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Abstract. A new concept of c-distance in cone metric space has been introduced recently in 2011. Many

results in the area of fixed point theory have been proved by different authors using c-distance. In this

paper we extend and generalize some coupled coincidence point theorems using functions of two variables

taking values in [0, 1) as coefficients in various contractive conditions.
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1. Introduction

Fixed point theory has variety of interesting applications in disciplines such as chem-

istry, economics, physics, biology and engineering. In dynamical systems it is used to

prove several existence and stability results for the strict fixed points of a set-valued

dynamic system F, as well as some conditions that guarantee each dynamic process con-

verges and its limit is a strict fixed point of F. In theoretical economics, such as general

equilibrium theory, there comes at point where one needs to know whether the solution

to a system of equations necessarily exists; or, more specifically, under which conditions

will a solution necessarily exist. The mathematical analysis of this question usually relies
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on fixed point theorems. In engineering, fixed point technique has been used in areas like

image retrieval and signal processing. In game theory it is used to estblish the existence

of Nash equilibrium.

The Banach Contraction Principle is the basic tool in this direction. Due to simplicity

and usefulness of this principle, it has become a very important tool in solving the exis-

tence problems in many branches of non-linear analysis. Ran and Reurings [26] extended

the Banach contraction principle to metric spaces endowed with a partial ordering, and

they gave application of their results to matrix equations. In [23] Nieto and López ex-

tended the result of Ran and Reurings [26] for non-decreasing mappings and applied their

results to get a unique solution for a first order differential equation.

In 2007, Huang and Zhang [17] first introduced the concept of cone metric space. Cone

metric space is a generalization of metric space where each pair of points is assigned to

a member of a real Banach space having a cone. They also established the existence of

fixed point theorems to cone metric spaces. For more study on fixed point theorems in

cone metric spaces see [5, 18, 33, 34, 16, 4, 3, 2, 1, 19, 25, 30, 10, 24].

Bhaskar and Lakshmikantham [8] introduced the notion of a coupled fixed point of a

mapping F : X×X → X. They established some coupled fixed point results and applied

their results to the study of existence and uniqueness of solution for a periodic boundary

value problem. For more results on coupled fixed point theorems see [15, 22, 27, 28, 31,

9, 11].

Lakshmikantham and Ćirić [22] introduced the concept of coupled coincidence points

and proved coupled coincidence and coupled common fixed point results for mappings

F : X ×X → X and g : X → X satisfying nonlinear contraction in ordered metric space.

The studies of asymmetric structures and their application in mathematics are impor-

tant. Recently Cho et. al. [10](also see [35]) introduced a new concept of c-distance in

cone metric spaces which is a cone version of w-distance of Kada et. al. In [29], Shatanawi

et. al. proved some coincidence point theorems on cone metric spaces using c-distance for

weak contraction mappings satisfying mixed g-monotonicity. In this paper we establish

the existence of coupled coincidence point for mappings satisfying contractive conditions
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having functions taking values in [0, 1) as coefficients and extend the work of Shatanawi et.

al. [29] who used scalar coefficients. For more study of related work see [6, 7, 12, 13, 14].

2. Preliminaries

Throughout this paper, (X,v) denotes a partially ordered set with partial order v.

Definition 2.1. ([8]) A mapping F : X × X → X is said to have mixed monotone

property if for any x, y ∈ X

(1)
x1, x2 ∈ X, x1 v x2 =⇒ F (x1, y) v F (x2, y),

y1, y2 ∈ X, y1 v y2 =⇒ F (x, y1) w F (x, y2).

Definition 2.2. ([22]) A mapping F : X × X → X is said to have mixed g-monotone

property if for any x, y ∈ X

(2)
x1, x2 ∈ X, gx1 v gx2 =⇒ F (x1, y) v F (x2, y),

y1, y2 ∈ X, gy1 v gy2 =⇒ F (x, y1) w F (x, y2).

Definition 2.3. ([8]) An element (x, y) ∈ X × X is called a coupled fixed point of the

mappings F : X ×X → X if F (x, y) = x and F (y, x) = y.

Definition 2.4. ([22]) An element (x, y) ∈ X ×X is called a coupled coincidence point

of the mappings F : X ×X → X and g : X → X if F (x, y) = gx and F (y, x) = gy.

Definition 2.5. ([22]) Let F : X ×X → X and g : X → X. The mappings F and g are

said to commute if gF (x, y) = F (gx, gy) for all x, y ∈ X.

In [17], cone metric space was introduced in the following manner: Let (E, ‖.‖) be a

real Banach space and θ denote the zero element in E. Assume that P is a subset of E.

Then P is called a cone if and only if

(i) P is non empty, closed and P 6= {θ},

(ii) If a, b are nonnegative real numbers and x, y ∈ P then ax+ by ∈ P .

(iii) x ∈ P and −x ∈ P implies x = θ.
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For any cone P ⊆ E and x, y ∈ E, the partial ordering � on E with respect to P is defined

by x � y if and only if y− x ∈ P . The notation of ≺ stand for x � y but x 6= y. Also, we

used x� y to indicate that y− x ∈ intP . It can be easily shown that λ.intP ⊆ intP for

all λ > 0 and intP + intP ⊆ intP . A cone P is called normal if there is a number K > 0

such that for all x, y ∈ E, θ � x � y implies ‖x‖ ≤ K‖y‖. The least positive number K

satisfying above is called the normal constant of P . In the following we always suppose

E is a real Banach space, P is a cone in E with intP 6= φ and � is partial ordering with

respect to P .

Definition 2.6. ([17]) Let X be a non empty set and E be a real Banach space equipped

with the partial ordering � with respect to the cone P . Suppose that the mapping

d : X ×X → E satisfies the following condition:

(i) θ ≺ d(x, y) for all x, y ∈X with x 6= y and d(x, y) = θ ⇔ x = y

(ii) d(x, y) = d(y, x) for all x, y ∈ X

(iii) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 2.7. ([17]) Let (X, d) be a cone metric space, {xn} be a sequence in X and

x ∈ X.

