — ((O(a*pc* (Ten,l , Tey_1, Tsn,l)a) +b.
(®)

Thus, from (6), (7), (8) and using properties of @, & and ||a|| < 1, we conclude that
||To|| < ||Tp—1]| for all v > 1. Thus, ||{I'y}|| is monotone decreasing sequence of non-negative
real numbers which implies that there exists 3 > 0 such that

Jim [Ty} = fim e+ (T, Ty, Teo)

| = 3. Taking b — oo in any one of Eq.(6), Eq.(7), Eq.(8)
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and using continuities of ¢ and @ and ||a|| < 1, we have ¢(3) < ¢(3) — £(3) < ¢(3). Since g
is an altering distance function, it follows that ¢(3) = 0 which in turn implies that 3 = 0. That
is, lim p+(Tsy,, Tey, Tey) = 0, Now, we have
p—roo
gggopc* (Tsy, Tspt1, Tsp41) =< Ulig}opc* (Tsy, Tey, Tey) + UIEEOPC* (Tey, Tsp11, Tsp41) =04
and
llm pc* (Ten 5 'I[‘en+] 5 Ten+]) j llm p()* (Ten,Tﬁu 5 Tﬁn) + hm p()* (Tsn, Teu+] 5 Teu+] ) — Oy{
D—ro0 b—roo p—soo
©)
Now, we will prove that the sequences {Ts, } and {Te, } are Cauchy sequences in T'(.%) and
T(%) with regard to .27 respectively. If possible, let {Ts, } or {T'¢, } is not a Cauchy sequence.

Then there exist € > 0./, and a sequence of positive integer there exists two subsequences

{u(j)} and {v(j)} such that for all positive integers j with v(j) > u(j) > j, we have

(10) 6 Zmax{ Per (Tsy(jy, Tso(j)> Tsu(j))s Per (Tey( ), Teg( ) Tey(j)) } ZE.

Furthermore, corresponding to u(j), we can choose v(j) such that j is the smallest positive

integer with v(j) > u(j) > j and satisfying (10), then

an ma"{ Pe (Tu(j)s Tu(j)—15 To()-1) Per (Tew( s Tey(j) -1, Teo()-1) } = e
Sub-Case(i): Let Q) be a generalized twisted (o, )-( ¢, £)-contractive mapping of T-coupling
type (i) with respect .# and ¢ . Then by condition (A) in definition (3.8), we have
¢ (Per (Teo(j), Toujy15 Tsu(j)+1)) = @ (Per (QUSu(j)-15 () -1)s RLEu():5u(s))s Qleu():5u()))
= o(Tsp(j)-1, Tew(j), Teu(j)) B(Teo()-1, Touj), Tou( )
9 (Per (Qs0(j)-15 eoj) 1), Qleu()s5u(j)s Qleu(y 5u()))
= @ (@ M(50())-1, eu(j)-1€u(s)»5u())@) = £2(¢"M(So(j) -1, €o(j)-15 Cu(j) Su())) -

Sub-Case(ii): Let @ be a generalized twisted (¢, B)-(¢, £)-contractive mapping of T-coupling
type (ii) with respect % and ¢ . Then by condition (B) in definition (3.8), we have

(1%+b)‘P(Pc*(Ten(j)»T5u<j)+1aT5u(j)+1)) _ (LQ{_1’_b)‘p(pc*(Q(su(j)—la%(j)—l):@(eu(j)wsu(j))-,@(eu(j)=5u(j)>))

- (“(Tﬁn(j)I’Teu(j)vTeuuﬂ

O(Per (RS0 (j)—1:20(j)-1)-R(eu(j)5u(1) - Reu(j) 5u()))
B(Tey(j)—1,Tsy(j), Tsu(j)) )
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= @ (@ M(sy(j)-15e0(j)-15Cu(j)>5u()@) — 82 (@ M(So(j)- 15 Co(j)- 15 Cu(j) Su(j) &) -

Sub-Case(iii): Let (Q be a generalized twisted (¢, B)-(¢, £)-contractive mapping of T-coupling
type (iii) with respect .# and ¢ . Then by condition (C) in definition (3.8), we have

@ (Per (Tey(jy Ty )1, Toy(jy+1)) +b
= 0 (P (QSu(j)-1-Co(j)—1)s Rleu(j)>5u(j) RUeu(j)5u()))) +b
OC(TEU( )— 1,’]['eu( ) ’]I‘eu( ))

