A NEW CLOSURE OPERATOR IN BITOPOLOGICAL SPACES

P.G. PATIL
Department of Mathematics, SKSVM Agadi College of Engineering \& Technology, Laxmeshwar-582116, Karnataka, India

Abstract

In this paper we introduce a concept of $\omega \alpha$-closure in bitopological spaces and derive some basic properties of $\omega \alpha$-closure in a bitopological spaces.

Key words: Bitopological Spaces, $\omega \alpha$-closed sets, $\omega \alpha$-closure.
2000 AMS Subject Classification: 54A05, 54E55

1. Introduction

In 2007, Benchalli et al.[1] introduced the notion of $\omega \alpha$ - closed sets using ω-open sets[8] and showed that this class properly contains the class of α-sets. Recently the present author extended the notion of $\omega \alpha$-closed sets to bitopological spaces [7]. Dunham [3] introduced the concept of generalized closure operator c^{*} using generalized closed sets of Levine [6]. Then Fukutake [4] introduced and studied the concept of pairwise generalized closure operator (τ_{i}, $\left.\tau_{\mathrm{j}}\right)$ - cl* in bitopological spaces.

In this paper, we introduce the notion of $\omega \alpha$-closure operator in bitopological spaces by using $\omega \alpha$-closed sets in bitopological spaces [7]. Also it is proved that $\omega \alpha$-closure satisfies Kuratowaski closure operator type properties in bitopological spaces.

We recall some definitions and concepts which are useful in the following sections.

2. Preliminaries:

If A is a subset of X with a topology τ, then the closure, interior and α-closure of A is denoted by $\operatorname{cl}(A), \operatorname{int}(A)$ and $\operatorname{\alpha cl}(A)$ respectively and the complement of A is denoted by A^{c} or X - A

Definition 2.2: A subset A of a topological space X is called ω-closed [8] if $\operatorname{cl}(A) \subseteq U$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is semi-open in X . The compliment of ω-closed set is ω-open.

Definition 2.3: Let (X, τ) be a topological space and let $A \subset X$. Then A is called $\omega \alpha$-closed set $[1]$ if $\alpha c l(A) \subseteq U$ whenever $A \subseteq U$ and U is ω-open in (X, τ) and its compliment $A^{c}($ or $X-A)$ is called $\omega \alpha$ - open.

Definition 2.4: A topological space (X, τ) is said to be $\mathrm{T}_{\omega \alpha}$-space [1] if every $\omega \alpha$-closed set is closed.

Throughout this paper the spaces X and Y always represent nonempty bitopological spaces $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ and $\left(\mathrm{Y}, \mu_{1}, \mu_{2}\right)$ on which no separation axioms are assumed unless explicitly mentioned and the integers $\mathrm{i}, \mathrm{j} \in\{1,2\}$. For a $\mathrm{A} \subset \mathrm{X}, \tau_{\mathrm{i}^{-}} \operatorname{cl}(\mathrm{A}), \tau_{\mathrm{i}}-\operatorname{int}(\mathrm{A})$ and $\tau_{\mathrm{i}^{-}} \alpha \operatorname{cl}(\mathrm{A})$ denote the closure of A , interior of A , and α-closure of A with respect of the topology τ_{i} respectively.

We denote the family of all $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha$ - closed sets in $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ by $\mathrm{B}\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$.
Definition 2.5: Let $\mathrm{i}, \mathrm{j} \in\{1,2\}$ be fixed integers. In a bitopological space $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$, a subset A of $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ is called $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha$ - closed set [7] if τ_{j}-cl(A)) $\subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is ω-open set in τ_{i}.

Definition 2.6: A bitopological space $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ is called $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$ - $\mathrm{T}_{\omega \alpha}-$ space [7] if every $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$ $\omega \alpha$-closed set is τ_{j} - closed.

3. $\omega \alpha$-Closure in Bitopological Spaces

In this section we define $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha$ closure and study some characterizations.

