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Abstract. In this paper, we study the asymptotic behavior of the solutions of a neutral type difference

equation of the form

∆

[
x(n) +

w∑
j=1

qj(n)x(τj(n))

]
− p(n)x(σ(n)) = 0, n ≥ 0

where (−p(n))n≥0 is a sequence of negative real numbers such that p(n) ≥ p, p ∈ R+, τj(n), j =

1, ..., w are general retarded arguments, σ(n) is a general deviated argument, (qj(n))n≥0, j = 1, ..., w

are sequences of real numbers, and ∆ denotes the forward difference operator ∆x(n) = x(n+1)−x(n).
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A neutral difference equation is a difference equation in which the higher order differ-

ence of the unknown sequence appears in the equation both with and without delays or

advances. See, for example, [1−3, 9] and the references cited therein. We should note

that, the theory of neutral difference equations presents complexities, and results which

are true for non-neutral difference equations may not be true for neutral equations [16].

The study of the asymptotic and oscillatory behavior of the solutions of neutral dif-

ference equations has a strong theoretical interest. Moreover, results on those equations

can be applied in several disciplines/fields of science and mathematics, including circuit

theory, bifurcation analysis, population dynamics, stability theory, the dynamics of de-

layed network systems and others. As a result of the wide range of applications, neutral

difference equations have attracted a great interest in the literature.

Consider the neutral difference equation in which the difference of the unknown se-

quence appears in the equation both with and without more than one delays

(E) ∆

[
x(n) +

w∑
j=1

qj(n)x(τj(n))

]
− p(n)x(σ(n)) = 0, n ≥ 0,

where (−p(n))n≥0 is a sequence of negative real numbers such that p(n) ≥ p, p ∈ R+,

(qj(n))n≥0, j = 1, ..., w are sequences of real numbers, (τj(n))n≥0 , j = 1, ..., w are increas-

ing sequences of integers that satisfy

(1.1)

τj(n) ≤ n− 1, j = 1, ..., w ∀n ≥ 0, limn→∞ τj(n) = +∞

and

τ`(n) < τm(n+ 1), ∀`,m ∈ [1, w] ∩ N

and (σ(n))n≥0 is an increasing sequence of integers such that

(1.2)

σ(n) ≤ n− 1 ∀n ≥ 0, limn→∞ σ(n) = +∞,

or

σ(n) ≥ n+ 1 ∀n ≥ 0.

Define

k1 = − min
n≥0

1≤j≤w

τj(n) , k2 = −min
n≥0

σ(n)
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and

k = max {k1, k2} .

(Clearly, k is a positive integer.)

By a solution of the neutral difference equation (E), we mean a sequence of real numbers

(x(n))n≥−k which satisfies (E) for all n ≥ 0. It is clear that, for each choice of real numbers

c−k, c−k+1, ..., c−1, c0, there exists a unique solution (x(n))n≥−k of (E) which satisfies the

initial conditions x(−k) = c−k, x(−k + 1) = c−k+1, ..., x(−1) = c−1, x(0) = c0.

A solution (x(n))n≥−k of the neutral difference equation (E) is called oscillatory if

for every positive integer n0 there exist n1, n2 ≥ n0 such that x(n1)x(n2) ≤ 0. In other

words, a solution (x(n))n≥−k is oscillatory if it is neither eventually positive nor eventually

negative. Otherwise, the solution is said to be nonoscillatory.

In the special case where τj(n) = n−aj and σ(n) = n± b, aj, b ∈ N, equation (E) takes

the form

(E′) ∆

[
x(n) +

w∑
j=1

qj(n)x(n− aj)

]
− p(n)x(n± b) = 0, n ≥ 0.

In the last few decades, our insight in the asymptotic behavior of neutral difference

equations has been significantly advanced. A large number of papers have contributed to

the research on this subject. See [4−8, 10−24] and the references cited therein.