B(Tey(j)—1,Tsy(j), Ty )

A

(@ (pe (Q(Su(j)—1> o()-1), Rleu(j)> Su(j))s Rlew( ) 5u()))) +b)

A

@ (@ M(50(j)1, Co(j)—1 Cu(j)» Su(j) @) — 82 (" M(Sy()—1, €o()—15 Cu(j)s Su())@) + b

In all sub-cases, we have

Pt (Tso(j)—1, Teyj), Tey()) »

Mi(8y(j)—15€o(j)—1 Cu(j)> Su(j)) = max
Per (Teg(j)—1: Tsu(j), Tsu(j))

Using properties of ¢ and &, we conclude that

c T ,T . ,'][‘ N
Per (Tey( ), Ty )41, Toy(jy41) = a* max Pe: st’() 1> Cu(j) eu(])) a.

per (Teo(j)—15 Tsuj), Tou(j)
Similarly, we can show by the same steps that

c* TS ,Te T a),
Per (T, Teu 1. Tey 1) < a¥max { Fo L o= 2l ()

pe T% 15 Tsu () Tou )
Therefore, we conclude that

e d Pe (Lot Tsugyes Tsugye } < o max Per (Tso(j)—1, Teu(jy, Tewgs))

Per (Tsn( i) Teu( )+1,Teu (Teb( j)— laTsu( ) r]Tﬁu(j))

implies that
i [1per (Teqjy, Tsu(jy+1 T+l - max [P (Tsp(j)—15 Tew(j), Tewcp) Il

[lPes (TS (), Tew(jy1: Tewgjy o)l [P+ (Teq(jy—1, Tsy(j), Toy(j)) |l
Now consider,

[Per (Tsy(j), Teo(j)—1, Teo(jy—1) |l
[per (Tey(jys To(j)—1, Tso(j)—1) I

max
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( )

P (Tsy(j), Tso(j)—1, Tso(j—1) ||
+1oet (Tso(j)—1, Teo(j)—15 Teo(jy—1) |l

IN

max

[Per (Tey(j), Tey(jy—1,Tep(jy—1) ||
+[lper (Tea(j)—1> To(j)—15 Tsu(j)-1) |l

|
< |[per (T5u(j)flar]reu( H—15 Tey(j) ) |

per (Tsy(jy, Tso(j)—1, Tsojy—-1) Il
[1Per (Tew(j)s Teoj)—15Teo(j)—1) |
< lper (Tsp(j)—1: Teo(jy—1, Teo(j—1) || +&.

+ max

Thus,

o (Te Ts ,Ts ,
i [Per (Teg(jy, Ty )41, T jy+1) < l1per (T 1, Teugyy 1. Teat1) |+
||per (Tﬁn( s Leu(j)+1, Leu(jy+1 ol

Now from (10) and using the triangle inequality, we have

€36, = max{ Per (Tsy (), Tu(j), Tsu(j)) Per (Teg ) Tew(jy Tey(j)) }

PN

max Per (Tsy(jy, Tey(j), Tey(jy) + P (Tey(j), Tsy(j) Toy(jy)s
Per (Teg(j), T ), To(j)) + Per (T ), Teugj), Tey(j))

IA

o* Te 7']]:‘5 ,TE ),
Pc*(TﬁnuT%<>Ten<>)+max{p( (i) Tu(j) T9u()) }

Per (Tsp(jy, Tey(jy, Tey(j))

IA

Pe (Tsu( ) Teb( i) Teb( ))

+ max Pe(Tey(jy, Tu(jy+1, Tujyr1) + Per (Tsu(j)11, Tsu(j) T )
Per (To (), Teugjy1: Teujye1) + Per (Teugjy1, Tew(yy, Tey)
P+ (Tﬁn(.i) s Tey(j), Teﬂ(j))

+ max Per (Teg(jy, Ty )11, Tsu(j)41)s + max Per (Tsyjys Tyt Tsugjye1),
P+ (Tsn( ) Teu( )+17Teu(j)+1) pc*(Teu( ) Teu( )+17Teu( )+ 1)

