Available online at http://scik.org J. Math. Comput. Sci. 3 (2013), No. 4, 1163-1168 ISSN: 1927-5307

A NEW CLOSURE OPERATOR IN BITOPOLOGICAL SPACES

P.G. PATIL

Department of Mathematics, SKSVM Agadi College of Engineering & Technology, Laxmeshwar-582116, Karnataka, India

Abstract: In this paper we introduce a concept of $\omega\alpha$ -closure in bitopological spaces and derive some basic properties of $\omega\alpha$ -closure in a bitopological spaces.

Key words: Bitopological Spaces, wa-closed sets, wa-closure.

2000 AMS Subject Classification: 54A05, 54E55

1. Introduction

In 2007, Benchalli et al.[1] introduced the notion of $\omega \alpha$ - closed sets using ω -open sets[8] and showed that this class properly contains the class of α -sets. Recently the present author extended the notion of $\omega \alpha$ -closed sets to bitopological spaces [7]. Dunham [3] introduced the concept of generalized closure operator c* using generalized closed sets of Levine [6]. Then Fukutake [4] introduced and studied the concept of pairwise generalized closure operator (τ_i, τ_j) - cl* in bitopological spaces.

In this paper, we introduce the notion of $\omega\alpha$ -closure operator in bitopological spaces by using $\omega\alpha$ -closed sets in bitopological spaces [7]. Also it is proved that $\omega\alpha$ - closure satisfies Kuratowaski closure operator type properties in bitopological spaces.

We recall some definitions and concepts which are useful in the following sections.

2. Preliminaries:

Received June 9, 2013

If A is a subset of X with a topology τ , then the closure, interior and α -closure of A is denoted by cl(A), int(A) and α cl(A) respectively and the complement of A is denoted by A^c or X - A

Definition 2.2: A subset A of a topological space X is called ω -closed [8] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in X. The compliment of ω -closed set is ω -open.

Definition 2.3: Let (X, τ) be a topological space and let $A \subset X$. Then A is called $\omega\alpha$ -closed set [1] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open in (X, τ) and its compliment A^c (or X - A) is called $\omega\alpha$ - open.

Definition 2.4: A topological space (X,τ) is said to be $T_{\omega\alpha}$ -space [1] if every $\omega\alpha$ -closed set is closed.

Throughout this paper the spaces X and Y always represent nonempty bitopological spaces (X, τ_1, τ_2) and (Y, μ_1, μ_2) on which no separation axioms are assumed unless explicitly mentioned and the integers i, $j \in \{1, 2\}$. For a $A \subset X$, τ_i - cl(A), τ_i - int(A) and τ_i - α cl(A) denote the closure of A, interior of A, and α -closure of A with respect of the topology τ_i respectively.

We denote the family of all (τ_i, τ_j) - $\omega \alpha$ - closed sets in (X, τ_1, τ_2) by B (τ_i, τ_j) .

Definition 2.5: Let i, $j \in \{1, 2\}$ be fixed integers. In a bitopological space (X, τ_1 , τ_2), a subset A of (X, τ_1 , τ_2) is called (τ_i , τ_j) - $\omega\alpha$ - closed set [7] if τ_j -cl(A)) \subseteq U whenever A \subseteq U and U is ω -open set in τ_i .

Definition 2.6: A bitopological space (X, τ_1, τ_2) is called $(\tau_i, \tau_j) - T_{\omega\alpha}$ - space [7] if every $(\tau_i, \tau_j) - \omega\alpha$ - closed set is τ_j - closed.

3. ωα -Closure in Bitopological Spaces

In this section we define (τ_i, τ_j) - $\omega \alpha$ closure and study some characterizations.

Definition 3.1: Let (X, τ_1, τ_2) be a bitopological space and E be a subset of X. Then $\omega \alpha$ -closure of E denoted by $(\tau_i, \tau_j) - \omega \alpha cl^*(E)$ is defined as $(\tau_i, \tau_j) - \omega \alpha cl^*(E) = \bigcap \{A \subseteq X / E \subseteq A \in B(\tau_i, \tau_j)\}$.

Theorem 3.2: If E and F are subsets of a bitopological space (X, τ_1 , τ_2), then the following properties hold good:

- (i) $(\tau_i, \tau_j) \omega \alpha c l^*(X) = X.$
- (ii) $(\tau_i, \tau_j) \omega \alpha c l^*(\phi) = \phi.$
- (iii) $A \subseteq (\tau_i, \tau_j) \omega \alpha cl^*(A).$
- (iv) If B is any (τ_i, τ_j) $\omega\alpha$ -closed set containing A, then (τ_i, τ_j) $\omega\alpha cl^*(A) \subseteq B$

Proof: Follows from the Definition 3.1.