The objective in this paper is to investigate the asymptotic behavior of the solutions

of Eq. (E). Equation (E) formally describes an extended neutral difference equation,

involving several retarded arguments τj(n), j = 1, 2, ..., w. In the following sections, we

(first) establish some preliminary results that will serve as a useful tool in examining the

asymptotic behavior of the solutions of Eq. (E), depending on sequences of real numbers

(qj(n)), j = 1, 2, ..., w. Then we postulate and prove a theorem setting convergence and

divergence conditions on the solutions of Eq. (E).

2. Preliminaries

Assume that (x(n))n≥−k is a nonoscillatory solution of (E). Then it is either eventually

positive or eventually negative. As (−x(n))n≥−k is also a solution of (E), we can restrict
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ourselves to the case where x(n) > 0 for all large n. Let n1 ≥ −k be an integer such that

x(n) > 0, ∀n ≥ n1. Then, there exists n0 ≥ n1 such that

x(σ(n)) > 0, x(τj(n)) > 0, j = 1, 2, ..., w ∀n ≥ n0.

Set

(2.1) z(n) = x(n) +
w∑
j=1

qj(n)x(τj(n)).

In view of (2.1), Eq. (E) becomes

(2.2) ∆z(n)− p(n)x(σ(n)) = 0.

Taking into account that p(n) ≥ p > 0, we have

∆z(n) = p(n)x(σ(n)) ≥ px(σ(n)) > 0 ∀n ≥ n0,

which means that the sequence (z(n)) is eventually strictly increasing, regardless of the

values of the terms qj(n).

Let the domain of τj be the set D(τj) = Nn∗
j

=
{
n∗j , n

∗
j + 1, n∗j + 2, ...

}
, where n∗j is the

smallest natural number that τj is defined. Set

n∗ = max
1≤j≤w

n∗j .

Then τj, j = 1, 2, ..., w are defined in the set Nn∗ = {n∗, n∗ + 1, n∗ + 2, ...}.

Set

(2.3) x(τρ(n)(n)) = max {x(τ1(n)), x(τ2(n)), ..., x(τw(n))}

where ρ(n) is a sequence that takes values in the set {1, 2, ..., w}. Clearly, condition (1.1)

guarantees that
(
x(τρ(n)(n))

)
is a subsequence of (x(n)).

Notice that

(2.4) τj1(τj2(· · · τj`(n))) = τj1(ns) where ns = τj2(· · · τj`(n)).

The following lemma provides us with some useful tools for establishing the main results:
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Lemma 2.1. Assume that the sequence (x(n))n≥−k is a positive solution of (E). Then

the following statements hold:

(i) If
∞∑
i=n0

p(i)x(σ(i)) = S0 < +∞,

then

(2.5) lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

qj(σ(n))x(τj(σ(n))), A ∈ R.

(ii) If
∞∑
i=n0

p(i)x(σ(i)) = +∞,

then

(2.6) z(n) > 0, eventually.

Proof. Summing up (2.2) from n0 to n, n ≥ n0, we obtain

(2.7) z(n+ 1) = z(n0) +
n∑

i=n0

p(i)x(σ(i)).

For the above relation, exactly one of the following can be true:

(2.7.a)
∞∑
i=n0

p(i)x(σ(i)) = S0 < +∞,

or

(2.7.b)
∞∑
i=n0

p(i)x(σ(i)) = +∞.

Assume that (2.7.a) holds. Since p(n) ≥ p > 0, we have

+∞ > S0 =
∞∑
i=n0

p(i)x(σ(i)) ≥ p
∞∑
i=n0

x(σ(i)).

The last inequality guarantees that

∞∑
i=n0

x(σ(i)) < +∞
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and, consequently

(2.8) lim
n→∞

x(σ(n)) = 0.

Also, (2.7.a) guarantess that limn→∞ z(n) exists as a real number. Set

lim
n→∞

z(n) = A ∈ R.

Since (z(σ(n))) is a subsequence of (z(n)), we have

lim
n→∞

z(σ(n)) = A,

or

lim
n→∞

[
x(σ(n)) +

w∑
j=1

qj(σ(n))x(τj(σ(n)))

]
= A.

Using (2.8), we obtain

lim
n→∞

w∑
j=1

qj(σ(n))x(τj(σ(n))) = A.

Thus

lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

qj(σ(n))x(τj(σ(n))).