PN

which implies that

€< = max{ [1Per (T () Tsugjys Tsu( )]s [1Per (Teg( ), Teyjy, Tey(j )H}

< "Pc*(Tﬁb(j)aTen(j)aTen(j))”"‘Hpc* (st(j)_l,?l“en() 1,T€U )H+8
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Hpc* (Tﬁu(j) ) Tsu(j)—i—l ) Tﬁu(j)—i—l ) ’ ‘;
’ ’pc* (Teu(j) ) Teu(j)—H ) Teu(j)—i—l ) ‘ |

+ max

Taking j — o and using (9), we have € < &, which is a contradiction. Hence {Ts,} and
{Te,} are Cauchy sequences in T'(.%) and T(%) with regard to .o/ respectively. Since T(.%)
and T(¥) are closed subset of a complete €*-o/'V-G-MS (V, 7, p), {Tsyp} and {Te,} are
convergent in T'(.%) and T(¥) respectively. Thus, there exist p € T(.%) and q € T(¥) such
that

(12) lim T's, =p and Ulim Tey, =q.
—>00

D—ro0

Since gggopc*(Tsn,Ten,Ten) =0,y = pc(p,q,q) =0, then, we have p =q. Asp € T(F)
and q € T(¥) it follows that p = q € T(#)NT(¥) and hence, T(.Z#)NT(¥4) # 0. Now,
since p € T(F) and q € T(¥), there exist s € .# and ¢ € 4 such that p = T(s) and
q = T(e). From Eq.(12), we ahve limy_,.. Ts, = p = T(s) and limy_,c. Ty, = q = T'(¢) and
hence, T(s) = T(¢). From condition (3.9.5), we have {sy};_; € % and {ep}5_; € ¥ with
o(Tsy, Tspr1, Ts911) = Ly B(Tey, Teyi1, Teysq) = Iy forall v and limy o Tsy =p=Ts €
T(%) and limy_ye Tey = q = Te € T(¥) then o(Tsy,, Ts, Ts) =1, B(Tey, Te,Te) = I,.
Then from condition (A) in definition (3.8), we have

per (p,RQ(s,¢),Q(s,¢)) = pe (0, Tepy1, Teyy1) +per (Teyy1,Q(s,¢),Q(s,¢)).

Letting v — oo, we get

Per (P, Q(s,¢), Q(s,¢)) = limye0 P (Teo 11, R(s,¢),Q(s,¢)).

It follows that @) is a generalized twisted (¢, B)-(¢, £)-contractive mapping of T-coupling type

(i), then, we have

? (P (p, Q(s,¢),Q(s,¢)))

< lim ¢ (per (Q(50:0). Qs.6). Q1))
< lim o(Tsy. T5. T5)(Teo, Te. Te)9 (e (Qsu,50). Q5:0). Q5.0)))
< lim ¢ (@ Wi(so.c0.5.€)a) — (6" M(s0.50.5.6)a)

< 1im ¢ (a*M(sy, ¢o, 5, ¢)a)

p—veo
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. . per (Tsy, Ts, Ts),
< lim ¢ [ a"max a
e pe+ (Tey, Te, Te)

«(Ts, Ts, Ts),
< @ | a*max per ) al =0g,.
per (Te, Te, Te)

Likewise, if we assume that () be a generalized twisted (a,3)-(¢, £)-contractive mapping
of T-coupling type (ii) and (iii) with respect % and ¢, we obtain the same result. Hence,
P (9, Q(s,¢),Q(s,¢)) =0, implies QY(s,¢) = p. Similarly, we can prove Q(e,s) = q . Thus,
Q(s,e) =p =Ts and Q(e¢,s5) = q = Te.Therefore, (s,¢) € .F X ¥ is the coupled coincidence
point, and (T'(s), T(e)) is the coupled point of coincidence of @ and T. Now, we will show
that the coupled point of coincidence of () and T is unique. Let (s*,¢*) be another coupled
coincidence point of ( and T'. So, we will prove that T'(s) = T'(s*) and T'(e) = T'(¢*). Suppose
T(s) # T(s*) or T(e) # T(e*), from condition (3.9.6), we have a(Ts, T's*, Ts*) = I, and

B(Te, Te*, Te*) = I.,. Then from contraction type (i) of condition (A)

@ (P (T(s), T(s7), T(s")))

= 0 (pc* (Q(sv 2),@(5*, 6*), Q(5*a 2*»)