Definition 3.1: Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space and E be a subset of X. Then $\omega \alpha$-closure of E denoted by $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{l}^{*}(\mathrm{E})$ is defined as $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} 1^{*}(\mathrm{E})=\cap\left\{\mathrm{A} \subseteq \mathrm{X} / \mathrm{E} \subseteq \mathrm{A} \in \quad \mathrm{B}\left(\tau_{\mathrm{i}}\right.\right.$, $\left.\left.\tau_{\mathrm{j}}\right)\right\}$.

Theorem 3.2: If E and F are subsets of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$), then the following properties hold good:
(i) $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{cl}{ }^{*}(\mathrm{X})=\mathrm{X}$.
(ii) $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{cl}^{*}(\phi)=\phi$.
(iii) $\mathrm{A} \subseteq\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} \mathrm{l}^{*}(\mathrm{~A})$.
(iv) If B is any $\left(\tau_{i}, \tau_{j}\right)-\omega \alpha$-closed set containing A , then $\left.\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c}\right)^{*}(\mathrm{~A}) \subseteq \mathrm{B}$

Proof: Follows from the Definition 3.1.

Theorem 3.3: Let E be a subset of ($\mathrm{X}, \tau_{1}, \tau_{2}$). Then, we have the following results:
(i) $\mathrm{E} \subseteq\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{cl}{ }^{*}(\mathrm{E}) \subseteq \tau_{\mathrm{j}}-\omega \alpha \mathrm{cl}(\mathrm{E})$.
(ii) If E is $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha$-closed then $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} 1^{*}(\mathrm{E})=\mathrm{E}$.

Proof: (i) $\mathrm{E} \subseteq\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c}{ }^{*}(\mathrm{E})$ follows from the Definition 3.1 Suppose that B is τ_{j}-closed set. So B is $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha$-closed. Then $\left\{\tau_{\mathrm{j}}\right.$ - closed set $\} \subseteq\left\{\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha\right.$-closed set $\} \cap\left\{\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha\right.$ closed set containing E$\} \subseteq \cap\left\{\tau_{\mathrm{j}}\right.$ - closed set containing E$\}$. That is $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{cl} *(\mathrm{E}) \subseteq \tau_{\mathrm{j}^{-}}$ $\omega \alpha c l(E)$.
(ii) Follows from Definition 3.1 and Theorem 3.3(i).

Remark 3.4: The containment relations in the Theorem 3.3(i) may be proper and the converse of the Theorem 3.3(ii) is not true in general as seen from the following examples.

Example 3.5: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\},\{b\},\{a, b\}, X\}$ and $\tau_{2}=\{\phi,\{a\},\{b, c\}, X\}$. Then the subset $A=\{b\}$ of $X,\left(\tau_{1}, \tau_{2}\right)-\omega \alpha l^{*}(\{b\})=\{b, c\}$ and $\tau_{2}-\omega \alpha c l(\{b\})=\{b, c\} . \operatorname{So} E \subseteq\left(\tau_{i}, \tau_{j}\right)$ $-\omega \alpha \mathrm{cl}^{*}(\mathrm{E}) \subseteq \tau_{\mathrm{j}}-\omega \alpha \mathrm{cl}(\mathrm{E})$.

Example 3.6: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau_{1}=\{\phi,\{\mathrm{a}\}, \mathrm{X}\}$ and $\tau_{2}=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$.Then for a subset A $=\{\mathrm{a}\}$ of $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right),\left(\tau_{1}, \tau_{2}\right)-\omega \alpha \mathrm{l}^{*}(\{\mathrm{a}\})=\{\mathrm{a}\}$ but A is not $\left(\tau_{1}, \tau_{2}\right)-\omega \alpha$-closed set.

