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1. Introduction

Pawlak [7,8] introduced rough set theory as a formal tool to deal with imprecision and

uncertainty in data analysis. Hájek [4] introduced a complete residuated lattice which

is an algebraic structure for many valued logic. By using the concepts of lower and

upper approximation operators, information systems and decision rules are investigated

in complete residuated lattices [1-3, 9.10]. Bělohlávek [1,2] developed the notion of fuzzy

contexts using Galois connections with R ∈ LX×Y on a complete residuated lattice. Zhang

[11,12] introduced the fuzzy complete lattice which is defined by join and meet on fuzzy
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posets. It is an important mathematical tool for algebraic structure of fuzzy contexts

[1-3,5-7].

In this paper, we show that join (resp. meet, meet join, join meet) preserving maps and

upper (resp. lower, meet join, join meet) approximation maps are equivalent in complete

residuated lattices. We investigate relations between their maps and fuzzy connections.

Definition 1.1. [1,2,4] An algebra (L,∧,∨,�,→, 0, 1) is called a complete residuated

lattice if it satisfies the following conditions:

(C1) L = (L,≤,∨,∧, 1, 0) is a complete lattice with the greatest element 1 and the

least element 0;

(C2) (L,�, 1) is a commutative monoid;

(C3) x� y ≤ z iff x ≤ y → z for x, y, z ∈ L.

In this paper, we assume (L,∧,∨,�,→,∗ 0, 1) is a complete residuated lattice with the

law of double negation;i.e. x∗∗ = x. We denote 1x ∈ LX as 1x(x) = 1, 1x(y) = 0 for

otherwise.

Lemma 1.2.[1,4] For each x, y, z, xi, yi ∈ L, we have the following properties.

(1) If y ≤ z, (x� y) ≤ (x� z), x→ y ≤ x→ z and z → x ≤ y → x.

(2) x→ (
∧

i∈Γ yi) =
∧

i∈Γ(x→ yi).

(3) (
∨

i∈Γ xi)→ y =
∧

i∈Γ(xi → y).

(4)
∧

i∈Γ y
∗
i = (

∨
i∈Γ yi)

∗ and
∨

i∈Γ y
∗
i = (

∧
i∈Γ yi)

∗.

(5) (x� y)→ z = x→ (y → z) = y → (x→ z).

(6) x� y = (x→ y∗)∗.

(7) x� (x→ y) ≤ y.

(8) (x→ y)� (y → z) ≤ x→ z.

Definition 1.3. [11,12] Let X be a set. A function eX : X ×X → L is called:

(E1) reflexive if eX(x, x) = 1 for all x ∈ X,

(E2) transitive if eX(x, y)� eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X,

(E3) if eX(x, y) = eX(y, x) = 1, then x = y.

If e satisfies (E1) and (E2), (X, eX) is a fuzzy preorder set. If e satisfies (E1), (E2) and

(E3), (X, eX) is a fuzzy partially order set (simply, fuzzy poset).
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Example 1.4.(1) We define a function eL : L×L→ L as eL(x, y) = x→ y. Then (L, eL)

is a fuzzy poset.

(2) We define a function eLX : LX × LX → L as eLX (A,B) =
∧

x∈X(A(x) → B(x)).

Then (LX , eLX ) is a fuzzy poset from Lemma 1.2 (8).

Definition 1.5. [11,12] Let (X, eX) be a fuzzy poset and A ∈ LX .

(1) A point x0 is called a join of A, denoted by x0 = tA, if it satisfies

(J1) A(x) ≤ eX(x, x0),

(J2)
∧

x∈X(A(x)→ eX(x, y)) ≤ eX(x0, y).

A point x1 is called a meet of A, denoted by x1 = uA, if it satisfies

(M1) A(x) ≤ eX(x1, x),

(M2)
∧

x∈X(A(x)→ eX(y, x)) ≤ eX(y, x1).

Remark 1.6.Let (X, eX) be a fuzzy poset and A ∈ LX .

(1) If x0 is a join of A, then it is unique because eX(x0, y) = eX(y0, y) for all y ∈ X,

put y = x0 or y = y0, then eX(x0, y0) = eX(y0, x0) = > implies x0 = y0. Similarly, if a

meet of A exist, then it is unique.

(2) x0 is a join of A iff
∧

x∈X(A(x)→ eX(x, y)) = eX(x0, y).

(3) x1 is a meet of A iff
∧

x∈X(A(x)→ eX(y, x)) = eX(y, x1).

Remark 1.7.Let (L, eL) be a fuzzy poset and A ∈ LL.