< o(Ts, Ts*, Ts*)B(Te, Te*, Te*)@ (per (RQ(s,¢), Q(s™,¢"),Q(s*,¢¥)))
< @ (a*M(s,e,5%,¢")a) — @ (a*M(s,e,5%,¢")a)
< @ (a*M(s,e,5%,¢")a)

. pe (Ts, Ts*, Ts*),
= @ | a"max a
Per (Te, Te*, Te*)

Likewise, if we assume that contraction type (ii) of (B) and (iii) of (C) , we obtain the same

result. Hence, we conclude that

|lpe (T's, Ts*, Ts*) |,

« (Ts, Ts*, Ts*
max S Ha||2max ||pc( ) ) )H7

Ipe- (Te, Te*, Tev) | Iper (Te, Te*, Te*) |

e (T's, Ts*, T's™) ||,
[[pex (Te, Te*, Te*) |

< max



TWISTED COUPLING FRAMEWORKS IN C*-ALGEBRA VALUED G-METRIC SPACES 17
which is a contradiction, unless T'(s) = T'(s*) and T(e¢) = T'(e*). Using contraction type (i)
of (A), (ii) of (B) and (iii) of (C) we get that T'(s) = T'(e). Thus, (T'(s),T(s)) is the unique
coupled point of coincidence of the mapping () and T with respect to .# and ¢. Now, we show
that (3 and T have unique coupled common fixed point. For this let T'(s) = 3, then, we have
3="T(s) = Q(s,s), by the weakly compatibility of (3 and T, we have
T; =T (T(s)) = TQ(s,s) = Q(Ts, Ts) = Q(3,3). Thus, (T'(3),T(3)) is coupled point of
coincidence of () and T. By the uniqueness of coupled point of coincidence of @ and T, we
have T'(3) = T(s). Thus, we obtain 3 = T'(3) = Q(3,3). Therefore, (3,3) is the unique strong
coupled common fixed point of ) and T.
Corollary 3.10: Let .# and ¢ be a nonempty closed subsets of a complete ¢*-o7/V-G-MS
(V.o ,pe), T:V — VisaSCC-map on V (with respect to .% and ¥), and a coupling
@ : V> — V is said to be a (¢, &)-contractive mapping of T-coupling type (i) or (ii) or (iii)

(with respect to .% and ¢) and assume that

(3.10.1) T(Z)NT(¥) #0and Q(F x9) CT(9), QY x F) CT(F);
(3.10.2) @ and T have a CCIP in .%# x ¥,
(3.10.3) {Q, T} is @-compatible pairs,

Then @ and T have a unique SCCFP in % x ¥.

proof The proof follows from Theorems (3.9) by taking a(Ts, Ts, Te) =1,
B(Tv,Tv, T3) = 1, in contraction type (i), (ii) and (iii) of definition (3.8).
Corollary 3.11: Let .# and ¢ be a nonempty closed subsets of a complete -/ V-G-MS
(V,o , pe+) with . F N # 0, let a coupling @ : V> — V satisfying (¢, )-contractive mapping
of type (i) or (i) or (iii) (with respect to .# and ¢). Then () has a USCFP in .# x 9.

proof Using the identity map on V w.r.t &/ and T = I/, we can determine from Corollary
(3.10) that () has a USCFP.
Example 3.12: Let V = M, (C) and &/ = M (C) with identity /,,,. Define the ¢*-27/ V-G-MS,
per 2 V2 = o, by per(X,Y,Z) = | X — Z||ly + ||Y — Z||ly, forall X,Y,Z €V where ||-| is
the operator norm. Let # ={X € V: [|[ X —A¢|| <r} and ¥ ={Y € V: ||[Y +By|| < r} be closed

nonempty subsets of V for some fixed matrices Ay, By € V and radius > 0, so that 0 € F N¥Y
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when Ag = By = 0. Define the mappings T and QQ as T(X) = %X, QRX,Y) = %(X-i—Y). Let

the altering distance functions ¢ and g be as @(r) =1, (1) = 5.

Define variable functions o and f3 as

( 1

Iy+-X-Z|l,ifX,Ye F ZeY
a(X,Y,Z) = 4 :

\ 0. otherwise

( 1

Ly+-|Y —Z|lyifX,)Y €9, Z F
B(X,Y.Z) = 4

\ 0. otherwise .
Choose:

e For contraction type (i): a = 31,7, with ||a|| < 1.
e For contraction type (ii): a = %IQ{, b= %Id, with 0 < [|b|| < 1.

e For contraction type (iii): a = %I%, b =2I,, with ||b|| > 1.