Theorem 3.7: Let E and F be two subsets of $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$.
(i) If $\mathrm{E} \subseteq \mathrm{F}$, then $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} l^{*}(\mathrm{E}) \subseteq\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{cl} *(\mathrm{~F})$
(ii) If $\tau_{1} \subseteq \tau_{2}$, then $\left(\tau_{1}, \tau_{2}\right)-\omega \alpha \mathrm{cl}^{*}(\mathrm{E}) \subseteq\left(\tau_{2}, \tau_{1}\right)-\omega \alpha \mathrm{cl}^{*}(\mathrm{E})$.

Proof: (i) Let $\mathrm{E} \subseteq \mathrm{F}$. By Definition 3.1, $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c}^{*}(\mathrm{~F})=\cap\left\{\mathrm{A} \subseteq \mathrm{X} / \mathrm{F} \subseteq \mathrm{A} \in \mathrm{B}\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)\right\}$. If F $\subseteq \mathrm{A} \in \mathrm{B}\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$, then $\mathrm{E} \subseteq \mathrm{F} \subseteq \mathrm{A} \in \mathrm{B}\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$. We have $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha{ }^{*}(\mathrm{E}) \subseteq \mathrm{A}$. Then $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-$
$\omega \alpha \mathrm{cl}^{*}(\mathrm{E}) \subseteq \cap\left\{\mathrm{A}: \mathrm{F} \subseteq \mathrm{A} \in \mathrm{B}\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)\right\}=\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} l^{*}(\mathrm{~F})$. That is $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{cl}{ }^{*}(\mathrm{E}) \subseteq\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-$ $\omega \alpha \mathrm{c}{ }^{*}(\mathrm{~F})$
(ii) $\quad \tau_{1} \subseteq \tau_{2}$ implies $\mathrm{B}\left(\tau_{2}, \tau_{1}\right) \subseteq \mathrm{B}\left(\tau_{1}, \tau_{2}\right)$, which implies

$$
\begin{aligned}
& \left\{\mathrm{C} \in \mathrm{X} / \mathrm{E} \subseteq \mathrm{C} \in \mathrm{~B}\left(\tau_{2}, \tau_{1}\right)\right\} \subseteq\left\{\mathrm{A} \in \mathrm{X} / \mathrm{E} \subseteq \mathrm{~A} \in \mathrm{~B}\left(\tau_{1}, \tau_{2}\right)\right\} \\
& \cap\left\{\mathrm{A} \in \mathrm{X} / \mathrm{E} \subseteq \mathrm{~A} \in \mathrm{~B}\left(\tau_{1}, \tau_{2}\right)\right\} \subseteq \cap\left\{\mathrm{C} \in \mathrm{X} / \mathrm{E} \subseteq \mathrm{C} \in \mathrm{~B}\left(\tau_{2}, \tau_{1}\right)\right\}
\end{aligned}
$$

Thus $\left(\tau_{1}, \tau_{2}\right)-\omega \alpha \mathrm{cl}^{*}(\mathrm{E}) \subseteq\left(\tau_{2}, \tau_{1}\right)-\omega \alpha \mathrm{cl} *(\mathrm{E})$.

Theorem 3.8: The operator $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c}^{*}$ is the same as the Kuratowski closure operator.
Proof:
(i) It follows from Theorem 3.2(ii) that $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} \mathrm{l}^{*}(\phi)=\phi$.
(ii) $\mathrm{E} \subseteq\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c}^{*}(\mathrm{E})$ follows from Theorem 3.3(i).
(iii) Suppose E and F are two sets of $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$. It follows from Theorem 3.7(i), $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$ $\omega \alpha \mathrm{l}^{*}(\mathrm{E}) \subseteq\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} l^{*}(\mathrm{E} \cup \mathrm{F})$ and $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} 1^{*}(\mathrm{~F}) \subseteq\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} \mathrm{l}^{*}(\mathrm{E} \cup \mathrm{F})$. Hence we have $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{cl}{ }^{*}(\mathrm{E}) \cup\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{cl}{ }^{*}(\mathrm{~F}) \subseteq\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c}{ }^{*}(\mathrm{E} \cup \mathrm{F})$.