(1) Since x0 is a join of A iff
∧

x∈L(A(x) → eL(x, y)) =
∧

x∈L(A(x) → (x ⇒ y)) =∨
x∈L(x� A(x))→ y = eL(x0, y) = x0 → y, then x0 = tA =

∨
x∈L(x� A(x)).

(2) Since x0 is a join of A iff
∧

x∈L(A(x) → eL(x, y) =
∧

x∈L(A(x) → (y → x)) =∧
x∈L(y → (A(x) → x)) = y →

∧
x∈L(A(x) → x) = y → uA, then uA =

∧
x∈L(A(x) →

x).

Remark 1.8.Let (LX , eLX ) be a fuzzy poset and Φ ∈ LLX
.

(1) Since
∧

A∈LX (Φ(A)→ eLX (A,B)) = eLX (
∨

A∈LX (Φ(A)�A), B) = eLX (tΦ, B), then

tΦ =
∨

A∈LX (Φ(A)� A).

(2) Since
∧

A∈LX (Φ(A)→ eLX (B,A) =
∧

A∈LX eLX (B, (Φ(A)→ A)) = eLX (B,
∧

A∈LX (Φ(A)→

A)), then uΦ =
∧

A∈LX (Φ(A)→ A).
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Definition 1.9. [1,3,5,10] Let X and Y be two sets. Let H,K1,M1 : LX → LY and

J ,K2,M2 : LY → LX be operators.

(1) (eLX ,H,J , eLY ) is called a residuated connection if for A ∈ LX and B ∈ LY ,

eLY (H(A), B) = eLX (A,J (B)).

(2) (eLX ,K1,K2, eLX ) is called a Galois connection if for A ∈ LX and B ∈ LY ,

eLY (B,K1(A)) = eLX (A,K2(B)).

(3) (eLX ,M1,M2, eLY ) is called a dual Galois connection if for A ∈ LX and B ∈ LY ,

eLY (M1(A), B) = eLX (M2(B), A).

Definition 1.10. [11,12] Let (LX , eLX ) and (LY , eLY ) be fuzzy posets and F : LX → LY

a map. For each Φ ∈ LLX
, we define F→(Φ)(B) =

∨
F(A)=B Φ(A).

(1) F is a join preserving map if F(tΦ) = tF→(Φ).

(2) F is a meet preserving map if F(uΦ) = uF→(Φ) for all Φ ∈ LLX
.

(3) F is a meet-join preserving map if F(uΦ) = tF→(Φ) for all Φ ∈ LLX
.

(4) F is a join-meet preserving map if F(tΦ) = uF→(Φ) for all for all Φ ∈ LLX
.

2. L-approximation and join preserving operators

Definition 2.1.[8,9] (1) A mapH : LX → LY is called an L-upper approximation operator

iff it satisfies the following conditions

(H1) H(α� A) = α�H(A),

(H2) H(
∨

i∈I Ai) =
∨

i∈I H(Ai).

(2) A map J : LX → LY is called an L-lower approximation operator iff it satisfies the

following conditions

(J1) J (α→ A) = α→ J (A),

(J2) J (
∧

i∈I Ai) =
∧

i∈I J (Ai).

(3) A map K : LX → LY is called an L-join meet approximation operator iff it satisfies

the following conditions

(K1) K(α� A) = α→ K(A),

(K2) K(
∨

i∈I Ai) =
∧

i∈I K(Ai).
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(4) A mapM : LX → LY is called an L-meet join approximation operator iff it satisfies

the following conditions

(M1) M(α→ A) = α�M(A),

(M2) M(
∧

i∈I Ai) =
∨

i∈IM(Ai).

Theorem 2.2.Let X and Y be two sets. Let H : LX → LY be an operator. Then the

following statements are equivalent:

(1) H is a join preserving map.

(2) H is an L-upper approximation operator.

(3) There exists R ∈ LX×Y such that

H(A)(y) =
∨
x∈X

(A(x)�R(x, y)).

Proof. (1) ⇒ (2) Since H is a join preserving map, we have H(tΦ) = tH→(Φ) for all

Φ ∈ LLX
.

(H1) Define Φ1 : LX → L as Φ1(A) = α and Φ1(B) = 0, otherwise. By Remark 1.8(1),

(tΦ1)(x) =
∨

A∈LX

(Φ1(A)� A(x)) = α� A(x).