(1) For all c ∈ E with θ � c, if there exists a positive integer N such that d(xn, x)� c

for all n > N then xn is said to be convergent and x is the limit of {xn}. We

denote this by xn → x.

(2) For all c ∈ E with θ � c, if there exists a positive integer N such that d(xn, xm)�

c for all n,m > N then {xn} is called a Cauchy sequence in X.

(3) A cone metric space (X, d) is called complete if every Cauchy sequence in X is

convergent.

Lemma 2.8. ([17]) Let (X, d) be a cone metric space, P be a normal cone with normal

constant K, and {xn} be a sequence in X. Then

(i) the sequence {xn} converges to x if and only if d(xn, x) → 0 (or equivalently

‖d(xn, x)‖ → 0),
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(ii) the sequence {xn} is Cauchy if and only if d(xn, xm)→ 0 (or equivalently ‖d(xn, xm)‖ →

0).

(iii) the sequence {xn} (respectively, {yn}) converges to x (respectively, y) then d(xn, yn)→

d(x, y).

Lemma 2.9. ([33]) Every cone metric space (X, d) is a topological space. For c� 0, c ∈

E, x ∈ X, let B(x, c) = {y ∈ X : d(y, x) � c} and β = {B(x, c) : x ∈ X, c � 0}. Then

τc = {U ⊆ X : for all x ∈ U, there exists Bx ∈ β, with x ∈ Bx ⊆ U} is a topology on

X.

Definition 2.10. ([33]) Let (X, d) be a cone metric space. A map T : (X, d)→ (X, d) is

called sequentially continuous if xn ∈ X, xn → x implies Txn → Tx.

Lemma 2.11. ([33]) Let (X, d) be a cone metric space, and T : (X, d) → (X, d) be any

map. Then, T is continuous if and only if T is sequentially continuous.

Let (X, d) be a cone metric space and X2 = X×X. Define a function ρ : X2×X2 → E

by ρ((x1, y1), (x2, y2)) = d(x1, x2)+d(y1, y2) for all (x1, y1) and (x2, y2) ∈ X2.Then (X2, ρ)

is a cone metric space [21].

Lemma 2.12. ([21]) Let zn = (xn, yn) ∈ X2 be a sequence and z = (x, y) ∈ X2. Then

zn → z if and only if xn → x and yn → y.

Next we give the notation of c-distance on a cone metric space which is generalization

of w-distance of Kada et. al. [20] with some properties.

Definition 2.13. ([10]) Let (X, d) be a cone metric space. A function q : X ×X → E is

called a c-distance on X if the following conditions hold:

(q1) θ � q(x, y) for all x, y ∈ X,

(q2) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X,

(q3) for each x ∈ X and n ∈ N, if q(x, yn) � u for some u = ux ∈ P , then q(x, y) � u

whenever {yn} is a sequence in X converging to a point y ∈ X,

(q4) For all c ∈ E with θ � c, there exists e ∈ E with θ � e such that q(z, x) � e and

q(z, y)� e imply d(x, y)� c.
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Remark 2.14. The c-distance q is a w-distance on X if we let (X, d) be a metric space,

E = R, P = [0,∞) and (q3) is replaced by the following condition: for any x ∈ X,

q(x, .) : X → R is lower semicontinuous. Moreover, (q3) holds whenever q(x, .) is lower

semi-continuous. Thus, if (X, d) is a metric space, E = R, and P = [0,∞), then every

w-distance is a c-distance. But the converse is not true in the general case. Therefore,

the c-distance is a generalization of the w-distance.

Example 2.15. ([32]) Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0,∞) and define

a mapping d : X ×X → E by d(x, y) = ‖x − y‖ for all x, y ∈ X. Then (X, d) is a cone

metric space. Define a mapping q : X ×X→ E by q(x, y) = y for all x, y ∈ X. Then q is

a c-distance on X.

Example 2.16. ([32]) Let (X, d) be a cone metric space and P a normal cone. Define a

mapping q : X ×X → P by q(x, y) = d(x, y) for all x, y ∈ X. Then, q is c-distance.

Example 2.17. ([32]) Let E = C1
R[0, 1] with ‖x‖1 = ‖x‖∞ + ‖x′‖∞ and P = {x ∈ E :

x(t) ≥ 0, t ∈ [0, 1]}. Let X = [0,+∞)(with usual order), and d(x, y)(t) = ‖x − y‖ϕ(t)

where ϕ : [0, 1] → R is given by ϕ(t) = et for all t ∈ [0, 1]. Then (X, d) is an ordered

cone metric space(see [10] Example 2.9). This cone is not normal. Define a mapping

q : X ×X → E by q(x, y) = (x+ y)ϕ for all x, y ∈ X. Then q is a c-distance.

Example 2.18.([32]) Let (X, d) be a cone metric space and P a normal cone. Define a

mapping q : X ×X → P by q(x, y) = d(u, y) for all x, y ∈ X, where u is a fixed point in

X. Then q is a c-distance.

Lemma 2.19. [10] Let (X, d) be a cone metric space and q be a c-distance on X. Let{xn}

and {yn} be sequences in X and y, z ∈ X. Suppose that un is a sequence in P converging

to θ. Then the following hold:

(1) If q(xn, y) � un and q(xn, z) � un, then y = z.

(2) If q(xn, yn) � un and q(xn, z) � un, then yn converges to z.

(3) If q(xn, xm) � un for m > n, then {xn} is a Cauchy sequence in X.

(4) If q(y, xn) � un, then {xn} is a Cauchy sequence in X.
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Lemma 2.20.[29] Let (X, d) be a cone metric space, and let q be a c-distance on X. Let

{xn} be a sequence in X. Suppose that {αn} and {βn} are sequences in P converging to

θ. If q(xn, y) � αn and q(xn, z) � βn, then y = z.

Remark 2.21.([10])

(i) q(x, y) = q(y, x) may not be true for all x, y ∈ X.

(ii) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

3. Main results

Theorem 3.1. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete

cone metric space. Let q be a c-distance on X. Suppose F : X ×X → X and g : X → X

be two continuous and commuting functions with F (X×X) ⊆ g(X). Let F satisfy mixed

g-monotone property and k : X ×X → [0, 1) be any given function such that

(i) k(F (x, y), F (y, x)) ≤ k(gx, gy) for all x, y ∈ X and

(ii) q(F (x, y), F (u, v)) + q(F (y, x), F (v, u)) � k(gx, gy)(q(gx, gu) + q(gy, gv)) for all

x, y, u, v ∈ X with (gx v gu) and (gy w gv) or (gx w gu) and (gy v gv).

If there exist x0, y0 ∈ X satisfying gx0 v F (x0, y0) and F (y0, x0) v gy0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled

coincidence point (x∗, y∗).

Proof. Choose x0, y0 ∈ X satisfying gx0 v F (x0, y0) and F (y0, x0) v gy0. Since F (X ×

X) ⊆ g(X), one can find x1, y1 ∈ X in a way that gx1 = F (x0, y0) and gy1 = F (y0, x0).

Repeating the same argument one can find x2, y2 ∈ X in a way that gx2 = F (x1, y1) and

F (y1, x1) = gy2. Continuing this process one can construct sequences {xn} and {yn} in

X that satisfy gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn) for all n ≥ 0. It is asserted that

{gxn} is a nondecreasing and {gyn} is a nonincreasing sequence. That is

gxn v gxn+1 and gyn w gyn+1 for all n ≥ 0.(3)

For n = 0, (3) follows by the choice of x0 and y0. Let us assume that (3) holds good for

n = k, k ≥ 0. So we have gxk v gxk+1 and gyk w gyk+1. Mixed g-monotonicity of F now
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implies that

gxk+1 = F (xk, yk) v F (xk+1, yk) v F (xk+1, yk+1) = gxk+2.

Similarly we have gyk+1 w gyk+2. Thus (3) follows for k + 1. Hence, by induction, our

assertion follows. Now for all n ∈ N

q(gxn, gxn+1) + q(gyn, gyn+1) = q(F (xn−1, yn−1), F (xn, yn)) + q(F (yn−1, xn−1), F (yn, xn))

� k(gxn−1, gyn−1)(q(gxn−1, gxn) + q(gyn−1, gyn))

= k(F (xn−2, yn−2), F (yn−2, xn−2))(q(gxn−1, gxn) + q(gyn−1, gyn))

� k(gxn−2, gyn−2)(q(gxn−1, gxn) + q(gyn−1, gyn))

...

� k(gx0, gy0)(q(gxn−1, gxn) + q(gyn−1, gyn))

Put qn = q(gxn, gxn+1) + q(gyn, gyn+1) and k = k(gx0, gy0). Then, we have

qn = q(gxn, gxn+1) + q(gyn, gyn+1)

� kqn−1

...

� knq0

Let m > n ≥ 1. It follows that

q(gxn, gxm) � q(gxn, gxn+1) + q(gxn+1, gxn+2) + . . .+ q(gxm−1, gxm) and

q(gyn, gym) � q(gyn, gyn+1) + q(gyn+1, gyn+2) + . . .+ q(gym−1, gym).

Then we have

q(gxn, gxm) + q(gyn, gym) � qn + qn+1 + . . .+ qm−1

� knq0 + kn+1q0 + . . .+ km−1q0

� kn

1− k
q0(4)
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From (4) we have

q(gxn, gxm) � kn

1− k
q0(5)

and also

q(gyn, gym) � kn

1− k
q0(6)

Thus, Lemma 2.19.(3) shows that gxn and gyn are Cauchy sequences in X. Since X

is complete, there exists there exists x∗, y∗ ∈ X such that gxn → x∗ and gyn → y∗ as

n→∞. By continuity of g we get

lim
n→∞

ggxn = gx∗

and

lim
n→∞

ggyn = gy∗.

Commutativity of F and g now implies that

ggxn = g(F (xn−1, yn−1)) = F (gxn−1, gyn−1) for all n ∈ N

ggyn = gF (yn−1, xn−1) = F (gyn−1, gxn−1) for all n ∈ N.

Since F is continuous, therefore,

gx∗ = lim
n→∞

ggxn = lim
n→∞

F (gxn−1, gyn−1) = F ( lim
n→∞

gxn−1, lim
n→∞

gyn−1) = F (x∗, y∗)

gy∗ = lim
n→∞

ggyn = lim
n→∞

F (gyn−1, gxn−1) = F ( lim
n→∞

gyn−1, lim
n→∞

gxn−1) = F (y∗, x∗)

Thus (x∗, y∗) is a coupled coincidence point of F and g.

Corollary 3.2. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete

cone metric space. Let q be a c-distance on X. Let F : X × X → X be a continuous

function which satisfies mixed monotone property and k : X × X → [0, 1) be any given

function such that

(i) k(F (x, y), F (y, x)) ≤ k(x, y) for all x, y ∈ X and

(ii) q(F (x, y), F (u, v)) + q(F (y, x), F (v, u)) � k(x, y)(q(x, u) + q(y, v)) for all x, y, u, v ∈

X with (x v u) and (y w v) or (x w u) and (y v v).
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If there exist x0, y0 ∈ X satisfying x0 v F (x0, y0) and F (y0, x0) v y0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗, that is, F has a coupled fixed

point (x∗, y∗).

Proof. Take g = IX , the identity function on X in Theorem 3.1.

Theorem 3.3. Let (X,v) be a partially ordered set and suppose that (X, d) is a cone

metric space. Let q be a c-distance on X. Suppose F : X ×X → X and g : X → X be

two functions such that F (X ×X) ⊆ g(X) and (g(X), d) is complete subspace of X. Let

F satisfy mixed g-monotone property and k : X ×X → [0, 1) be any given function such

that

(i) k(F (x, y), F (y, x)) ≤ k(gx, gy) for all x, y ∈ X and

(ii) q(F (x, y), F (u, v)) + q(F (y, x), F (v, u)) � k(gx, gy)(q(gx, gu) + q(gy, gv)) for all

x, y, u, v ∈ X with (gx v gu) and (gy w gv) or (gx w gu) and (gy v gv).

Suppose X has the following property

(i) if a nondecreasing sequence {xn} → x, then xn v x for all n.

(ii) if a nonincreasing sequence {yn} → y, then y v yn for all n.

If there exist x0, y0 ∈ X satisfying gx0 v F (x0, y0) and F (y0, x0) v gy0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled

coincidence point (x∗, y∗).

Proof.Consider Cauchy sequences {gxn} and {gyn} as in the proof of Theorem 3.1. Since

(g(X), d) is complete, there exists x∗, y∗ ∈ X such that gxn → gx∗ and gyn → gy∗. By

(q3), (5) and (6) we have

q(gxn, gx
∗) � kn

1− k
q0 for all n ≥ 0 and(7)

q(gyn, gy
∗) � kn

1− k
q0 for all n ≥ 0(8)

Adding (7) and (8) we get

q(gxn, gx
∗) + q(gyn, gy

∗) � 2kn

1− k
q0 for all n ≥ 0
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Sequence {gxn} is nondecreasing and converges to gx∗. By given condition (i) we have,

therefore, gxn v gx∗ for all n ≥ 0 and similarly gyn w gy∗ for all n ≥ 0. Thus for all

n ∈ N

q(gxn, F (x∗, y∗)) + q(gyn, F (y∗, x∗))

= q(F (xn−1, yn−1), F (x∗, y∗)) + q(F (yn−1, xn−1), F (y∗, x∗))

� k(gxn−1, gyn−1)[q(gxn−1, gx
∗) + q(gyn−1, gy

∗)]

= k(F (xn−2, yn−2), F (yn−2, xn−2))[q(gxn−1, gx
∗) + q(gyn−1, gy

∗)]

� k(gxn−2, gyn−2)[q(gxn−1, gx
∗) + q(gyn−1, gy

∗)]

...

� k(gx0, gy0)[q(gxn−1, gx
∗) + q(gyn−1, gy

∗)]

= k[q(gxn−1, gx
∗) + q(gyn−1, gy

∗)]

� k
2kn−1

1− k
q0

=
2kn

1− k
q0

Then

q(gxn, F (x∗, y∗)) � 2kn

1− k
q0(9)

and

q(gyn, F (y∗, x∗)) � 2kn

1− k
q0(10)

By Lemma 2.20., (7) and (9), we have F (x∗, y∗) = gx∗. Similarly, by Lemma 2.20. , (8)

and (10) we have F (y∗, x∗) = gy∗. Thus (x∗, y∗) is a coupled coincidence point of F and

g.

Corollary 3.4. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete

cone metric space. Let q be a c-distance on X. Let F : X ×X → X be a function which

satisfies mixed monotone property and k : X × X → [0, 1) be any given function such

that
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(i) k(F (x, y), F (y, x)) ≤ k(x, y) for all x, y ∈ X and

(ii) q(F (x, y), F (u, v)) + q(F (y, x), F (v, u)) � k(x, y)(q(x, u) + q(y, v)) for all x, y, u, v ∈

X with (x v u) and (y w v) or (x w u) and (y v v).

Suppose X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn v x for all n.

(ii) if a nonincreasing sequence {yn} → y, then y v yn for all n.

If there exist x0, y0 ∈ X satisfying x0 v F (x0, y0) and F (y0, x0) v y0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗, that is, F has a coupled fixed

point (x∗, y∗).

Proof. Take g = IX , the identity map on X in Theorem 3.3.

Theorem 3.5. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete

cone metric space. Let q be a c-distance on X. Suppose F : X ×X → X and g : X → X

be two continuous and commuting functions with F (X×X) ⊆ g(X). Let F satisfy mixed

g-monotone property and k, l : X ×X → [0, 1) be any given functions such that

(i) k(F (x, y), F (y, x)) ≤ k(gx, gy) and l(F (x, y), F (y, x)) ≤ l(gx, gy) for all x, y ∈ X,

(ii) k(x, y) = k(y, x) and l(x, y) = l(y, x) for all x, y ∈ X,

(iii) (k + l)(x, y) < 1 for all x, y ∈ X and

(iv) q(F (x, y), F (u, v)) � k(gx, gy)q(gx, gu) + l(gx, gy)q(gy, gv) for all x, y, u, v ∈ X

with (gx v gu) and (gy w gv) or (gx w gu) and (gy v gv).

If there exist x0, y0 ∈ X satisfying gx0 v F (x0, y0) and F (y0, x0) v gy0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled

coincidence point (x∗, y∗).

Proof. Given x, y, u, v ∈ X with (gx v gu) and (gy w gv) or (gx w gu) and (gy v gv).

Then we have

q(F (x, y), F (u, v)) � k(gx, gy)q(gx, gu) + l(gx, gy)q(gy, gv))

and q(F (y, x), F (v, u)) � k(gy, gx)q(gy, gv) + l(gy, gx)q(gx, gu)

= k(gx, gy)q(gy, gv) + l(gx, gy)q(gx, gu)
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Thus q(F (x, y), F (u, v))+q(F (y, x), F (v, u)) � (k+l)(gx, gy)(q(gx, gu)+q(gy, gv)) where

(k + l) : X ×X → [0, 1) satisfies

(k + l)(F (x, y), F (y, x)) = k(F (x, y), F (y, x)) + l(F (x, y), F (y, x))

≤ k(gx, gy) + l(gx, gy) = (k + l)(gx, gy) for all x, y ∈ X.

Result follows by Theorem 3.1.

Corollary 3.6. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete

cone metric space. Let q be a c-distance on X. Suppose F : X × X → X be a given

function satisfying mixed monotone property and k, l : X × X → [0, 1) be any given

functions such that

(i) k(F (x, y), F (y, x)) ≤ k(x, y) and l(F (x, y), F (y, x)) ≤ l(x, y) for all x, y ∈ X,

(ii) k(x, y) = k(y, x) and l(x, y) = l(y, x) for all x, y ∈ X,

(iii) (k + l)(x, y) < 1 for all x, y ∈ X and

(iv) q(F (x, y), F (u, v)) � k(x, y)q(x, u) + l(x, y)q(y, v) for all x, y, u, v ∈ X with (x v u)

and (y w v) or (x w u) and (y v v).

If there exist x0, y0 ∈ X satisfying x0 v F (x0, y0) and F (y0, x0) v y0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗, that is, F has a coupled fixed

point (x∗, y∗).

Proof. Take g = IX the identity function on X in Theorem 3.5.

Corollary 3.7. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete

cone metric space. Let q be a c-distance on X. Suppose F : X ×X → X and g : X → X

be two continuous and commuting functions with F (X×X) ⊆ g(X). Let F satisfy mixed

g-monotone property and k : X ×X → [0, 1
2
) be any given function such that

(i) k(F (x, y), F (y, x)) ≤ k(gx, gy) for all x, y ∈ X,

(ii) k(x, y) = k(y, x) for all x, y ∈ X and

(iii) q(F (x, y), F (u, v)) � k(gx, gy)(q(gx, gu)+q(gy, gv)) for all x, y, u, v ∈ X with (gx v

gu) and (gy w gv) or (gx w gu) and (gy v gv).
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If there exist x0, y0 ∈ X satisfying gx0 v F (x0, y0) and F (y0, x0) v gy0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled

coincidence point (x∗, y∗).

Proof. Take k(x, y) = l(x, y) in Theorem 3.5.

Corollary 3.8. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete

cone metric space. Let q be a c-distance on X. Suppose F : X × X → X be a given

function satisfying mixed monotone property and k : X × X → [0, 1
2
) be any given

functions such that

(i) k(F (x, y), F (y, x)) ≤ k(x, y) for all x, y ∈ X,

(ii) k(x, y) = k(y, x) for all x, y ∈ X and

(iii) q(F (x, y), F (u, v)) � k(x, y)(q(x, u) + q(y, v)) for all x, y, u, v ∈ X with (x v u) and

(y w v) or (x w u) and (y v v).

If there exist x0, y0 ∈ X satisfying x0 v F (x0, y0) and F (y0, x0) v y0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗, that is, F has a coupled fixed

point (x∗, y∗).

Proof. Take k(x, y) = l(x, y) and g = IX in Theorem 3.5.

Theorem 3.9. Let (X,v) be a partially ordered set and suppose that (X, d) is a cone

metric space. Let q be a c-distance on X. Suppose F : X ×X → X and g : X → X be

two functions such that F (X ×X) ⊆ g(X) and (g(X), d) is complete subspace of X. Let

F satisfy mixed g-monotone property and k, l : X × X → [0, 1) be any given functions

such that

(i) k(F (x, y), F (y, x)) ≤ k(gx, gy) and l(F (x, y), F (y, x)) ≤ l(gx, gy) for all x, y ∈ X,

(ii) k(x, y) = k(y, x) and l(x, y) = l(y, x) for all x, y ∈ X,

(iii) (k + l)(x, y) < 1 for all x, y ∈ X and

(iv) q(F (x, y), F (u, v)) � k(gx, gy)q(gx, gu)+ l(gx, gy)q(gy, gv) for all x, y, u, v ∈ X with

(gx v gu) and (gy w gv) or (gx w gu) and (gy v gv).

Suppose X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn v x for all n.
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(ii) if a nonincreasing sequence {yn} → y, then y v yn for all n.

If there exist x0, y0 ∈ X satisfying gx0 v F (x0, y0) and F (y0, x0) v gy0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled

coincidence point (x∗, y∗).

Proof. It follows form Theorem 3.3 by the similar argument to those given in the proof

of Theorem 3.5.

Corollary 3.10. Let (X,v) be a partially ordered set and suppose that (X, d) is a

complete cone metric space. Let q be a c-distance on X. Suppose F : X × X → X be

a function satisfying mixed monotone property and k, l : X × X → [0, 1) be any given

functions such that

(i) k(F (x, y), F (y, x)) ≤ k(x, y) and l(F (x, y), F (y, x)) ≤ l(x, y) for all x, y ∈ X,

(ii) k(x, y) = k(y, x) and l(x, y) = l(y, x) for all x, y ∈ X,

(iii) (k + l)(x, y) < 1 for all x, y ∈ X and

(iv) q(F (x, y), F (u, v)) � k(x, y)q(x, u) + l(x, y)q(y, v) for all x, y, u, v ∈ X with (x v u)

and (y w v) or (x w u) and (y v v).

Suppose X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn v x for all n.

(ii) if a nonincreasing sequence {yn} → y, then y v yn for all n.

If there exist x0, y0 ∈ X satisfying x0 v F (x0, y0) and F (y0, x0) v y0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗, that is, F has a coupled fixed

point (x∗, y∗).

Proof. Take g = IX the identity function on X in Theorem 3.9.

Corollary 3.11. Let (X,v) be a partially ordered set and suppose that (X, d) is a cone

metric space. Let q be a c-distance on X. Suppose F : X ×X → X and g : X → X be

two functions such that F (X ×X) ⊆ g(X) and (g(X), d) is complete subspace of X. Let

F satisfy mixed g-monotone property and k : X×X → [0, 1
2
) be any given functions such

that

(i) k(F (x, y), F (y, x)) ≤ k(gx, gy) for all x, y ∈ X,
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(ii) k(x, y) = k(y, x) for all x, y ∈ X and

(iii) q(F (x, y), F (u, v)) � k(gx, gy)(q(gx, gu)+q(gy, gv)) for all x, y, u, v ∈ X with (gx v

gu) and (gy w gv) or (gx w gu) and (gy v gv).

Suppose X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn v x for all n.

(ii) if a nonincreasing sequence {yn} → y, then y v yn for all n.

If there exist x0, y0 ∈ X satisfying gx0 v F (x0, y0) and F (y0, x0) v gy0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled

coincidence point (x∗, y∗).

Proof. Take k(x, y) = l(x, y) in Theorem 3.9.

Corollary 3.12. Let (X,v) be a partially ordered set and suppose that (X, d) is a

complete cone metric space. Let q be a c-distance on X. Suppose F : X × X → X be

a function satisfying mixed monotone property and k : X × X → [0, 1
2
) be any given

functions such that

(i) k(F (x, y), F (y, x)) ≤ k(x, y) for all x, y ∈ X,

(ii) k(x, y) = k(y, x) for all x, y ∈ X and

(iii) q(F (x, y), F (u, v)) � k(x, y)(q(x, u) + q(y, v)) for all x, y, u, v ∈ X with (x v u) and

(y w v) or (x w u) and (y v v).

Suppose X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn v x for all n.

(ii) if a nonincreasing sequence {yn} → y, then y v yn for all n.

If there exist x0, y0 ∈ X satisfying x0 v F (x0, y0) and F (y0, x0) v y0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗, that is, F has a coupled fixed

point (x∗, y∗).

Proof. Take k(x, y) = l(x, y) and g = IX in Theorem 3.9.

Theorem 3.13. Let (X,v) be a partially ordered set and suppose that (X, d) is a

complete cone metric space. Let q be a c-distance on X. Suppose F : X ×X → X and
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g : X → X be two continuous and commuting functions with F (X ×X) ⊆ g(X). Let F

satisfy mixed g-monotone property and k, l : X ×X → [0, 1) be any given functions such

that

(i) k(F (x, y), F (y, x)) ≤ k(gx, gy) and l(F (x, y), F (y, x)) ≤ l(gx, gy) for all x, y ∈ X,

(ii) (k + l)(x, y) < 1 for all x, y ∈ X and

(iii) q(F (x, y), F (u, v)) � k(gx, gy)q(gx, F (x, y))+l(gx, gy)q(gu, F (u, v)) for all x, y, u, v ∈

X with (gx v gu) and (gy w gv) or (gx w gu) and (gy v gv).

If there exist x0, y0 ∈ X satisfying gx0 v F (x0, y0) and F (y0, x0) v gy0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled

coincidence point (x∗, y∗).

Proof. By the similar argument as in Theorem 3.1. we can find the sequences {gxn} and

{gyn} satisfying (3). Now for all n ∈ N

q(gxn, gxn+1)

= q(F (xn−1, yn−1), F (xn, yn))

� k(gxn−1, gyn−1)q(gxn−1, F (xn−1, yn−1)) + l(gxn−1, gyn−1)q(gxn, F (xn, yn))

= k(F (xn−2, yn−2), F (yn−2, xn−2))q(gxn−1, gxn) + l(F (xn−2, yn−2), F (yn−2, xn−2))q(gxn, gxn+1)

� k(gxn−2, gyn−2)q(gxn−1, gxn) + l(gxn−2, gyn−2)q(gxn, gxn+1)

...

� k(gx0, gy0)q(gxn−1, gxn) + l(gx0, gy0)q(gxn, gxn+1)

Put qn = q(gxn, gxn+1) and d = k(gx0,gy0)
1−l(gx0,gy0)

. Then d ∈ [0, 1) and we have

qn = q(gxn, gxn+1) � dqn−1 � . . . � dnq0

Also q(gyn, gyn+1)

= q(F (yn−1, xn−1), F (yn, xn))

� k(gyn−1, gxn−1)q(gyn−1, F (yn−1, xn−1)) + l(gyn−1, gxn−1)q(gyn, F (yn, xn))
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= k(F (yn−2, xn−2), F (xn−2, yn−2))q(gyn−1, gyn) + l(F (yn−2, xn−2), F (xn−2, yn−2))q(gyn, gyn+1)

� k(gyn−2, gxn−2)q(gyn−1, gyn) + l(gyn−2, gxn−2)q(gyn, gyn+1)

...

� k(gy0, gx0)q(gyn−1, gyn) + l(gy0, gx0)q(gyn, gyn+1)

Put rn = q(gyn, gyn+1) and h = k(gy0,gx0)
1−l(gy0,gx0)

. Then h ∈ [0, 1) and we have

rn = q(gyn, gyn+1) � hrn−1 � . . . � hnr0

Let m > n ≥ 1.It follows that

q(gxn, gxm) � q(gxn, gxn+1) + q(gxn+1, gxn+2) + . . .+ q(gxm−1, gxm)

= qn + qn+1 + . . .+ qm−1

� dnq0 + dn+1q0 + . . .+ dm−1q0

� dn

1− d
q0

Also q(gyn, gym) � q(gyn, gyn+1) + q(gyn+1, gyn+2) + . . .+ q(gym−1, gym)

= rn + rn+1 + . . .+ rm−1

� hnr0 + hn+1r0 + . . .+ hm−1r0

� hn

1− h
r0

Thus, Lemma 2.19.(3) shows that gxn and gyn are Cauchy sequences in X. since X is

complete, there exists there exists x∗, y∗ ∈ X such that gxn→ x∗ and gyn→ y∗ as n→∞.

By continuity of g we get

lim
n→∞

ggxn = gx∗ and lim
n→∞

ggyn = gy∗.

Commutativity of F and g now implies that

ggxn = g(F (xn−1, yn−1)) = F (gxn−1, gyn−1) for all n ∈ N
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and ggyn = gF (yn−1, xn−1) = F (gyn−1, gxn−1) for all n ∈ N.

Since F is continuous, therefore,

gx∗ = lim
n→∞

ggxn

= lim
n→∞

F (gxn−1, gyn−1)

= F ( lim
n→∞

gxn−1, lim
n→∞

gyn−1)

= F (x∗, y∗)

and gy∗ = lim
n→∞

ggyn

= lim
n→∞

F (gyn−1, gxn−1)

= F ( lim
n→∞

gyn−1, lim
n→∞

gxn−1)

= F (y∗, x∗)

Thus (x∗, y∗) is a coupled coincidence point of F and g.

Corollary 3.14. Let (X,v) be a partially ordered set and suppose that (X, d) is a

complete cone metric space. Let q be a c-distance on X. Suppose F : X ×X → X and

g : X → X be two continuous and commuting functions with F (X × X) ⊆ g(X). Let

F satisfy mixed g-monotone property and k, l ∈ [0, 1) be any given numbers such that

k + l < 1 and

q(F (x, y), F (u, v)) � kq(gx, F (x, y)) + lq(gu, F (u, v))

for all x, y, u, v ∈ X with (gx v gu) and (gy w gv) or (gx w gu) and (gy v gv). If

there exist x0, y0 ∈ X satisfying gx0 v F (x0, y0) and F (y0, x0) v gy0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled

coincidence point (x∗, y∗).

Proof. Take k(x, y) = k and l(x, y) = l in Theorem 3.13.

Corollary 3.15. Let (X,v) be a partially ordered set and suppose that (X, d) is a

complete cone metric space. Let q be a c-distance on X. Suppose F : X × X → X be
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a given function satisfying mixed monotone property and k, l : X × X → [0, 1) be any

given functions such that

(i) k(F (x, y), F (y, x)) ≤ k(x, y) and l(F (x, y), F (y, x)) ≤ l(x, y) for all x, y,∈ X,

(ii) (k + l)(x, y) < 1 for all x, y ∈ X and

(iii) q(F (x, y), F (u, v)) � k(x, y)q(x, F (x, y)) + l(x, y)q(u, F (u, v)) for all x, y, u, v ∈ X

with (x v u) and (y w v) or (x w u) and (y v v).

If there exist x0, y0 ∈ X satisfying x0 v F (x0, y0) and F (y0, x0) v y0, then there exist

x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗, that is, F has a coupled fixed

point (x∗, y∗).

Proof. Take g = IX in Theorem 3.13.

Corollary 3.16. Let (X,v) be a partially ordered set and suppose that (X, d) is a

complete cone metric space. Let q be a c-distance on X. Suppose F : X × X → X is

a continuous function satisfying mixed monotone property and k, l ∈ [0, 1) be any given

numbers such that k + l < 1 and

q(F (x, y), F (u, v)) � kq(x, F (x, y)) + lq(u, F (u, v))

for all x, y, u, v ∈ X with (x v u) and (y w v) or (x w u) and (y v v). If there exist

x0, y0 ∈ X satisfying x0 v F (x0, y0) and F (y0, x0) v y0,then there exist x∗, y∗ ∈ X such

that F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗, that is, F has a coupled fixed point (x∗, y∗).

Proof. Take k(x, y) = k, l(x, y) = l and g = IX in Theorem 3.13.

Theorem 3.17. Under the hypothesis of any one of the theorems from Theorem 3.1.,

Theorem 3.3., Theorem 3.5., Theorem 3.9. and Theorem 3.13. or any one of the corollaries

3.7., 3.11., and 3.14 we have q(gx∗, gx∗) = θ and q(gy∗, gy∗) = θ where (x∗, y∗) is a

coincidence point of F and g.

Proof. We prove this theorem under the hypothesis of Theorem 3.1. Proofs are similar

for other theorems or corollaries and can be obtained by a little adjustment. We have

q(gx∗, gx∗) + q(gy∗, gy∗) = q(F (x∗, y∗), F (x∗, y∗) + q(F (y∗, x∗), F (y∗, x∗))
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� k(x∗, y∗)(q(gx∗, gx∗) + q(gy∗, gy∗))

Since 0 ≤ k(x∗, y∗) < 1, we have q(gx∗, gx∗) + q(gy∗, gy∗) = θ. But q(gx∗, gx∗) ≥ θ and

q(gy∗, gy∗) ≥ θ, hence q(gx∗, gx∗) = θ and q(gy∗, gy∗) = θ.

Corollary 3.18. Under the hypothesis of any one of the corollaries 3.2., 3.4., 3.6., 3.8.,

3.10., 3.12., 3.15 and 3.16 we have q(x∗, x∗) = θ and q(y∗, y∗) = θ where (x∗, y∗) is a

coupled fixed point of F .

Proof. Similar to Theorem 3.17. once we work with g = IX .

Theorem 3.19. In addition to the hypothesis of any one of the theorems from Theorem

3.1., Theorem 3.3., Theorem 3.5., Theorem 3.9. and Theorem 3.13. or any one of the

corollaries 3.7., 3.11. and 3.14. suppose that any two elements of g(X) are comparable

and g is one-one. Then there exists a coupled coincidence point of F and g which is of

the form (x∗, x∗) for some x∗ ∈ X.

Proof. Again we prove this theorem under the hypothesis of Theorem 3.1. Proofs are

similar for other theorems or corollaries and can be obtained by a little adjustment.

Consider coupled coincidence point (x∗, y∗) of F and g. Then we have

q(gx∗, gy∗) + q(gy∗, gx∗) = q(F (x∗, y∗), F (y∗, x∗) + q(F (y∗, x∗), F (x∗, y∗))

� k(x∗, y∗)(q(gx∗, gy∗) + q(gy∗, gx∗))

Since 0 ≤ k(x∗, y∗) < 1,we have q(gx∗, gy∗) + q(gy∗, gx∗) = θ.But q(gx∗, gy∗) ≥ θ and

q(gy∗, gx∗) ≥ θ, hence q(gx∗, gy∗) = θ and q(gy∗, gx∗) = θ. Let un = θ, xn = gx∗ for all

n ≥ 0, then we have q(xn, gx
∗) � un for all n ≥ 0 and q(xn, gy

∗) � un for all n ≥ 0. By

Lemma 2.19.(1) we have gx∗ = gy∗. Since g is one-one, therefore,x∗ = y∗. Thus there

exists a coupled coincidence point of the form (x∗, x∗) for some x∗ ∈ X. This completes

the proof.

Corollary 3.20. In addition to hypothesis of any one of the corollaries 3.2., 3.4., 3.6.,

3.8., 3.10., 3.12., 3.15 and 3.16, suppose that any two elements of X are comparable. Then

there exists a coupled fixed point of F which is of the form (x∗, x∗) for some x∗ ∈ X.
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Proof. Similar to Theorem 3.19. once we work with g = IX .

Example 3.21. Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0, 1](with usual order)

and d(x, y) = |x− y|. Then (X, d) is an ordered complete cone metric space. Further, let

q : X×X → E be defined by q(x, y) = 2d(x, y). It is easy to check that q is a c-distance on

X. Consider now the function defined by F (x, y) = x2/16 for all x, y ∈ X, k(x, y) = 1+x+y
16

for all x, y ∈ X and gx = x for all x ∈ X. Then F (X ×X) ⊆ g(X) and F satisfies mixed

g-monotone property. k(F (x, y), F (y, x)) =
1+x2

16
+ y2

16

16
≤ 1+x2+y2

16
≤ 1+x+y

16
= k(gx, gy) for

all x, y ∈ X. Further q(F (x, y), F (u, v)) + q(F (y, x), F (v, u)) = 2|x2

16
− u2

16
|+ 2|y2

16
− v2

16
| =

1
8
(x + u)|x − u| + 1

8
(y + v)|y − v| ≤ x+1

16
.2|x − u| + y+1

16
.2|y − v| ≤ 1+x+y

16
.2|x − u| +

1+x+y
16

.2|y − v| = k(gx, gy)(q(x, u) + q(y, v)) for all x, y, u, v ∈ X with (gx ≤ gu) and

(gy ≥ gv) or(gx ≥ gu) and (gy ≤ gv). Further F and g are continuous, commuting,

g(0) ≤ F (0, 1) and g(1) ≥ F (1, 0). Thus, by Theorem 3.1. , F and g have a coincidence

point. Here F and g have a coincidence point at (0, 0).

Example 3.22. Let E = R with usual order and X = [0, 1]. Let d(x, y) = |x − y| for

all x, y ∈ X and P = {x ∈ E : x ≥ 0}. Then (X, d) is a complete cone metric space.

Define q : X ×X → E by q(x, y) = y for all x, y ∈ X. Then q is a c-distance on X. Let

F : X ×X → X be given by

F (x, y) =

 1
16

(x− y) if x ≥ y

0 if x < y

Define k : X ×X → [0, 1) by k(x, y) = Max{1+x
16
, 1+y

16
} for all x, y ∈ X and let g(x) = x

for all x ∈ X. Then F becomes mixed g-monotone function. Now k(F (x, y), F (y, x)) =

Max{1+F (x,y)
16

, 1+F (y,x)
16
} ≤ Max{1 + F (x, y), 1 + F (y, x)} ≤ 1 + F (x, y) + F (y, x) = 1 +

|x−y|
16
≤Max{1+x

16
, 1+y

16
} = k(x, y) for all x, y ∈ X.Also q(F (x, y), F (u, v))+q(F (y, x), F (v, u)) =

F (u, v)+F (v, u) = |u−v|
16
≤ 1

16
(u+v) ≤Max{1+x

16
, 1+y

16
}(q(x, u)+q(y, v)) = k(x, y)(q(x, u)+

q(y, v)) for all x, y, u, v ∈ X. Further 1 ≤ F (1, 0) and F (0, 1) ≤ 0. So all the conditions

of Theorem 3.3. are satisfied. We see that (0, 0) is a coupled fixed point of F.

Remark 3.23. Theorem 2.2 of [29] is a particular cases of Theorem 3.1. for k(x, y) = k

and Corollary 2.9 of [29] is a particular case of Theorem 3.1. for k(x, y) = k and g = IX .
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Remark 3.24. Theorem 2.4 of [29] is a particular cases of Theorem 3.3. for k(x, y) = k

and Corollary 2.10 of [29] is a particular case of Theorem 3.3. for k(x, y) = k and g = IX .

Remark 3.25. Corollary 2.5 of [29] is a particular cases of Theorem 3.5. for k(x, y) = k

and Corollary 2.6 of [29] is a particular case of Theorem 3.5. for k(x, y) = k and g = IX .

Remark 3.26. Corollary 2.7 of [29] is a particular cases of Theorem 3.9. for k(x, y) = k

and Corollary 2.8 of [29] is a particular case of Theorem 3.9. for k(x, y) = k and g = IX .
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[24] M. Pavlović Z. Kadelburg and S. Radenović, Common fixed point theorems for ordered contractions

and quasicontractions in ordered cone metric spaces, Comput. Math. Appl. 59(9) (2010), 3148-3159.
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