Now if $\mathrm{x} \notin\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c}^{*}(\mathrm{E}) \cup\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c}^{*}(\mathrm{~F})$ then there exist $\mathrm{A}, \mathrm{B} \in \mathrm{B}\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$ such that $\mathrm{E} \subseteq \mathrm{A}$, $x \notin A$ and $F \subseteq B, x \notin B$. Hence $E \cup F \subseteq A \cup B$ and $x \notin A \cup B$. Since $A \cup B$ is $\left(\tau_{i}, \tau_{j}\right)-\omega \alpha$-closed by $[1], \mathrm{x} \notin\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c}^{*}(\mathrm{E} \cup \mathrm{F})$. Then we have $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} 1^{*}(\mathrm{E} \cup \mathrm{F}) \subseteq\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c}^{*}(\mathrm{E}) \cup\left(\tau_{\mathrm{i}}\right.$, $\left.\tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} l^{*}(\mathrm{~F})$. Therefore we have $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} 1^{*}(\mathrm{E} \cup \mathrm{F})=\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} l^{*}(\mathrm{E}) \cup\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} l^{*}(\mathrm{~F})$.
(iv) Let E be a subset of $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ and A be $\mathrm{a}\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$ - $\omega \alpha$-closed set containing E . Since $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$ $\omega \alpha \mathrm{cl} *(\mathrm{E}) \subseteq \mathrm{A}$, we have $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{cl} *(\mathrm{E}) \supset\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{cl} *\left(\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{cl} *(\mathrm{E})\right)$. Conversely $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$ $-\omega \alpha{ }^{*}(\mathrm{E}) \subseteq\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{l}^{*}\left(\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{l}^{*}(\mathrm{E})\right)$ is true by Theorem 3.3(i). Then we have $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$ $\omega \alpha l^{*}(E)=\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{l}^{*}\left(\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c}^{*}(\mathrm{E})\right)$. Hence the proof.

From the above Theorem 3.8, $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{l}^{*}$ defines a new topology on X .

Definition 3.9: Let $\mathrm{i}, \mathrm{j} \in\{1,2\}$ be two fixed integers. Let $\tau_{\omega \alpha} *\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$ be the topology on X generated by $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} 1^{*}$ in the usual manner. That is $\tau_{\omega \alpha} *\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)=\left\{\mathrm{E} \subseteq \mathrm{X} ;\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{c} l^{*}\left(\mathrm{E}^{\mathrm{c}}\right)\right.$ $\left.=E^{c}\right\}$.

Theorem 3.10: Let $\mathrm{i}, \mathrm{j} \in\{1,2\}$ be two fixed integers. Let $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ be a bitopological space, then $\tau_{\mathrm{j}} \subseteq \tau_{\omega \alpha} *\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$.

Proof: Let G be any τ_{j} - open set. It follows that G^{c} is τ_{j} - closed. By [1], G^{c} is $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha$-closed. Therefore $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathrm{cl}{ }^{*}\left(\mathrm{G}^{\mathrm{c}}\right)=\mathrm{G}^{\mathrm{c}}$, by Theorem 3.3 (ii). That is $\mathrm{G} \in \tau_{\omega \alpha} *\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$ and hence $\tau_{j} \subseteq \tau_{\omega \alpha}{ }^{*}\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$.

Remark 3.11: Containment relation in the above Theorem 3.10 may be proper as seen from the following example.

Example 3.12: In Example 3.5, the $\left(\tau_{1}, \tau_{2}\right)-\omega \alpha$-closed sets are $\phi,\{a\},\{c\},\{a, c\},\{b, c\}, X$ and $\tau_{\omega \alpha}{ }^{*}\left(\tau_{1}, \tau_{2}\right)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$. Clearly $\tau_{2} \subseteq \tau_{\omega \alpha} *\left(\tau_{1}, \tau_{2}\right)$ but $\tau_{2} \neq \tau_{\omega \alpha} *\left(\tau_{1}, \tau_{2}\right)$.