The proof of Part (i) of the lemma is complete.

Assume that (2.7.b) holds. Then, by taking limits on both sides of (2.7) we obtain

lim
n→∞

z(n) = +∞,

which in conjunction with the fact that the sequence (z(n)) is eventually strictly increas-

ing, means that

z(n) > 0 eventually.

The proof of Part (ii) of the lemma is complete.

The proof of the lemma is complete.

3. Main results

Throughout this section, we are going to use the following conditions:
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(C1) q(n) ≤ −1

(C2) −1 < q(n) < 0, lim inf q(n) > −1

(C3) 0 ≤ q(n) ≤ 1, lim sup q(n) < 1

(C4) q(n) ≥ 1,

where

(3.1) q(n) =
w∑
j=1

qj(n).

The asymptotic behavior of the solutions of the neutral difference equation (E) is de-

scribed by the following theorem:

Theorem 3.1. For Eq. (E) the following statements hold:

(I) Every nonoscillatory solution tends to infinity or it has more than one real

accumulation point which is zero, if the terms qj(n) are all nonpositive and condition

(C1) holds.

(II) Every nonoscillatory solution tends to zero or to infinity, if the terms qj(n) are

all nonpositive and condition (C2) holds.

(III) Every nonoscillatory solution is unbounded, if the terms qj(n) are all nonnegative

and condition (C3) holds.

(IV) Every nonoscillatory solution does not converge in R, if the terms qj(n) are all

nonnegative and condition (C4) holds.

Proof. Assume that (x(n))n≥−k is a nonoscillatory solution of (E). Then it is either

eventually positive or eventually negative. As (−x(n))n≥−k is also a solution of (E), we

can restrict ourselves to the case where x(n) > 0 for all large n. Let n1 ≥ −k be an integer

such that x(n) > 0, ∀n ≥ n1. Then, there exists n0 ≥ n1 such that

x(σ(n)) > 0, x(τj(n)) > 0, j = 1, 2, ..., w ∀n ≥ n0.
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Set

(2.1) z(n) = x(n) +
w∑
j=1

qj(n)x(τj(n)).

In view of (2.1), Eq. (E) becomes

(2.2) ∆z(n)− p(n)x(σ(n)) = 0.

Taking into account that p(n) ≥ p > 0, we have

∆z(n) = p(n)x(σ(n)) ≥ px(σ(n)) > 0 ∀n ≥ n0,

which means that the sequence (z(n)) is eventually strictly increasing, regardless of the

values of the terms qj(n).

Assume that the terms qj(n) are all nonpositive and (C1) holds.

If (2.7.a) holds then, in view of Part (i) of Lemma 2.1, we have

lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

qj(σ(n))x(τj(σ(n))), A ∈ R

which means that the sequence (x(n)) has at least one real accumulation point which is

zero.

If (2.7.b) holds, then, in view of (2.7), we have

lim
n→∞

z(n) = +∞,

which guarantees that

lim
n→∞

x(n) = +∞.

The proof of the Part (I) of the theorem is complete.

Assume that the terms qj(n) are all nonpositive and (C2) holds.

If (2.7.a) holds then, in view of Part (i) of Lemma 2.1, we have

lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

qj (σ(n))x(τj(σ(n))), A ∈ R

which guarantees that A ≤ 0.

Since (z(n)) is eventually strictly increasing, we have
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z(n) = x(n) +
w∑
j=1

qj (n)x(τj(n)) < A ≤ 0.

Using (3.1) and (2.3), the last inequality becomes

x(n) +

(
w∑
j=1

qj (n)

)
x(τρ1(n)(n)) < 0,

or

(3.2) x(n) < −q(n)x(τρ1(n)(n)).

Set

(3.3) lim inf q(n) = q > −1.

For every ε > 0 with ε < 1 + q there exists n3 such that

(3.4) q(n) > q − ε > −1, ∀n ≥ n3.