Theorem 3.3: Let E be a subset of (X, τ_1, τ_2) . Then, we have the following results:

- (i) $E \subseteq (\tau_i, \tau_j) \omega \alpha cl^*(E) \subseteq \tau_j \omega \alpha cl(E).$
- (ii) If E is (τ_i, τ_j) $\omega\alpha$ -closed then (τ_i, τ_j) $\omega\alpha$ cl*(E) = E.

Proof: (i) $E \subseteq (\tau_i, \tau_j) - \omega \alpha cl^*(E)$ follows from the Definition 3.1 Suppose that B is τ_j -closed set. So B is (τ_i, τ_j) - $\omega \alpha$ -closed. Then $\{\tau_j - \text{closed set}\} \subseteq \{(\tau_i, \tau_j) - \omega \alpha$ -closed set $\} \cap \{(\tau_i, \tau_j) - \omega \alpha$ -closed set containing E $\} \subseteq \cap \{\tau_j - \text{closed set containing E}\}$. That is $(\tau_i, \tau_j) - \omega \alpha cl^*(E) \subseteq \tau_j - \omega \alpha cl(E)$.

(ii) Follows from Definition 3.1 and Theorem 3.3(i).

Remark 3.4: The containment relations in the Theorem 3.3(i) may be proper and the converse of the Theorem 3.3(ii) is not true in general as seen from the following examples.

Example 3.5: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b, c\}, X\}$. Then the subset $A = \{b\}$ of $X, (\tau_1, \tau_2) - \omega\alpha cl^*(\{b\}) = \{b, c\}$ and $\tau_2 - \omega\alpha cl(\{b\}) = \{b, c\}$. So $E \subseteq (\tau_i, \tau_j) - \omega\alpha cl^*(E) \subseteq \tau_i$ - $\omega\alpha cl(E)$.

Example 3.6: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. Then for a subset A = $\{a\}$ of $(X, \tau_1, \tau_2), (\tau_1, \tau_2) - \omega\alpha cl^*(\{a\}) = \{a\}$ but A is not $(\tau_1, \tau_2) - \omega\alpha - closed$ set.

Theorem 3.7: Let E and F be two subsets of (X, τ_1, τ_2) .

- (i) If $E \subseteq F$, then $(\tau_i, \tau_j) \omega \alpha cl^*(E) \subseteq (\tau_i, \tau_j) \omega \alpha cl^*(F)$
- (ii) If $\tau_1 \subseteq \tau_2$, then $(\tau_1, \tau_2) \omega \alpha cl^*(E) \subseteq (\tau_2, \tau_1) \omega \alpha cl^*(E)$.

Proof: (i) Let $E \subseteq F$. By Definition 3.1, $(\tau_i, \tau_j) - \omega \alpha cl^*(F) = \bigcap \{A \subseteq X / F \subseteq A \in B(\tau_i, \tau_j)\}$. If $F \subseteq A \in B(\tau_i, \tau_j)$, then $E \subseteq F \subseteq A \in B(\tau_i, \tau_j)$. We have $(\tau_i, \tau_j) - \omega \alpha cl^*(E) \subseteq A$. Then $(\tau_i, \tau_j) - \omega \alpha cl^*(E) \subseteq A$.

$$\begin{split} & \omega \alpha cl^*(E) \subseteq \cap \{A: F \subseteq A \in B(\tau_i, \tau_j)\} = (\tau_i, \tau_j) - \omega \alpha cl^*(F). \text{ That is } (\tau_i, \tau_j) - \omega \alpha cl^*(E) \subseteq (\tau_i, \tau_j) - \omega \alpha cl^*(F) \end{split}$$

(ii)
$$\tau_1 \subseteq \tau_2$$
 implies $B(\tau_2, \tau_1) \subseteq B(\tau_1, \tau_2)$, which implies
 $\{C \in X/E \subseteq C \in B(\tau_2, \tau_1)\} \subseteq \{A \in X/E \subseteq A \in B(\tau_1, \tau_2)\}$
 $\cap \{A \in X/E \subseteq A \in B(\tau_1, \tau_2)\} \subseteq \cap \{C \in X/E \subseteq C \in B(\tau_2, \tau_1)\}$

Thus $(\tau_1, \tau_2) - \omega \alpha cl^*(E) \subseteq (\tau_2, \tau_1) - \omega \alpha cl^*(E)$.

Theorem 3.8: The operator $(\tau_i, \tau_j) - \omega \alpha c l^*$ is the same as the Kuratowski closure operator. **Proof:**

(i) It follows from Theorem 3.2(ii) that $(\tau_i, \tau_j) - \omega \alpha c l^*(\phi) = \phi$.

(ii) $E \subseteq (\tau_i, \tau_j)$ - $\omega \alpha cl^*(E)$ follows from Theorem 3.3(i).

(iii) Suppose E and F are two sets of (X, τ_1 , τ_2). It follows from Theorem 3.7(i) , (τ_i , τ_j) - $\omega\alpha cl^*(E) \subseteq (\tau_i, \tau_j)$ - $\omega\alpha cl^*(E \cup F)$ and (τ_i, τ_j) - $\omega\alpha cl^*(F) \subseteq (\tau_i, \tau_j)$ - $\omega\alpha cl^*(E \cup F)$. Hence we have (τ_i, τ_j) - $\omega\alpha cl^*(E) \cup (\tau_i, \tau_j)$ - $\omega\alpha cl^*(F) \subseteq (\tau_i, \tau_j)$ - $\omega\alpha cl^*(E \cup F)$.

Now if $x \notin (\tau_i, \tau_j) - \omega \alpha cl^*(E) \cup (\tau_i, \tau_j) - \omega \alpha cl^*(F)$ then there exist $A, B \in B(\tau_i, \tau_j)$ such that $E \subseteq A$, $x \notin A$ and $F \subseteq B, x \notin B$. Hence $E \cup F \subseteq A \cup B$ and $x \notin A \cup B$. Since $A \cup B$ is $(\tau_i, \tau_j) - \omega \alpha$ -closed by [1], $x \notin (\tau_i, \tau_j) - \omega \alpha cl^*(E \cup F)$. Then we have $(\tau_i, \tau_j) - \omega \alpha cl^*(E \cup F) \subseteq (\tau_i, \tau_j) - \omega \alpha cl^*(E) \cup (\tau_i, \tau_j) - \omega \alpha cl^*(F)$. $\tau_j) - \omega \alpha cl^*(F)$. Therefore we have $(\tau_i, \tau_j) - \omega \alpha cl^*(E \cup F) = (\tau_i, \tau_j) - \omega \alpha cl^*(F)$.

(iv) Let E be a subset of (X, τ_1, τ_2) and A be a (τ_i, τ_j) - $\omega\alpha$ -closed set containing E. Since (τ_i, τ_j) - $\omega\alpha cl^*(E) \subseteq A$, we have (τ_i, τ_j) - $\omega\alpha cl^*(E) \supset (\tau_i, \tau_j)$ - $\omega\alpha cl^*((\tau_i, \tau_j) - \omega\alpha cl^*(E))$. Conversely (τ_i, τ_j) - $\omega\alpha cl^*(E) \subseteq (\tau_i, \tau_j)$ - $\omega\alpha cl^*((\tau_i, \tau_j) - \omega\alpha cl^*(E))$ is true by Theorem 3.3(i). Then we have (τ_i, τ_j) - $\omega\alpha cl^*(E) = (\tau_i, \tau_j) - \omega\alpha cl^*((\tau_i, \tau_j) - \omega\alpha cl^*(E))$. Hence the proof.

From the above Theorem 3.8, (τ_i, τ_j) - $\omega \alpha c l^*$ defines a new topology on X.

Definition 3.9: Let i, $j \in \{1, 2\}$ be two fixed integers. Let $\tau_{\omega\alpha}^*(\tau_i, \tau_j)$ be the topology on X generated by $(\tau_i, \tau_j) - \omega\alpha cl^*$ in the usual manner. That is $\tau_{\omega\alpha}^*(\tau_i, \tau_j) = \{E \subseteq X; (\tau_i, \tau_j) - \omega\alpha cl^*(E^c) = E^c\}$.

Theorem 3.10: Let i, $j \in \{1, 2\}$ be two fixed integers. Let (X, τ_1, τ_2) be a bitopological space, then $\tau_j \subseteq \tau_{\omega\alpha}^*(\tau_i, \tau_j)$.