Then all conditions of Theorem 3.9 are satisfied and hence, by Theorem 3.9, @) is a generalized
twisted (¢, B)-(¢, £)-contractive mapping of T-coupling type (i), (ii) and (iii) with respect to
% and ¢4, and the USCCEFP is the zero matrix: X* =Y*=0,,.

Example 3.13: Let V =R and let o = R, which is trivially a commutative unital C*-algebra.
Define the G-metric: p.«(x,y,z) = |x—z|+|y—z|,forall x,y,z € R. Let # =[0,2] and 4 = [1, 3]
be the nonempty closed subsets of V.Define the mappings T(x) = 3x and Q(x,y) = $(x+).

Let the altering distance functions @(¢) =¢, (t) = %. Then

e T(#)=10,1], T(¥) =10.5,1.5] = T(Z)NT(¥)=10.5,1] #0.
e Q(F x¥)C[0.5,2.5]CT(¥) and Q(¥Y x .#) C T(.Z) hold for selected values.
e () and T are continuous and commute at the fixed point = they have a CCIP.

e {Q, T} is w-compatible due to continuity and symmetry.

Now, we verify the contraction condition of type (i), (ii), and (iii) with « = =1, = 1. Let

x,y€ .F,u,ve9. Then

X+v u+ty

pc*((Q(x,v),(Q(x,v),@(u,y)) =2 2 )

‘: x+v—u—yl|.

Let a = % € o, then M(x,vu,y) = max{|T(x)—T(u)],|T(v)—T()|} =

smax {|x—ul,|v—y|}. So the contraction condition becomes
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1
ety —u—y| < 5max{lx—ul,|[v-y[},

which holds for all x,y € .7, u,v € ¢ due to the averaging nature of () and scaling of T. Hence,

all conditions of Corollary 3.10 are satisfied, and the unique SCC fixed point is: x* = y* = 0.

4. APPLICATIONS

4.1. Application to Functional Equations.

In this section we denote by V = L*(&) the space of essentially bounded measurable func-
tions on & and .7 = L*(&) where & is Lebesgue space. The set of bounded linear operators on
Hilbert space .7 denoted by L(5¢) is C* algebra with operator norm:
|A]| = sup,es||(Aa, Aa)||. We equip V with p+ : V3 — L(2#), which is ascertained by
Per(P,t,q) = Mjy_g|4c—q for all p,v,q € V, where My : L(#) — L(J) be ascertained
by My (o) = ¢ o o composit of these operators where o € 7 and ¢ € L(). Therefore,
(V,L(5€),pc) is a complete €*-o7 VGMS .

In this setting, we discuss the problem of dynamic programming related to multistage
process[21, 22]. Indeed, this problem reduces to the problem of solving the system of func-

tional equations

s(0) =sup,cq {f(v,u) + 7 (0,u,5(6(v,u)),e(0(v,u))}, €&
e(v) = sup,cq {f(o,u) + 7 (0,u,e(0(v,u)),s5(0(v,u))}, 0 €&

(13)

where 0: Ex P = &,§:Ex P —Rand # : & x 7 xR* = R.

Specifically, we will prove the following theorem.

Theorem 4.1: Let 7 : & x 2 xR*> - R and §: & x 2 — R be two bounded functions
and let 3 : V2 — V be as Q (s,¢) (b) = sup,c {f(v,1u) +# (0,u,5(0(b,u)),e(8(b,u))}, and
T:V — V be as T(s)(v) = sup,cqp {f(v,u) + 2 (v,u,5(6(v,u)),e(0(v,u))} for all s,e € V

and v € &. Assume that there exists 17, : V3 — o7, such that

5,5.¢) =0 Te, Te, Ts) =0
(i) n ) =0 = g ) =0 where 5,¢ € V,
{(s,5,¢) = 0y §(Te, Te, Ts) =0,y
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(ii) let # and ¢ be a nonempty closed subsets of V such that 5,3 € %, e, €94 and 1 €
(0,1), then

[\

1 (0,1,5(6). ¢(b)) — (0,1, 5(b), 3(6))| < me{waxquxw}
IT(e)(6) - T()(B)]

(iii) if {s,}_; € .F and {v,} | €4 with n(Ts,, Ts,11,Tspt1) = 0y
C(To,, Toyt1, Toyyy) = 0y for all nand limy, e Ts, = Ts € T(.%) and
lim, e T, = To € T(¥) then n(Ts,, Ts, Ts) = 0, (To,, To, To) > 0,.