Since H→(Φ1)(B) =
∨

B=H(A) Φ1(A) and H(tΦ1) = tH→(Φ1) for all Φ1 ∈ LLX
, we have

tH→(Φ1)(y) =
∨

B∈LY (H→(Φ1)(B)�B(y))

= Φ1(A)�H(A)(y) = α�H(A)(y)

= H(tΦ1)(y) = H(α� A)(y).

Hence H(α� A) = α�H(A).

(H2) Let {Ai ∈ LX | i ∈ Γ} be given. Define Φ : LX → L as Φ(Ai) = 1 for i ∈ Γ and

Φ(B) = 0, otherwise. By Remark 1.8(1),

(tΦ)(x) =
∨

A∈LX

(Φ(A)� A(x)) =
∨
i∈Γ

Ai(x).
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Since H→(Φ)(B) =
∨

B=H(A) Φ(A) and H(tΦ) = tH→(Φ) for all Φ ∈ LLX
, we have

H(tΦ)(y) = H(
∨

i∈Γ Ai)(y),

tH→(Φ)(y) =
∨

B∈LY (H→(Φ)(B)�B(y))

=
∨

B∈LY ((
∨

B=H(A) Φ(A))�B(y))

=
∨

A∈LX (Φ(A)�H(A)(y))

=
∨

i∈ΓH(Ai)(y).

Hence H(
∨

i∈ΓAi) =
∨

i∈ΓH(Ai). Thus, H is an L-upper approximation operator.

(2) ⇒ (3) Define R(x, y) = H(1x)(y). Since A =
∨

x∈X(A(x)� 1x), we have

H(A)(y) = H(
∨

x∈X A(x)� 1x)(y)

=
∨

x∈X(A(x)�H(1x)(y))

=
∨

x∈X(A(x)�R(x, y)).

(3) ⇒ (1) Put B0 = tH→(Φ). Then

eLY (B0, B) =
∧

C∈LY (H→(Φ)(C)→ eLY (C,B))

=
∧

C∈LY ((
∨
H(A)=C Φ(A)→ eLY (H(A), B))

=
∧

A∈LX (Φ(A)→ eLY (H(A), B))

=
∧

A∈LX eLY (Φ(A)�H(A), B)

= eLY (
∨

A∈LX Φ(A)�H(A), B).

Hence H(tΦ) = tH→(Φ) from:

tH→(Φ)(y) = B0(y) =
∨

A∈LX Φ(A)�H(A)(y)

=
∨

A∈LX (Φ(A)�
∨

x∈X(A(x)�R(x, y)))

=
∨

x∈X(
∨

A∈LX (Φ(A)� A(x))�R(x, y))

=
∨

x∈X(tΦ(x)�R(x, y)) = H(tΦ)(y).

Theorem 2.3.Let X be a set. Let H : LX → LX be an operator. Then the following

statements are equivalent:

(1) H is a join preserving map with 1x ≤ H(1x) and H(H(1x)) ≤ H(1x) for all x ∈ X.
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(2) H is an L-upper approximation operator with A ≤ H(A) and H(H(A)) ≤ H(A) for

all A ∈ LX .

(3) There exists a preorder eX ∈ LX×X such that

H(A)(y) =
∨
x∈X

(A(x)� eX(x, y)).

Proof. (1) ⇒ (2) Since A =
∨

x∈X(A(x) � 1x), H(A)(y) = H(
∨

x∈X(A(x) � 1x))(y) =∨
x∈X(A(x)�H(1x)(y)) ≥

∨
x∈X(A(x)� 1x)(y) = A(y) and

H(H(A))(y) = H(H(
∨

x∈X A(x)� 1x))(y)

=
∨

x∈X(A(x)�H(H(1x))(y))

≤
∨

x∈X(A(x)�H(1x)(y)) = H(A)(y).

(2) ⇒ (1) Put A = 1x. It is trivial.

(2) ⇒ (3) Define eX(x, y) = H(1x)(y). Since A =
∨

x∈X(A(x)� 1x), we have

H(A)(y) = H(
∨

x∈X A(x)� 1x)(y)

=
∨

x∈X(A(x)�H(1x)(y))

=
∨

x∈X(A(x)� eX(x, y)).

Since 1 = 1x(x) ≤ H(1x)(x) = eX(x, x), then eX is reflexive. SinceH(1x) =
∨

y∈X(H(1x)(y)�

1y), then

H(H(1x))(z) =
∨
y∈X

(H(1x)(y)�H(1y)(z)) ≤ H(1x)(z).

Hence eX(x, y)� eX(y, z) ≤ eX(x, z);i.e. eX is transitive. Thus eX is a preorder.

(3) ⇒ (1) Since H(1x)(y) = eX(x, y) ≥ 1x(y), then 1x ≤ H(1x). Since

H(H(1x))(z) =
∨

y∈X(H(1x)(y)�H(1y)(z))

=
∨

y∈X(eX(x, y)� eX(y, z)) ≤ eX(x, z) = H(1x)(z).

Theorem 2.4.Let X and Y be two sets. Let J : LX → LY be an operator. Then the

following statements are equivalent:

(1) J is a meet preserving map.

(2) J is an L-lower approximation operator.
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(3) There exists R ∈ LX×Y such that

J (A)(y) =
∧
x∈X

(R(x, y)→ A(x)).

Proof. (1) ⇒ (2) Since J is a meet preserving map, then J (uΦ) = uJ→(Φ) for all

Φ ∈ LLX
.

(J1) Define Φ1 : LX → L as Φ1(A) = α and Φ1(B) = 0, otherwise. By Remark 1.8(2),

(uΦ1)(x) =
∧

A∈LX

(Φ1(A)→ A(x)) = α→ A(x).

Since J→(Φ1)(B) =
∨

B=J (A) Φ1(A) and J (uΦ1) = uJ→(Φ1) for all Φ1 ∈ LLX
, we have

uJ→(Φ1)(y) =
∧

B∈LX (J→(Φ1)(B)→ B(y))

=
∧

B∈LX (Φ1(A)→ J (A)(y))

= α→ J (A)(y)

= J (uΦ1)(y) = J (α→ A)(y).

Hence J (α→ A) = α→ J (A).

(J2) Let {Ai ∈ LX | i ∈ Γ} be given. Define Φ : LX → L as Φ(Ai) = 1 for i ∈ Γ and

Φ(B) = 0 otherwise. By Remark 1.8(2),

uΦ(x) =
∧

A∈LX

(Φ(A)→ A(x)) =
∧
i∈Γ

Ai(x).

Since J→(Φ)(B) =
∨

B=J (A) Φ(A) and J (uΦ) = uJ→(Φ) for all Φ ∈ LLX
, we have

uJ→(Φ)(y) =
∧

B∈LY (J→(Φ)(B)→ B(y)) =
∧

B∈LY (
∨

B=J (A) Φ(A)→ B(y))

=
∧

A∈LX (Φ(A)→ J (A)(y)) =
∧

i∈Γ J (Ai)(y)

= J (uΦ)(y) = J (
∧

i∈ΓAi)(y).

Hence J (
∧

i∈ΓAi) =
∧

i∈Γ J (Ai). Thus J is an L-lower approximation operator.

(2) ⇒ (3) Define R(x, y) = J (1∗x)∗(y). Since A =
∧

x∈X(A∗(x)→ 1∗x), we have

J (A)(y) = J (
∧

x∈X(A∗(x)→ 1∗x))(y)

=
∧

x∈X(A∗(x)→ J (1∗x)(y))

=
∧

x∈X(J (1∗x)∗(y)→ A(x))

=
∧

x∈X(R(x, y)→ A(x)).



L-APPROXIMATIONS AND JOIN PRESERVING OPERATORS 1201

(3) ⇒ (1) Put B1 = uJ→(Φ). Then

eLY (B,B1) =
∧

C∈LY (J→(Φ)(C)→ eLY (B,C))

=
∧

C∈LY ((
∨
J (A)=C Φ(A)→ eLY (B,C)))

=
∧

A∈LX (Φ(A)→ eLY (B,J (A))

=
∧

A∈LX eLY (B,Φ(A)→ J (A))

= eLY (B,
∧

A∈LX Φ(A)→ J (A)).

Hence J (uΦ) = uJ→(Φ) from:

uJ→(Φ)(y) = B1(y) =
∧

A∈LX (Φ(A)→ J (A)(y))

=
∧

A∈LX (Φ(A)→
∧

x∈X(R(x, y)→ A(x)))

=
∧

A∈LX

∧
x∈X(Φ(A)→ (R(x, y)→ A(x)))

=
∧

A∈LX

∧
x∈X(Φ(A)�R(x, y)→ A(x))

=
∧

x∈X(R(x, y)→
∧

A∈LX (Φ(A)→ A(x)))

=
∧

x∈X(R(x, y)→ uΦ(x)) (by Remark 1.8(2))

= J (uΦ)(y).

Theorem 2.5.Let X be a set. Let J : LX → LX be an operator. Then the following

statements are equivalent:

(1) J is a meet preserving map with J (1∗x) ≤ 1∗x and J (J (1∗x)) ≥ J (1∗x) for all x ∈ X.

(2) J is an L-lower approximation operator with J (A) ≤ A and J (J (A)) ≥ J (A) for

all A ∈ LX .

(3) There exists a preorder eX ∈ LX×X such that

J (A)(y) =
∨
x∈X

(eX(x, y)→ A(x)).

Proof. (1)⇔ (2) Since A =
∧

x∈X(A∗(x)→ 1∗x), J (A)(y) = J (
∧

x∈X(A∗(x)→ 1∗x))(y) =∧
x∈X(A∗(x)→ J (1∗x)(y)) ≤

∧
x∈X(A∗(x)→ 1∗x)(y) = A(y) and

J (J (A))(y) = J (J (
∧

x∈X(A∗(x)→ 1∗x))(y)

= J (
∧

x∈X(A∗(x)→ J (1∗x)(y)))

=
∧

x∈X(A∗(x)→ J (J (1∗x)(y)))

≥
∧

x∈X(A∗(x)→ J (1∗x)(y)) = J (A)(y).
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(2) ⇒ (3) Define eX(x, y) = J (1∗x)∗(y). Since A =
∧

x∈X(A∗(x)→ 1∗x), we have

J (A)(y) = J (
∧

x∈X(A∗(x)→ 1∗x))(y)

=
∧

x∈X(A∗(x)→ J (1∗x)(y))

=
∧

x∈X(J (1∗x)∗(y)→ A(x))

=
∧

x∈X(eX(x, y)→ A(x)).

Since 1 = 1x(x) ≤ J (1∗x)∗(x) = eX(x, x), then eX is reflexive.

J (J (1∗x))(z) = J (
∧

y∈X(J (1∗x)∗(y)→ 1∗y))(z)

=
∧

x∈X(J (1∗x)∗(y)→ J (1∗y)(z)) ≥ J (1∗x)(z)

⇔ J (1∗x)∗(y)� J (1∗x)(z) ≤ J (1∗y)(z)

⇔ J (1∗x)∗(y)→ J (1∗x)∗(z) ≥ J (1∗y)
∗(z)

⇔ J (1∗x)∗(y)� J (1∗y)
∗(z)) ≤ J (1∗x)∗(z)

⇔ eX(x, y)� eX(y, z) ≤ eX(x, z).

Hence eX(x, y)� eX(y, z) ≤ eX(x, z);i.e. eX is transitive. Thus eX is a preorder.

(3) ⇒ (1) Since J (1∗x)∗(y) = eX(x, y) ≥ 1x(y), then J (1∗x) ≤ 1∗x. Since eX(x, y) �

eX(y, z) ≤ eX(x, z), then J (J (1∗x))(z) ≥ J (1∗x)(z).

Theorem 2.6.Let X and Y be two sets. Let K : LX → LY be an operator. Then the

following statements are equivalent:

(1) K is an L-join meet preserving map.

(2) K is an L-join meet approximation operator.

(3) There exists R ∈ LX×Y such that

K(A)(y) =
∧
x∈X

(A(x)→ R(x, y)).

Proof. (1) ⇒ (2) Since K is an L-join meet preserving map, then K(tΦ) = uK→(Φ) for

all Φ ∈ LLX
.

(K1) Define Φ1 : LX → L as Φ1(A) = α and Φ1(B) = 0, otherwise. Then

(tΦ1)(x) =
∨

A∈LX

(Φ1(A)� A(x)) = α� A(x)
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Since K→(Φ1)(B) =
∨

B=K(A) Φ1(A) and K(tΦ1) = tK→(Φ1) for all Φ1 ∈ LLX
, we have

uK→(Φ1)(y) =
∧

B∈LX (K→(Φ1)(B)→ B(y)) = Φ1(A)→ K(A)(y)

= α→ K(A)(y)

= K(tΦ1)(y) = K(α� A)(y).

Hence K(α� A) = α→ K(A).

(K2) Let {Ai ∈ LX | i ∈ Γ} be given. Define Φ : LX → L as Φ(Ai) = 1 for i ∈ Γ and

Φ(B) = 0 otherwise. Then

(tΦ)(x) =
∨

A∈LX

(Φ(A)� A(x)) =
∨
i∈Γ

Ai(x).

Since K→(Φ)(B) =
∨

B=K(A) Φ(A) and K(tΦ) = uK→(Φ) for all Φ ∈ LLX
, we have

uK→(Φ)(y) =
∧

B∈LY (K→(Φ)(B)→ B(y)) =
∧

B∈LY (
∨

B=K(A) Φ(A)→ B(y))

=
∧

A∈LX (Φ(A)→ K(A)(y)) =
∧

i∈ΓK(Ai)(y)

= K(tΦ)(y) = K(
∨

i∈ΓAi)(y).

Hence K(
∨

i∈ΓAi) =
∧

i∈ΓK(Ai).

(2) ⇒ (3) Define R(x, y) = K(1x)(y). Since A =
∨

x∈X(A(x)� 1x), we have

K(A)(y) = K(
∨

x∈X(A(x)� 1x))(y)

=
∧

x∈X(A(x)→ K(1x)(y))

=
∧

x∈X(A(x)→ R(x, y)).

(3) ⇒ (1) Put B1 = uK→(Φ). Then

eLY (B,B1) =
∧

C∈LY (K→(Φ)(C)→ eLY (B,C))

=
∧

C∈LY ((
∨
K(A)=C Φ(A)→ eLY (B,K(A)))

=
∧

A∈LX (Φ(A)→ eLY (B,K(A))

=
∧

A∈LX eLY (B,Φ(A)→ K(A)) (by Lemma 1.2(5))

= eLY (B,
∧

A∈LX Φ(A)→ K(A)).
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Hence K(tΦ) = uK→(Φ) from

uK→(Φ)(y) = B1(y) =
∧

A∈LX (Φ(A)→ K(A)(y))

=
∧

A∈LX (Φ(A)→
∧

x∈X(A(x)→ R(x, y)))

=
∧

A∈LX

∧
x∈X(Φ(A)→ (A(x)→ R(x, y)))

=
∧

A∈LX

∧
x∈X(Φ(A)� A(x)→ R(x, y)) (by Lemma 1.2(5))

=
∧

x∈X(
∨

A∈LX (Φ(A)� A(x))→ R(x, y))

=
∧

x∈X(tΦ(x)→ R(x, y))

= K(tΦ)(y).

Theorem 2.7.Let X and Y be two sets. Let M : LX → LY be an operator. Then the

following statements are equivalent:

(1) M is an L-meet join preserving map.

(2) M is an L-meet join approximation operator.

(3) There exists R ∈ LX×Y such that

M(A)(y) =
∨
x∈X

(A∗(x)�R(x, y)).

Proof. (1) ⇒ (2) Since M is an L-meet join operator, then M(uΦ) = tM→(Φ) for all

Φ ∈ LLX
.

(M1) Define Φ1 : LX → L as Φ1(A) = α and Φ1(B) = 0 otherwise. Then

(uΦ1)(x) =
∧

A∈LX

(Φ1(A)→ A(x)) = α→ A(x).

SinceM→(Φ1)(B) =
∨

B=M(A) Φ1(A) andM(uΦ1) = tM(Φ1) for all Φ1 ∈ LLX
, we have

tM→(Φ1)(y) =
∨

B∈LX (M→(Φ1)(B)�B(y))

= Φ1(A)�M(A)(y) = α�M(A)(y)

=M(uΦ1)(y) =M(α→ A)(y).

Hence M(α→ A) = α�M(A).
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(M2) Let {Ai ∈ LX | i ∈ Γ} be given. Define Φ : LX → L as Φ(Ai) = 1 for i ∈ Γ and

Φ(B) = 0 otherwise. Then

(uΦ)(x) =
∧

A∈LX

(Φ(A)→ A(x)) =
∧
i∈Γ

Ai(x).

Since M→(Φ)(B) =
∨

B=M(A) Φ(A) and M(uΦ) = tM→(Φ) for all Φ ∈ LLX
, we have

tM→(Φ)(y) =
∨

A∈LX (M→(Φ)(B)�B(y))

=
∨

B=M(A)(Φ(A)�M(A)(y)) =
∨

i∈ΓM(Ai)(y)

=M(uΦ)(y) =M(
∧

i∈ΓAi)(y).

Hence M(
∧

i∈Γ Ai) =
∨

i∈ΓM(Ai). Thus M is an L-meet join approximation operator.

(2) ⇒ (3) Define R(x, y) =M(1∗x)(y). Since A =
∧

x∈X(A∗(x)→ 1∗x), we have

M(A)(y) =M(
∧

x∈X(A(x)∗ → 1∗x)(y)

=
∨

x∈X(A(x)∗ �M(1∗x)(y))

=
∨

x∈X(A(x)∗ �R(x, y)).

(3) ⇒ (1) Put B0 = tM→(Φ). Then

eLY (B0, B) =
∧

C∈LY (M→(Φ)(C)→ eLY (C,B))

=
∧

C∈LY ((
∨
M(A)=C Φ(A)→ eLY (M(A), B))

=
∧

A∈LX (Φ(A)→ eLY (M(A), B))

= eLY (
∨

A∈LX (Φ(A)�M(A)), B).

Hence M(uΦ) = tM→(Φ) from:

tM→(Φ)(y) = B0(y) =
∨

A∈LX (Φ(A)�M(A)(y))

=
∨

A∈LX (Φ(A)�
∨

x∈X(A∗(x)�R(x, y)))

=
∨

x∈X(
∨

A∈LX (Φ(A)� A∗(x))�R(x, y))

=
∨

x∈X((
∧

A∈LX (Φ(A)→ A(x)))∗ �R(x, y)) (by Lemma 1.2(6))

=
∨

x∈X((uΦ)∗(x)�R(x, y))

=M(uΦ)(y).

Theorem 2.8.Let H : LX → LY and J : LY → LX be maps. Then the following

statements are equivalent:

(1) (eLX ,H,J , eLY ) is a residuated connection.
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(2) H(tΦ) = tH→(Φ) and J (uΦ) = uJ→(Φ) with H(1x)(y) = J (1∗y)
∗(x) for all

Φ ∈ LLX
.

(3) H is an L-upper approximation operator and J is an L-lower approximation oper-

ator with H(1x)(y) = J (1∗y)
∗(x)

(4) There exists R ∈ LX×Y such that

H(A)(y) =
∨
x∈X

(A(x)�R(x, y)),

J (B)(x) =
∨
y∈Y

(R(x, y)→ B(y)).

Proof. (1)⇒ (2). Put B0 = tH→(Φ). Then

eLY (B0, B) =
∧

C∈LY (H→(Φ)(C)→ eLY (C,B))

=
∧

C∈LY ((
∨
H(A)=C Φ(A)→ eLY (C,B))

=
∧

A∈LX (Φ(A)→ eLY (H(A), B))

=
∧

A∈LX (Φ(A)→ eLX (A,J (B)))

= eLX (
∨

A∈LX (Φ(A)� φ(A)),J (B))

= eLX (tΦ,J (B)) = eLY (H(tΦ), B)

Hence H(tΦ) = tH→(Φ).

Put B1 = uJ→(Φ). Then

eLX (B,B1) =
∧

C∈LX (J→(Φ)(C)→ eLX (B,C))

=
∧

C∈LX (
∨
J (A)=C Φ(A)→ eLX (B,C))

=
∧

A∈LY (Φ(A)→ eLX (B,J (A)))

=
∧

A∈LX (Φ(A)→ eLY (H(B), A))

= eLY (H(B),
∧

A∈LX (Φ(A)→ (A)))

= eLY (H(B),uΦ))

= eLX (B,J (uΦ)).

Hence J (uΦ) = uJ→(Φ).
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J (1∗y)(x) = eLX (1x,J (1∗y)) = eLY (H(1x), 1∗y)

= eLY (1y,H(1x)∗) = H(1x)∗(y).

(2)⇒ (3) and (3)⇒ (4) are follows from Theorems 2.2 and 2.4.

(4)⇒ (1). For each A ∈ LX , B ∈ LY ,

eLY (H(A), B) =
∧

y∈Y (H(A)(y)→ B(y))

=
∧

y∈Y

(∨
x∈X(A(x)�R(x, y))→ B(y)

)
=
∧

y∈Y
∧

x∈X

(
A(x)→ (R(x, y)→ B(y))

)
=
∧

x∈X

(
A(x)→

∧
y∈Y (R(x, y)→ B(y))

)
=
∧

x∈X

(
A(x)→ J (B)(x)

)
= eLX (A,J (B)).

Theorem 2.9.Let K1 : LX → LY and K2 : LY → LX be maps. Then the following

statements are equivalent:

(1) (eLX ,K1,K2, eLY ) is a Galois connection.

(2) Ki(tΦ) = uK→i (Φ) with K1(1x)(y) = K2(1y)(x) for all i ∈ {1, 2},Φ ∈ LLX
.

(3) For all i ∈ {1, 2}, Ki is an L-join meet approximation operator with K1(1x)(y) =

K2(1y)(x) for x ∈ X, y ∈ Y .

(4) There exists R ∈ LX×Y such that

K1(A)(y) =
∨
x∈X

(A(x)→ R(x, y)),

K2(B)(x) =
∨
y∈Y

(B(y)→ R(x, y)).

Proof. (1)⇒ (2). Put B1 = uK→1 (Φ). Then

eLY (B,B1) =
∧

C∈LY (K→1 (Φ)(C)→ eLY (B,C))

=
∧

C∈LY (
∨
K1(A)=C Φ(A)→ eLY (B,C))

=
∧

A∈LX (Φ(A)→ eLY (B,K1(A)))

=
∧

A∈LX (Φ(A)→ eLX (A,K2(B))

= eLX (
∨

A∈LX (Φ(A)� A),K2(B))

= eLY (B,K1(
∨

A∈LX (Φ(A)� A)))

= eLY (B,K1(tΦ)).
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Hence K1(tΦ) = uK→1 (Φ). Similarly, K2(tΦ) = uK→2 (Φ). Moreover,

K1(1x)(y) = eLY (1y, K1(1x)) = eLX (1x, K2(1y)) = K2(1y)(x).

(2)⇒ (3) and (3)⇒ (4) are follows from Theorem 2.6.

(4)⇒ (1) For each A ∈ LX , B ∈ LY ,

eLX (A,K2(B)) =
∧

x∈X(A(x)→ K2(B)(x))

=
∧

x∈X

(
A(x)→

∧
y∈Y (B(y)→ R(x, y))

)
=
∧

x∈X

(
A(x)→

∧
y∈Y (B(y)→ R(x, y))

)
=
∧

x∈X
∧

y∈Y

(
A(x)→ (B(y)→ R(x, y))

)
=
∧

x∈X
∧

y∈Y

(
B(y)→ (A(x)→ R(x, y))

)
=
∧

x∈X
∧

y∈Y

(
B(y)→

∧
x∈X(A(x)→ R(x, y))

)
= eLY (B,K1(A))

Theorem 2.10.Let M1 : LX → LY and M2 : LY → LX be maps. Then the following

statements are equivalent:

(1) (eLX ,M1,M2, eLY ) is a dual Galois connection.

(2) Mi(uΦ) = tM→
i (Φ) with M1(1∗x)(y) =M2(1∗y)(x) for all i ∈ {1, 2},Φ ∈ LLX

.

(3) For all i ∈ {1, 2}, Mi is an L-meet join operator with M1(1∗x)(y) =M2(1∗y)(x) for

x ∈ X, y ∈ Y .

(4) There exists R ∈ LX×Y such that

M1(A)(y) =
∨
x∈X

(A∗(x)�R(x, y)),

M2(B)(x) =
∨
y∈Y

(B∗(y)�R(x, y)).
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Proof. (1)⇒ (2). Put B0 = tM→
1 (Φ). Then

eLY (B0, B) =
∧

C∈LY (M→
1 (Φ)(C)→ eLY (C,B))

=
∧

C∈LY ((
∨
M1(A)=C Φ(A)→ eLY (C,B))

=
∧

A∈LX (Φ(A)→ eLY (M1(A), B))

=
∧

A∈LX (Φ(A)→ eLX (M2(B), A))

=
∧

x∈X(M2(B)Φ(A)→
∧

A∈LX (Φ(A), A))

= eLX (M2(B),
∧

A∈LX (Φ(A)→ A))

= eLY (M1(uΦ), B).

Hence M1(uΦ) = tM→
1 (Φ). Similarly, M2(uΦ) = tM→

2 (Φ). Moreover,

M1(1∗x)∗(y) = eLY (M1(1∗x), 1∗y) = eLX (M2(1∗y), 1
∗
x) =M1(1∗x)∗(y).

(2)⇒ (3) and (3)⇒ (4) are follows from Theorem 2.7.

(4)⇒ (1). For each A ∈ LX , B ∈ LY ,

eLX (M2(B), A) =
∧

x∈X(M2(B)(x)→ A(x))

=
∧

x∈X

(∨
y∈Y B

∗(y)�R(x, y)→ A(x)
)

=
∧

x∈X
∧

y∈Y

(
B∗(y)→ (R(x, y)→ A(x))

)
=
∧

x∈X
∧

y∈Y

(
(R(x, y)→ A(x))∗ → (B(y)∗)∗

)
=
∧

y∈Y

(∨
x∈X(R(x, y)→ A(x))∗ → B(y)

)
=
∧

y∈Y

(∨
x∈X(A(x)∗ �R(x, y))→ B(y)

)
= eLY (M1(A), B).
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[2] R. Bělohlávek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic,128 (2004), 277-298.

[3] J.G. Garcia, I.M. Perez, M.A. Vicente, D. Zhang, Fuzzy Galois connections categorically, Math. Log.

Quart., 56(2) (2010), 131-147.
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