Theorem 3.13: Let $\mathrm{i}, \mathrm{j} \in\{1,2\}$ be two fixed integers. Let $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ be a bitopological space. If a subset E of X is $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha$-closed, then E is $\tau_{\omega \alpha}{ }^{*}\left(\tau_{1}, \tau_{2}\right)$-closed.

Proof: Let a subset E of X be $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha$-closed. By Theorem 3.3(ii), $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha{ }^{*}(\mathrm{E})=\mathrm{E}$. That is $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha \mathcal{c}^{*}\left\{\left(\mathrm{E}^{\mathrm{c}}\right)^{\mathrm{c}}\right\}=\left(\mathrm{E}^{\mathrm{c}}\right)^{\mathrm{c}}$. It follows that $\mathrm{E}^{\mathrm{c}} \subseteq \tau_{\omega \alpha} *\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$. Therefore E is $\tau_{\omega \alpha} *\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-$ closed.

However the converse of the above Theorem 3.13 need not be true as seen from the following example.

Example 3.14: In Example 3.5, the set $\mathrm{A}=\{\mathrm{b}\}$ is $\tau_{\omega \alpha} *\left(\tau_{1}, \tau_{2}\right)$ - closed but not $\left(\tau_{1}, \tau_{2}\right)-\omega \alpha$ - closed in (X, τ_{1}, τ_{2}).

Theorem 3.15: For any point x of $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$, $\{\mathrm{x}\}$ is $\tau_{\mathrm{i}}-\omega$-closed or $\{\mathrm{x}\}^{\mathrm{c}}$ is $\tau^{*}\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$-closed.
Proof: Suppose $\{\mathrm{x}\}$ is not $\tau_{\mathrm{i}}-\omega$-closed. Then $\{\mathrm{x}\}^{\mathrm{c}}$ is $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)-\omega \alpha$-closed by[1] .Then by Theorem 3.10 (ii), $\{\mathrm{x}\}^{\mathrm{c}}$ is $\tau^{*}\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$-closed.

Corollary 3.16: If $\tau_{1} \subseteq \tau_{2}$ in $\left(X, \tau_{1}, \tau_{2}\right)$ then $\tau^{*}\left(\tau_{2}, \tau_{1}\right) \subseteq \tau^{*}\left(\tau_{1}, \tau_{2}\right)$.
Proof: Let $\mathrm{E} \in \tau^{*}\left(\tau_{2}, \tau_{1}\right)$.Then $\mathrm{E} \in \tau^{*}\left(\tau_{1}, \tau_{2}\right)$ by Theorems 3.5(ii), 3.3(ii) and by assumption. Hence $\tau^{*}\left(\tau_{2}, \tau_{1}\right) \subseteq \tau^{*}\left(\tau_{1}, \tau_{2}\right)$.

REFERENCES

[1] Benchalli S. S., P.G.Patil and T.D.Rayanagoudar, $\omega \alpha$-closed sets in Topological Spaces,The Global Jl Appl Maths and Math Sciences,Vol.2,No.1-2(2009),53-63.
[2] Benchalli S. S. and P.G.Patil, Some New Continuous Maps in Topological Spaces, Jl of Advanced Studies in Topology, Vol.1, No. 2 (2010), 16-21.
[3] W. Dunham, A new closure operator for non-T ${ }_{1}$ topologies, Kyungpook Math. J., 22(1982), 55-60.
[4] T. Fukutake, On generalized closed sets in Bitopological Spaces, Bull. Fakuoka Univ. Edn. Vol.35, Part III(1985), 19-28.
[5] J. C. Kelly, Bitopological Spaces, Proc. London Math. Soc. (3), 13(1962), 71-89.
[6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96.
[7] P.G.Patil, $\omega \alpha$-Closed Sets in Bitopological Spaces, International Jl. of Advances in Management, Technology and Engineering Sciences, Vol.II,3(IV) (2012),111-114.
[8] P. Sundaram and M. Sheik John, On ω-closed sets in Topology, Acta Ciencia Indica, 4(2000), 389-392.