(iv) 380 € F and ¢g € ¢ such that n(Tsg, Tep, Teg) = 0, and {(Teq, Tsp, Tsg) = 0.

Then the system of functional equations (13) have a bounded solution.

Proof Note that (V,L(7),p.+) is a complete €*-o7/ VGMS. Let € > 0., be an arbitrary
and 6,3 € Z, ¢,r € ¥ such that n(s,r,r) = 0, and {(e,3,3) = 0, , then there exist uj,u; € 2
such that

Q (s,¢) (0) < f(o,u1) + 2 (b,u1,5(0(b,uy)),e(0(b,uy))+¢
Q (X,ﬁ) (U) ~ f(uauZ) +%(Uau2>x(9(b7u2))73(9(bvu2)) tTE&
Q(s,¢) (v) = f(0,u2) + 2 (0,u2,5(0(b,12)),e(6(b,u2))

Q(x,3) (0) = f(o,u1) + 22 (0,u1,2(0(b,u1)),3(6(b,u1)).

Then, we conclude that

Q(s,¢)(0) —Q(r,3) (v)

< (0,u1,5(0(b,u1)),e(0(b,u1)) — 2 (v,u1,2(0(b,u1)),5(0(b,u1)) + €

IN

|2 (0,u1,8(0(b,uy)),e(0(b,uy)) — 2 (0,u1,£(0(b,uy)),3(0(b,uy))|+€

! IT(s)(b) — T (x)(b)]|
—max + €
2 IT(e) (6) — T(3)(b)]|

IN

and similarly,
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Since € > 0. is arbitrary, then

0Q(s,0)(0) ~ Qe,3) (0)] < gmM{T“”“T“ﬂw}.
IT(6)(6) ~T()0)]

Now, consider

per (R (s,¢),Q(r,3), Q(5,3)) = Mpgs,e)-Qes))

‘We obtain that

Hpc*(Q (572);Q(2C,5)7Q(25,5))H = |Zl'|1p1<M (2|R(s,e)(0)—Q(xr.3)(v h h>
= sup [ 2/Q(s,e) (v) —Q(x.3) (v)[A(5)h(g)dg
lnf}=1

< 2 wp h@y%mﬂ{T@wamw>m}
=t IT()) - TGOl

< 5 p/hg%m{2T®@—mmmw}.
1Al 2||T(¢)(b) —T(3)(b)]]-»

By setting a = t1p(2()), thena € B(L?*(&)) so that ||a]| = 1 < 1, then it follows that

IPMT@WMmTQD}
oo (T(6), T6), TGN |
Let ¢,0: .9/, — o/ as ¢(x) =xand @(x) =5 ¥V x € o/;. For ¢ € & the following is defined:
Loy ifn(x(5),2(6),5(¢)) = O

[P (R (5,¢), Q(x,3), R (x,3))l] %azmaX{

a?ﬁ V= JZ{'F as a(x7x75) - {

0. Otherwise
1 if ,e(g),e =0
and B(3,¢,¢) = 7 $(3(6).¢(6).e()) 7 implies that
0, Otherwise
1 if n(Ts(g), Tr(g), T =0
o(Ts, T, Te) = { 1(Ts(6), Te(e), Ta(6)) = 0er
0. Otherwise
1 if §(Te(g), Te(g), T =0
B(Te, Te, T3) = o S(Telg) Tele). Ts(c)) = 0 . Consequently, we have
0. Otherwise

OC(TB,TE,TQ)[;(TU,TU,Tj)(p (pc*(Q(57U)7Q(57U)3Q<e75)))

= @ (a"M(s,0,¢,3)a) — @2 (a*M(s,v,¢,3)a)
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that is, @Q is Generalized twisted (¢, B)-(¢, £)-contractive mapping of T-coupling type (i).
Thus, by Theorem (3.9), @ and T have a common fixed point, that is, the system of functional

equations (13) has a bounded solution.