Using (2.3), (3.4) and (2.4), inequality (3.2) becomes

x(n) < −q(n)x(τρ1(n)(n)) < (−q + ε)x(τρ1(n)(n))

< (−q + ε)2x(τρ2(n)(τρ1(n)(n)))

< · · · < (−q + ε)m(ns)x(τρm(ns)
(nλ))→ 0 as n→∞

and consequently

lim
n→∞

x(n) = 0.

If (2.7.b) holds, then, in view of (2.7), we have

lim
n→∞

z(n) = +∞,

which guarantees that

lim
n→∞

x(n) = +∞.

The proof of the Part (II) of the theorem is complete.
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Assume that the terms qj(n) are all nonnegative.

Then q(n) ≥ 0. By (2.7) we have

z(n+ 1) = z(n0) +
n∑

i=n0

p(i)x(σ(i)) > 0,

which in conjunction with the fact that the sequence (z(n)) is eventually strictly increas-

ing, means that

lim
n→∞

z(n) > 0.

Assume that (C3) holds. If (2.7.a) holds then, in view of Part (i) of Lemma 2.1, we have

lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

qj (σ(n))x(τj(σ(n))), A ∈ R.

Clearly (z(n)) is bounded and therefore (x(n)) is bounded. Set

lim supx(n) = M .

Then there exists a subsequence (x(θ(n))) of (x(n)) such that

lim
n→∞

x(θ(n)) = M .

Therefore

lim
n→∞

[
x(θ(n)) +

w∑
j=1

qj (θ(n))x(τj(θ(n)))

]
= A,

or

lim
n→∞

[
w∑
j=1

qj (θ(n))x(τj(θ(n)))

]
= A−M ≥ 0,

i.e.,

(3.5) M ≤ A.

On the other hand

lim
n→∞

z(σ(n)) = A,

or

(3.6) lim
n→∞

[
x(σ(n)) +

w∑
j=1

qj (σ(n))x(τj(σ(n)))

]
= A.



370 G. E. CHATZARAKIS1,∗ AND G. N. MILIARAS2

Set

(3.7) lim sup q(n) = d < 1.

Using (2.8) and (3.7), relation (3.6) becomes

lim
n→∞

w∑
j=1

qj (σ(n))x(τj(σ(n))) = A

and consequently

lim sup

[
w∑
j=1

qj (σ(n))x(τj(σ(n)))

]
= A.

Thus

lim sup

[(
w∑
j=1

qj (σ(n))

)
x(τρ(σ(n))(σ(n)))

]
≥ A,

or

lim sup
[
q (σ(n))x(τρ(σ(n))(σ(n)))

]
≥ A,

or

lim sup q (σ(n)) lim supx(τρ(σ(n))(σ(n))) ≥ A.

Therefore

M > dM ≥ lim sup q (σ(n)) lim supx(τρ(σ(n))(σ(n))) ≥ A,

or

M > A,

which contradicts (3.5). This means that (x(n)) is unbounded, and consequently (2.7.a)

is not satisfied. Therefore (2.7.b) holds. Now,by (2.7), we have

lim
n→∞

z(n) = +∞,

which guarantees that (x(n)) is unbounded.

The proof of the Part (III) of the theorem is complete.

Assume that the terms qj(n) are all nonnegative and (C4) holds.

If (2.7.a) holds, then

lim
n→∞

z(n) = A ∈ R
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Since q(n) > 0, in view of Part (III), we have

lim
n→∞

z(n) > 0,

which means that A > 0. Combined with the fact that limn→∞ x(σ(n)) = 0, we conclude

that (x(n)) has more than one real accumulation points. Therefore (x(n)) does not

converge in R.

If (2.7.b) holds, clearly limn→∞ z(n) = +∞, which means that (x(n)) is unbounded,

and therefore (x(n)) does not converge in R.

The proof of Part (IV) of the theorem is complete.

The proof of the theorem is complete.

As a consequence of Theorem 3.1, we postulate the following corollary:

Corollary 3.2. For Eq. (E′) the following statements hold:

(i) Every nonoscillatory solution either tends to zero or tends to infinity, if the terms

qj(n) are all nonpositive and q(n) < 0.

(ii) Every nonoscillatory solution is unbounded, if the terms qj(n) are all nonnegative

and q(n) ≥ 0.
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