Proof: Let G be any τ_{j} - open set. It follows that G^{c} is τ_{j} - closed. By [1], G^{c} is $(\tau_{i}, \tau_{j}) - \omega \alpha$ -closed. Therefore $(\tau_{i}, \tau_{j}) - \omega \alpha cl^{*}(G^{c}) = G^{c}$, by Theorem 3.3 (ii). That is $G \in \tau_{\omega \alpha}^{*}(\tau_{i}, \tau_{j})$ and hence $\tau_{j} \subseteq \tau_{\omega \alpha}^{*}(\tau_{i}, \tau_{j})$.

Remark 3.11: Containment relation in the above Theorem 3.10 may be proper as seen from the following example.

Example 3.12: In Example 3.5, the (τ_1, τ_2) - $\omega\alpha$ -closed sets are ϕ , {a}, {c}, {a, c}, {b, c}, X and $\tau_{\omega\alpha}^*(\tau_1, \tau_2) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Clearly $\tau_2 \subseteq \tau_{\omega\alpha}^*(\tau_1, \tau_2)$ but $\tau_2 \neq \tau_{\omega\alpha}^*(\tau_1, \tau_2)$.

Theorem 3.13: Let i, $j \in \{1,2\}$ be two fixed integers. Let (X, τ_1, τ_2) be a bitopological space. If a subset E of X is (τ_i, τ_j) - $\omega\alpha$ -closed, then E is $\tau_{\omega\alpha}^*(\tau_1, \tau_2)$ - closed.

Proof: Let a subset E of X be (τ_i, τ_j) - $\omega\alpha$ -closed. By Theorem 3.3(ii), (τ_i, τ_j) - $\omega\alpha cl^*(E) = E$. That is (τ_i, τ_j) - $\omega\alpha cl^*\{(E^c)^c\} = (E^c)^c$. It follows that $E^c \subseteq \tau_{\omega\alpha}^*(\tau_i, \tau_j)$. Therefore E is $\tau_{\omega\alpha}^*(\tau_i, \tau_j)$ - closed.

However the converse of the above Theorem 3.13 need not be true as seen from the following example.

Example 3.14: In Example 3.5, the set $A = \{b\}$ is $\tau_{\omega\alpha}^*(\tau_1, \tau_2)$ - closed but not (τ_1, τ_2) - $\omega\alpha$ - closed in (X, τ_1, τ_2) .

Theorem 3.15: For any point x of (X, τ_1, τ_2) , $\{x\}$ is $\tau_i - \omega$ -closed or $\{x\}^c$ is $\tau^*(\tau_i, \tau_j)$ -closed. **Proof:** Suppose $\{x\}$ is not $\tau_i - \omega$ -closed. Then $\{x\}^c$ is $(\tau_i, \tau_j) - \omega\alpha$ -closed by[1]. Then by Theorem 3.10 (ii), $\{x\}^c$ is $\tau^*(\tau_i, \tau_j)$ -closed.

Corollary 3.16: If $\tau_1 \subseteq \tau_2$ in (X, τ_1, τ_2) then $\tau^*(\tau_2, \tau_1) \subseteq \tau^*(\tau_1, \tau_2)$.

Proof: Let $E \in \tau^*(\tau_2, \tau_1)$. Then $E \in \tau^*(\tau_1, \tau_2)$ by Theorems 3.5(ii), 3.3(ii) and by assumption. Hence $\tau^*(\tau_2, \tau_1) \subseteq \tau^*(\tau_1, \tau_2)$.

REFERENCES

- Benchalli S. S., P.G.Patil and T.D.Rayanagoudar, ωα-closed sets in Topological Spaces, The Global JI Appl Maths and Math Sciences, Vol.2, No.1-2(2009), 53-63.
- [2] Benchalli S. S. and P.G.Patil, Some New Continuous Maps in Topological Spaces, Jl of Advanced Studies in Topology, Vol.1, No.2 (2010), 16-21.
- [3] W. Dunham, A new closure operator for non-T₁ topologies, Kyungpook Math. J., 22(1982), 55-60.
- [4] T. Fukutake, On generalized closed sets in Bitopological Spaces, Bull. Fakuoka Univ. Edn. Vol.35, Part III(1985), 19-28.
- [5] J. C. Kelly, Bitopological Spaces, Proc. London Math. Soc. (3), 13(1962), 71-89.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96.
- [7] P.G.Patil, ωα-Closed Sets in Bitopological Spaces, International Jl. of Advances in Management, Technology and Engineering Sciences, Vol.II,3(IV) (2012),111-114.
- [8] P. Sundaram and M. Sheik John, On ω-closed sets in Topology, Acta Ciencia Indica, 4(2000), 389-392.