
Available online at http://scik.org

J. Math. Comput. Sci. 1 (2011), No. 1, 89-102

ISSN: 1927-5307

OSCILLATION THEOREMS FOR SECOND-ORDER NONLINEAR
NEUTRAL DIFFERENCE EQUATION OF MIXED TYPE

E. THANDAPANI ∗, N.KAVITHA

Ramanujan Institute for Advanced Study in Mathematics,

University of Madras, Chennai 600 005, India.

Abstract. In this paper, we study the oscillatory properties of solutions of second order neutral difference

equation of the form

∆2 (xn + anxn−τ1 + bnxn+τ2)
α

= qnx
β
n−σ1

+ pnx
γ
n+σ2

, n ≥ n0.

where α, β and γ are ratio of odd positive integers. The results obtained here generalize and complement

to the existing results. Examples are provided to illustrate the main results.
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1. Introduction

In this paper, we shall study the oscillatory behavior of solutions of second order non-

linear neutral difference equation of the form

∆2 (xn + anxn−τ1 + bnxn+τ2)
α = qnx

β
n−σ1 + pnx

γ
n+σ2 (1.1)
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where n ∈ N(n0) = {n0, n0 + 1 · · · } , n0 a nonnegative integer, subject to the following

conditions:

(i) {an} and {bn} are nonnegative real sequences with 0 ≤ an ≤ a and 0 ≤ bn ≤ b where

a and b are constants;

(ii) {pn} and {qn} are nonnegative real sequences and are not eventually zero for many

values of n;

(iii) σ1, σ2, τ1 and τ2 are nonnegative integers and α, β and γ are ratio of odd positive

integers.

Let θ = max {σ1, τ1} . By a solution of equation (1.1) we mean a real sequence {xn}

defined for all n ≥ n0− θ, and satisfies equation (1.1) for all n ≥ n0. A nontrivial solution

{xn} of equation (1.1) is said to be oscillatory if it’s terms are neither eventually positive

nor eventually negative and nonoscillatory otherwise.

Recently, there has been an increasing interest in the study of oscillatory behavior of

solutions of neutral type difference equations since such equations have many applications

in economics, engineering and population dynamics. For background results on the oscil-

lation of neutral type difference equations, see for example [1,2], and the references cited

therein.

Most of the results established in the literature for neutral type difference equations

involves either delay or advanced type arguments, and only few results are available for

mixed type linear equations, see for example [3-5]. Motivated by this observation, in this

paper we establish conditions for the oscillation of all solutions of equation (1.1).

In Section 2, we present sufficient conditions for the oscillation of all solutions of equa-

tion (1.1). Examples are provided in Section 3 to illustrate the main results.

2. Oscillation Results

In this section, we present some sufficient conditions for the oscillation of all solutions

of equation (1.1). To prove our main results we need the following lemma found in [8].



OSCILLATION THEOREM OF MIXED TYPE 91

Lemma 2.1.Let A ≥ 0, B ≥ 0.

For η ≥ 1, we have

Aη +Bη ≥ 1

2η−1
(A+B)η , (2.1)

and for 0 < η < 1, we have

Aη +Bη ≥ (A+B)η. (2.2)

Lemma 2.2. Let δ > 1 be a ratio of odd positive integers and σ ≥ 2 be a positive integer.

If
∞∑

n=n0

(
n−1∑

s=n−σ+1

Rs

)
=∞, (2.3)

then the difference inequality

∆2yn −Rn y
δ
n+σ ≥ 0 (2.4)

where {Rn} is a positive real sequence, has no eventually positive increasing solution.

Proof. Let {yn} be a positive increasing solution of (2.4). Then yn > 0, and ∆yn > 0 for

all n ≥ n1 ≥ n0. From the inequality (2.4) we have

∆2yn ≥ Rn y
δ
n+σ.

Summing the last inequality from n− σ + 1 to n− 1 we obtain,

∆yn ≥ ∆yn −∆yn−σ+1 ≥
n−1∑

s=n−σ+1

Rs y
δ
s+σ ≥ yδn+1

n−1∑
s=n−σ+1

Rs,

or

∆yn
yδn+1

≥
n−1∑

s=n−σ+1

Rs,

or
yn+1∫
yn

ds

sδ
≥ 1

yδn+1

∆yn ≥
n−1∑

s=n−σ+1

Rs.

Summing again from n1 to n− 1

yn∫
yn1

ds

sδ
≥

n−1∑
s=n1

(
n−1∑

t=n−σ+1

Rt

)
,
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− y1−δn

δ − 1
+

y1−δn1

δ − 1
≥

n∑
n=n1

(
n−1∑

t=n−σ+1

Rt

)
.

As n → ∞,we have
∞∑

n=n1

(
n−1∑

t=n−σ+1

Rt

)
< ∞ which contradicts condition (2.3). This

completes the proof.

Lemma 2.3.Let δ < 1 and σ ≥ 1 be a positive integer. If

∞∑
n=n0

(
n+σ∑
s=n

Rs

)
=∞, (2.5)

then the difference inequality

∆2yn −Rn y
δ
n−σ ≥ 0 (2.6)

has no eventually positive decreasing solution.

Proof. Let {yn} be a positive decreasing solution of (2.6). Then yn > 0 and ∆yn < 0 for

all n ≥ n1 ≥ n0. From the inequality (2.6), we have

∆2yn ≥ Rn y
δ
n−σ.

Summing the last inequality from n to n+ σ we get,

−∆yn ≥ ∆yn+σ+1 −∆yn ≥
n+σ∑
s=n

Rs y
δ
s−σ ≥ yδn

n+σ∑
s=n

Rs,

or

−∆yn
yδn
≥

n+σ∑
s=n

Rs,

or
yn∫

yn+1

ds

sδ
≥ yn − yn+1

yδn
≥

n+σ∑
s=n

Rs.

Summing the last inequality from n1 to n− 1, we have

yn1∫
0

ds

sδ
≥

n−1∑
n=n1

(
n+σ∑
s=n

Rs

)
,

or
y1−δn1

δ − 1
≥

n−1∑
n=n1

(
n−1∑

t=n−σ+1

Rt

)
.

As n→∞, we have
∞∑

n=n1

(
n+σ∑
s=n

Rs

)
<∞ which contradicts condition (2.5). This completes

the proof
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Theorem 2.4.Let 0 < β ≤ 1, γ ≥ 1, a ≤ 1, b ≤ 1, σ1 > τ1 and σ2 > τ2. Assume that

(i) the difference inequality

∆2yn −
Qn

(1 + aβ + bβ)β/α
y
β/α
n+τ1−σ1 ≥ 0 (2.7)

has no eventually positive decreasing solution, and

(ii) the difference inequality

∆2yn −
Pn

4γ−1 (1 + aβ + bβ)γ/α
y
γ/α
n−τ2+σ2 ≥ 0 (2.8)

has no eventually positive increasing solution, where Pn = min {pn, pn−τ1 , pn+τ2} and Qn =

{qn, qn−τ1 , qn+τ2} . Then every solution of equation (1.1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1) . Without loss of generality,

we may assume that there exists an integer n1 ≥ n0 such that xn > 0, xn−τ1 > 0, xn+τ2 >

0, xn−σ1 > 0 and xn+σ2 > 0 for all n ