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Abstract: In this paper, A discrete-time food chain model of three species has been introduced 

comprising of a set of three nonlinear difference equations. Evolutionary dynamics of this system have 

investigated and regular as well as chaotic attractors have been obtained for certain parameter values. 

Bifurcation diagrams have been drawn by varying parameters along coordinate axes and the motion has 

been analyzed. Numerical calculations have been carried out for calculations of Lyapunov exponents, 

topological entropies and correlation dimension. The investigation is then further extended to obtain 

FLI, SALI and DLI for regular and chaotic evolution of the food chain model. 
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1. Introduction 

Studies on food chains and webs in various ecosystem environment show growing 
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interest in areas of applied mathematics related to biology. Food chain modeling 

provides challenges in the fields of both theoretical ecology and applied mathematics. 

As the realistic models are nonlinear, their evolutionary behavior may show regular as 

well as chaotic fluctuations depending upon the variations of parameters of the system. 

Observational facts reveal that the ecological food webs or food chains typically, 

contain several layers such that the consumers which eat from the bottom resource 

layer are the prey of another predator. Thus, the prey-predator models mentioned 

above can easily be extended with a "top predator" that lives on the predator 

population. Taking into account the interacting behavior of the species, models of 

food chains and webs can be represented through differential equations or by 

difference equations as appearing in recent literature. 

Articles on dynamics of prey-predator systems under different ecological conditions 

have been investigated by many researchers in the past, e.g. Holling (1965), May 

(1974), Freedman and Waltman (1977), Freedman and So (1985), Hastings and 

Powell (1991), Klebanoff and Hastings (1994), McCann and Yodzis (1994), Deng 

(2001), El-Owaidy et al.( 2001); Letellier and Aziz-Alaoui (2002) and many others. 

These studies established very interesting results also. 

Some recent articles suggest that models of food chain written in difference equations 

are more appropriate than continuous equation when the interactions of species are 

non-overlapping generations, Ivanchikov and Nedorezov (2011, 2012), Liu and Xu, 

(2003). A recent article on three species food chain with discrete equations was 

introduced by Elsadany (2012) where existence of local steady states and their 

stability were widely discussed. Bifurcation diagrams have been obtained by varying 

certain parameter and appearance of Hopf bifurcation under certain conditions has 

also been shown. Chaotic attractors and calculation of Lyapunov exponents are also 

done in this article. 

The objective of the present work to conduct more extensive study of the long term 

evolutionary dynamics of the discrete food chain model proposed by Elsadany (2012) 

for three distinct insects and introduce certain measure of chaos, (e.g. calculation of 

Lyapunov exponents, topological entropies and correlation dimensions), when the 
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system evolve chaotically. Also, as part of further extension, we wish to apply the 

indicators FLI, SALI and DLI our model.   

 

2. Preliminaries 

Descriptions of Chaos Measuring Tools: Lyapunov exponents,     Topological 

Entropies, Correlation Dimensions: 

(i) Lyapunov Exponents (Lyapunov Numbers):  

Lyapunov exponents are dynamical measure of exponential divergence in a 

deterministic system of orbits which started with slightly different initial conditions 

and are capable to characterize deterministic chaos. Chaos in the system features to 

the highly sensitive dependence on initial conditions. It is an effective tool for 

identification of regularity and chaos in the system and can be explained in the 

following ways:  

Lyapunov Numbers and Lyapunov Exponents: 

 Consider any one dimensional map defined in some interval (a, b) 

  xn + 1 = f (xn)       (2.1) 

and its two orbits starting at  x0  and x0 ± δ0, where  δ0  is very small. Expanding 

f(x0 + δ0 ) by taylors series, the distance between the orbits after one iteration be given 

by  

  δ1 = | f’(x0) | / δ0 = M0 δ0 .     (2.2) 

Mo is known as first step magnification factor.  Similarly, at the second iteration, the 

distance between the orbits can be written as 

  δ2 = | f’(x1) |/ δ1 = M1 δ1 = M1 M0 δ0     (2.3) 

Continuing in this manner, separation between the orbits at n
th

 iteration is   

  δn = | f’(xn-1 ) | /  δn-1  =  Mn-1 δn-1 = Mn-1 Mn-2 . . .M0 δ0   (2.4) 

The product M0 M1 M2 …..Mn-1 is the accumulation of magnification factors. It is 

meaningful to consider an average of it and the most convenient is the geometric 

average  
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(M0 M1 M2 …..Mn-1)
1/n

 

Taking log, one obtains the arithmetic average 

λ = ln (M0 M1 M2 …..Mn-1)
1/n

  

  = 1/n (ln M0+ln M1 + ln M2 + . . .+ ln Mn-1 ) 

  = 1/n (ln (| f’(x0) |) + ln (| f’(x1 ) |) + ln (| f’(x2 ) |) + . . . + ln (| f’(xn-1 ) |) )  (2.5) 

Then, the condition of stability of a implies: 

If average magnification is less than 1, the orbit is stable and if it is greater than 1 the 

orbit is unstable, i.e.  λ < 0  => stable orbit and λ > 0  => unstable orbit. For 

accurate result, one should take the iterations n as large as possible. This leads to the 

following definition of Lyapunov exponents: 

Def. 1:   Lyapunov exponents of a smooth map f on R with x0 as initial point be 

defined as  

λ(x0 ) = Lim
n 

1/n [ln (| f’(x0 ) |) + ln (| f’(x1 ) |) + ln (| f’(x2 ) |) + . . . + ln (| f’(xn-1 ) |) ] 

provided the limit exists.  Lyapunov number is the exponent of Lyapunov exponent 

and is given by  

 L(
0

x  ) = 
)

0
x(λ

e        (2.6) 

 

Def. 2: A bounded orbit {x0, x1, x2, x3, . . ., xn } of the map f on R is called chaotic if 

following conditions are satisfied: 

(a) {x0, x1, x2, x3, . . ., xn } is not asymptotically periodic. 

(b) No λ(x0 ) is exactly equal to zero. 

(c) λ(x0 ) > 0 or equivalently, L(x0 ) > 1. 

From above definition, a clear interpretation for Lyapunov exponent is given as:  it is 

the measure of loss of information during the process of iteration.  

For higher dimensional system, we can generalize the above one dimensional case to 

higher dimension and obtain 
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and 
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0
U,

0
(Xλ

e
n

Y
n
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where X ∈ n
,
 
 F: n

 →n
 , U0  = X0 – Y0  and J is the Jacobian matrix of map F. 

Quantitatively, two trajectories in phase space with initial separation δx0 diverge if 

   (0)δx
tλ

e(t)δx              (2.8)                             

where λ > 0 is the Lyapunov exponent. The system described by the map f be regular 

as long as  ≤ 0 and chaotic when  > 0. 

 

(ii) Topological Entropy 

The usefulness of Lyapunov exponents are limited because of the following important 

features, Gribble (1995): 

 Lyapunov exponents are local in nature and are not necessarily 

constant throughout the evolution and so ergodicity is also required to 

characterize chaos. 

  As per their definitions, Lyapunov exponents are time dependent and 

this leads to a serious drawback for systems arising from relativistic 

considerations.  

 

 A chaotic attractor is composed of a complex pattern. To investigate chaotic behavior 

in a wide variety of systems evolving time, an alternate replacement of Lyapunov 

exponents which could be more reliable and acceptable as indicator is the topological 

entropy, Balmforth et al (1964), Adler et al (1965), Bowen (1970), Boyarsky et al 

(1991) and Iwai (1998). Topological entropy describes the rate of mixing of a 

dynamical system. It has a relationship to both Lyapunov exponents, through the 

dependence of rate, and to the ergodicity, because of the association of mixing. For a 

system having non-zero topological entropy, the rate of mixing must be exponential 
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which reminiscent of of Lyapunov exponents. But such exponentiality of mixing is 

not relative to time, but rather to the number of discrete steps through which the 

system has evolved. Positivity of Lyapunov exponent and topological entropy are 

characteristic of chaos. A mathematical definition of topological entropy can be 

obtained from the book by Nagashima and Baba (2005). 

Topological entropy h(f) for a map f defined in a  close interval I = [a, b], is closely 

related to Li and Yorke chaos, Nagashima and Baba (2005), and measures the 

complexity of the map f. 

If f be a continuous map from І to І and if α be an open initial cover of І, then the 

topological entropy h(f) can be described by the supremum, sup h(α,f), for all the 

covers of interval І such that 

  h(α, f)  =  















α

1
fV

1n

0i

Nlog
n

1
lim

n
 ,  (2.9) 

then 

  h ( f )  = sup h (α, f ).             (2.10) 

When the map f is piecewise-monotonic over I, the topological entropy can be 

determined by the lap number, lap(f
n
)  of the iterated map f

n
 as follows : 

  h(f) = )nlap(flog
n

1
lim

n 
.         (2.11) 

The lap number of f grows with n in general. If the growth obeys the power law,  

             lap(f
n
) ~ k n

α
 ,  

then by (2.10), 

  h(f)  =  0nlog
n

α
lim

n
)α(knlog

n

1
lim

n








.    (2.12) 

However, if it grows exponentially, lap( f
n
 )  ~ k α

n
 , (α > 1), then 

  h(f)  =  αlog)nα(klog
n

1
lim

n



.       (2.13) 

This shows that h(f) is determined by the way lap(f
n
 ) increases. 

In case of super stable periodic orbits, the method of structure matrix M can be 



ON DYNAMICS OF CHAOTIC EVOLUTION IN FOOD CHAIN MODELS       829 

employed. (e.g. Nagashima and Baba, page 131, 2005). If max be the largest 

eigenvalue of M, then the topological entropy can be obtained as  

                   h = log (max )       (2.17)  

(iii) Correlation Dimension 

As stated, chaos may exist in nonlinear systems during evolution and  that can be 

seen easily by observing the bifurcation diagrams. A chaotic set, an strange attractor, 

has fractal structure. Correlation dimension gives a measure of dimensionality of the 

chaotic set. Being one of the characteristic invariants of nonlinear system dynamics, 

the correlation dimension actually gives a measure of complexity for the underlying 

attractor of the system. To determine correlation dimension we use statistical method. 

It is a very practical and efficient method than other methods, like box counting etc. 

The procedure to obtain correlation dimension follows the following steps,Martelli 

(1999):Consider an orbit O(x1) = {x1, x2, x3, x4, . . ….}, of a map f: U → U, where U is 

an open bounded set in n
. To compute correlation dimension of O(x1), for a given positive 

real number r, we form the correlation integral, Grassberger and Procaccia (1983), 

   















n

ji
j

x
i

x-rH
)1n(n

1
lim

n
)r(C ,  (2.18) 

where   

   









0x1,

0x0,
)(xH , 

is the unit-step function, (Heaviside function). The summation indicates the the number 

of pairs of vectors closer to r when 1 ≤ i, j ≤ n and i ≠ j. C(r) measures the density of pair 

of distinct vectors xi and xj that are closer to r.  

The correlation dimension Dc  of O(x1) is defined as 

   
rlog

)r(Clog
lim

0r
c

D


      (2.19) 

To obtain Dc, log C(r) is plotted against log r and then we find a straight line fitted to 
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this curve. The y- intercept of this straight line provides the value of the correlation 

dimension Dc. 

 

(iv) Chaos Indicators FLI, SALI and DLI: 

 

For the description of indicators FLI, SALI and DLI, we refer the article by Saha and 

Budhraja (2007), Yuasa and Saha (2008), Saha and Tehri (2010). However, we must 

keep in mind the properties of these indicators as follows: 

FLI’s increase exponentially for chaotic orbits and linearly for regular orbits. 

SALI’s fluctuates around a non-zero value for ordered orbits while it tends to zero for 

chaotic orbits. 

DLI’s , form a definite pattern, then the motion is regular and if they are distributed 

randomly, (with no definite pattern), then the motion is chaotic. 

          

3. Main results 

1. A Three Dimension Food Chain Model: 

A discrete 3-dimensional food-chain model proposed by Elsadany, (2012), to study 

the ecosystems three interacting species, each with non-overlapping generations. The 

food chain is considered to describe the insect group of three fully different insects. 

These insects are a lowest-level prey x is preyed upon by a mid-level species y, which 

in turn, is preyed by a top-level predator z. The model be given by following 

non-dimensional form of difference equations 

 

xn + 1  =  a xn (1-xn)-b xn yn 

yn + 1  =  c xn yn -d yn zn 

zn +1 = r yn zn      (3.1)      

  

The model contains five parameters a, b, c, d, r all are assumed to be positive. Each of 

these has significant interpretation as given in a recent article by Elsadany (2012). The 
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stability of steady state solutions have also been explained there. 

 

The system (3.1) has fixed points given by p0
*
, p1

*
, p2

*
, p3

*
 and p4

*
 with respective 

coordinates  

  (0, 0, 0), (
a

1a 
, 0, 0), (

c

1
, 

cb

caca 
, 0), (0, 

r

1
, 

d

1
 ) and (

ra

b1)(ar 
, 

r

1
, 

rda

racb1)(arc 
). 

Also, the Jacobian matrix of system (3.1) is given by  

 

          






















yrzr0

ydzdxcyc

0xbybxa2a

J  

Eigenvalues of matrix J obtained with respect to above fixed point determine their 

stability criteria. One can easily verify, as a > 0 ,the origin p0
*
: (0, 0, 0) is stable for 0 

< a < 1 and unstable for a > 1. If we fix c = 3, (as we have done in one case during our 

numerical calculations), the eigenvalues corresponding to p1
*
 are given by e11 = 0, e12 

= 3(a – 1)/a and e13 =2 – a. So, p1
* 
is stable when 1 < a < 

2

3
. If we fix a, a = 2.5, ( as a 

<3) then for c < 
2

3
, p1

*
 is stable.  Fixing b= 3.7, c = 3.0 and r=3.8, we obtain the 

eigenvalues corresponding to p2
*
 , i.e. e21 , e22, e23 and  the fixed point p2

*
 is stable or 

unstable according as the absolute values of these eigenvalues be less than or greater 

than unity. Followed by the work of Elsadany (2012), one may extend the stability 

analysis of p3
*
 and p4

*
 also.     

 When any one of parameters vary keeping others fixed, one observes bifurcations 

scenario of the model. Through such bifurcations regular and chaotic evolutions are 

clearly visible. For, first we have fixed b = 3.7, c = 3, d = 3.5, r = 3.8 and let a to vary 

from a = 2.1 to a = 4.3 and obtained bifurcation for six different ranges of values of a 

shown in Fig. 1. Note that, throughout our calculations, we have fixed three 

parameters as b = 3.7, d = 3.5 and  r = 3.8 and in turn first let a to vary by fixing c 
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and the let c to vary by fixing a. The bifurcations in thr later case are shown in Fig. 2   

The process of bifurcation, in both the cases, produces some interesting features of 

regular and chaotic evolutions. 

   

 

 

Fig. 1: Bifurcation of food chain model along the coordinate axes for two ranges of 

values of a when other parameters are fixed with b = 3.7, c = 3, d = 3.5 and r = 3.8. 

     

        

        

Fig.2: Bifurcation of food chain model along the coordinate axes for two ranges of 

values of c when other parameters are fixed with a = 3, b = 3.7, d = 3.5 and r = 3.8. 
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Attractors for regular and chaotic motions are drawn for map (1) and shown below in 

Fig. 3.      

      

             

 

 Fig. 3: Time series plots and attractors of food chain model (3.1); for regular case 

upper row figures are drawn for a = 3, b = 3.7, c = 3, d = 3.5, r = 3.8 and for lower 

row a = 4.1. 

For fixed parameters b = 3.7, c = 4, d = 3.5, r = 3.8 when a is allowed to vary, one 

moves from regularity to chaos. This can be observed from the phase plots in x-y 

plane shown in Fig. 4.  
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Fig. 4: Regular and chaotic attractors of food chain model with changing values of a 

when c = 4 and b = 3.7, d = 3.5, r = 3.8.   

 

The last chaotic attractor in Fig. 4, with magnification looks like figure below, Fig. 5. 

   

 

Fig. 5 : A chaotic attractor for parameter a = 3.6  
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5. Numerical Calculations of Lyapunov Exponents,Topological Entropies and 

Correlation Dimensions: 

We have performed numerical simulations to obtain various results of evolution of the 

map (3.1). Mathematica codes have been written in appropriate form to perform 

calculations. First we have calculated the Lyapunov numbers and Lyapunov exponents 

(LCEs) and plotted their graphs as shown in Fig. 6.  

           

           

Fig. 6 : Plots of Lyapunov numbers and Lyapunov  exponents of the food chain model for  

parameters a =4.1, b = 3.7, c = 3.0, d = 3.5 and r = 3.8 and with the initial condition  

(x0, y0, z0) = (0.2, 0.1,0.1).   

For the same condition and parameter values, for the long term evolution of the 

system, the evolution becomes totally chaotic as shown through the Lyapunov 

exponents plot in Fig.7. 
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Fig. 7. Plot of Lyapunov exponents in the long term evolution. 

Topological entropies for the food chain map have been calculated and plotted for 

different ranges of parameters a and c and their plots are shown in Fig. 9. 

 

    

      

Fig. 8: Plots of topological entropies; upper row for fixed parameters b = 3.7, c = 4, 

 d = 3.5, r = 3.8  and lower row for fixed parameters a = 3,  b = 3.7, d = 3.5, r = 3.8. 

 

Using the data obtained by evaluating the correlation integral, we have obtained the 

correlation curve for the chaotic evolution as shown in Fig. 9. 
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Fig. 9: Plot of correlation curve. Parameter values and initial conditions are same as in 

the case of Lyapunov exponents. 

Using least square linear fit to the data of correlation integral we obtain the equation 

of the straight line fitting the data as 

                      y = 0.832272 – 0.928877x      (4.1) 

whose y intercept is 0.832272 ≈ 0.83. So, the correlation dimension of the chaotic 

attractor is approximately 0.83. 

Plots of FLI, SALI, DLI for regular as well as chaotic cases for the above map are 

shown in Fig.10.

 

 

Fig.10: Plots of FLI, SALI and DLI for food chain model (3.1) for fixed parameters       

b = 3.7, c = 3, d = 3, r = 3.8 ; the upper row is for regular case when a = 3.0, and the 

lower row is for chaotic case when a = 4.1. 
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Discussion 

We have studied the nonlinear behavior of a food chain system (3.1) together with 

certain measure for chaotic evolution. Bifurcation diagrams of this food chain model 

have been drawn by varying both of the parameters a and c while fixing other 

parameters in Fig. 1 and Fig. 2. These figures provide information regarding evolution 

with stable solutions as well as chaotic nature of nonlinear properties and limitation 

for parameter space. Regular and chaotic time series graphs and attractors have been 

drawn in Fig. 3 – Fig. 5. In order to impose certain measure of chaos, Numerical 

calculations have been carried out to obtain certain measure of chaos by calculating 

Lyapunov exponents and topological entropies and shown through Fig. 6 – Fig. 8. To 

measure the dimensionality of the chaotic attractor, numerical simulations have been 

extended to evaluate an correlation integral and collect appropriate correlation data. 

Plot of correlation data resulting in correlation curve is shown in Fig.9. Then, by using 

the method of least square linear fit, we have obtained the equation of the straight line 

approximately fitting the data given by equation (4.1) and its y-intercept provides the 

correlation dimension shown there. Finally, we have applied the recently introduced 

indicators, FLI, SALI and DLI to the food chain model for distinguishing regular and 

chaotic motion. Results obtained are shown in Fig. 10. It has been observed that the 

first two indicators do not perfectly working according to their definitions. However, 

the last indicator, DLI was seen to work perfectly for this model.  
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