4.2. Application to Homotopy. In this part, we examine the possibility that homotopy theory
has a unique solution.

Theorem 4.2: Let (V,.7,p.+) be complete €*-o/ VGMS, (A1,A;) and (A,A;) be an open
and closed subset of V such that (Aj,Ay) C (A1,Ay) with Aj N Ay # 0.

Suppose # : (A1,Ay) U (Az,Ar) x [0,1] — V be an operator with following conditions are
satisfying,

i) s # H(s,¢,1), e # 5 (e,5,1), for each s € dA|, e € dA; and 1 € [0, 1] (Here dA; UJA; is
boundary of Aj UA; in V);

ii) for all 5,5 € Ay, e,r € Ay, 1 €[0,1] and @, @ € Qand a € o7 with ||a|| < 1 such that

Pc*(&%?)a "
@ (pe (H(s,e,1),5(x,5,1),5€(x,3,1))) = ¢ | amax a
Pe(¢,3,3)
pc*(57;7;)7 *
— 4§ | amax a
Pe(¢,3,3)

iii) AM € o} 3 per (H(5,¢,1), 7 (5,¢,0), 7 (5,¢,0)) < ||M|||t — £| for every 5 € Ay, ¢ € Ay,
1,0 €10,1]
Then #(.,0) has a coupled fixed point <= (., 1) has a coupled fixed point.
Proof Letthe set B = { 1€[0,1]: #(s,e,1) =5, (e,5,1) = ¢ for somes € Aj,e €Ay } :
Suppose that .77 (.,0) has a coupled fixed point in A X Ay, we have that (0,/,0,/) € B xB. So
that B # 0. Now we show that B is both closed and open in [0, 1] and hence by the connectedness
B =1[0,1]. As aresult, (.,1) has a coupled fixed point in A} x A,. First we show that B
closed in [0,1]. To see this, Let {iy},_; € B with i, =i € [0,1] as v — co. We must show

that i € B. Since i, € B for v =0,1,2,3,---, there exists sequences {s,} C Ay, {ey} C Ap with
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Sp = %(50,?0,19), ey = %(eu,ﬁg7iu). Consider

Pc*(5n>eu+17%+l)
= P (%(5137en7iu),%(%H,ﬁnﬂ»in+1)7%<en+l»5n+lain+l))

Per (F(Sp,e0,10), I (Cot1,5041510), 7 (Co41,50+1,10))
+Pe (0 (eu41,50+1510), 7 (Co11,5041,1041), 7 (€01, 5041,10+1))

—_< Pc+ (%(51‘17ebuib)7%<20+1750+17i0)7%(80+17sb+1Jib))+ HM|||10 _it)+l|~

Letting v — oo, and applying @ properties, we get

lim @ (e (S0, €011, €v1))

= lim @ (pe+ (H (50, e0,10), 7 (€0 41,504 1,10), 7 (Co11,5011,10)))

p—oo

Pct (507 Co+1, et)-l-]) y
¢ | amax a

Pe (eb,sb—H 75D+l)

*

< lim
v—ro0
pC*(EU?eU-HaeD-H)a %

—§ | amax a

Pe+ (€0, 50+1,50+1)

Since ¢, & are non-decreasing continuous functions and ||a|| < 1, we conclude that

||pc* (50760—}—1760—0—1) H; HPC* (5U7eb+laeb+1) H7

lim max < lim ||a||* max

e [P (€0, 5041, 50+1) || e ||pe (€0, 80+1,50+1) ||

So that

lim P+ (Sp, epi1, e =0 -and lim p (ey,5p.11,5 =0 .
p%oopc ( vy to+1, UJrl) of p%wpc ( vs30+1, U+l) of

By following similar steps, we can establish the result 1i_r>n P+ (Sp, ey, ep) = 0 7 and
p—reo ’

lim p.+ (ey,5p,5p) =0 7- Now for u > v, by use of rectangle inequality , we have
p—reo ’

Pe+ (Su,5u,5y)

= P (50,5u+1,50+1) + P (5n+1,5n+2,50+2) + . P (5u—2,5u—1,5u—1)
+Pe (Su—1,5u,5u)
= P (507 o, en) + Pc+ (9075n+175n+1) + Pe+ (5U+1aeb+lveb+l)

+Pc+ (€o4+1,5042,5042) - - - + Per (Su—2, eu—2,¢4-2)
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+Pc (eu7275u71;5u71) + Pe+ (511717 euflaeufl) + Pe+ (eu7175u75u) — 0g asv,u — oo,

Hence {s,} is a Cauchy sequence in ¢*-o/V-G-MS (V,./,p.+). Similarly we can show
that {e,,} is CS in (V,o7,p.-) and by the completeness of (V,.7,p ) , there exist p € A
and q € A, such that lim, .5, = p and limy ... ¢, = q. Since Uli_r>130pc* (Sp,¢p,0p) =0y —
Pe+(p,4,q) = 0, then, we have p = q.

Asp € Aj and q € A, it follows that p = g € A; N A; and hence, A| N A, # 0. Now, we have

(P(pC* (p’%(p7q7l)7%(p7qal))) = lim (P(pC* (%(507eb7i)7%(p7qvi)v‘%(l%qai)))

P—roo

Per (S0,p.0), |
a

¢ | amax
*(€p,(,
~ nhm Pe+ (¢0,9,9) —0,
- et (50,0:0), |
— 4§ | amax a
Pex (emq»CI)

It follows that ¢ (p,q,i) = p. Similarly, we can prove 7 (q,p,i) = q. Thus i € B. Hence B is
closed in [0, 1].

Let ip € B, then there exist 59 € Ay, ¢o € Ay with s = J#(s0, ¢, i),
¢o = J(¢0,50,10). Since (A1,A) is open, then there exist » > 0 such that B, . (so,r) C A; and
By (¢0,7) € Ay. Choose i € (ig — €,ip + &) such that [i —ig| < m < £, then for
5 € By, (50,7) = {5 € A1 /pe(5,50,50) = 7+ Per(50,50,50) }

and ¢ € Bp .. (¢0,7) = {¢ € Ay/pc+(e,¢0,¢0) = 7+ Pcr (20, €0, ¢0) }. Now we have
P (F(s,¢,1),80,50) = Pe (FE(s,¢,1), 75 (50, ¢0,10), 75 (50, ¢0,10))
j Pcx (‘%(57eai>7%(501eOai)w%(ﬁanO»i))

+pe+ (F€ (80, €0,1), 75 (50, €0, 10), 75 (50, €0,10))

= P (H(s,0,1), Hp(50, 00, 1), Hp (50, 20,1)) + T

Letting b — oo and applying ¢ properties, we obtain

QD(PC* (%(57870750750))
= ¢(pc* (%(57eai)7%<50720707%(50760,0))
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* (6,560,580 + (5,560,590
< @ | amax Pe- (5,50,50) a* | — @ | amax pe: (5,50,50) a*

pe+ (e,¢0,¢0) pe+ (¢,¢0,¢0)

Since @, & are continuous and non-decreasing, we obtain

Pe+ (%(57670’50750)7 Pc* (5550750)7
max =< amax a

pC* (%(e>57i)7 €0, eO) pC* (9, €0, 30)

*

which implies that

Hpc* (575()’50) ||7

« (J(s,¢,1),80,5
Hpc ( ( s 7): 0, O)||7 < ||aH2maX

Hpc* (%(8,5,0,60,20)“ ||pC* (eveoveO)H

r+1|per (s0,50,50) I
< max

r=+||pe+ (e0,¢0,¢0) ||

Thus for each fixed i € (ig — €,ip +€), J(.,1) : Bp . (50,7) = Bp_. (50,7),

J(.,1) 1 Bp,.(e0,r) — Bp_.(¢0,r). Since also (ii) holds and ¢, is continuous and non-
decreasing, then all conditions of Theorem 4.2 are satisfied. Thus we conclude that J7(.,1)
has a coupled fixed point in A| x A,. But this must be in Aj X A; since (i) holds. Thus, i € B for
any i € (ip — €,ip+ €). Hence (ip — €,ip+ €) C B. Clearly B is open in [0, 1]. For the reverse

implication, we use the same strategy.

CONCLUSION

This work concludes with the successful establishment of SUCCFP theorems for twisted (¢, 3)-
(@, ) -contractive T-Coupling SCC-maps in ¢*-oZ/VGMS. The results enrich fixed point
theory and demonstrate practical relevance through applications to functional equations and

homotopy theory, paving the way for future mathematical exploration.
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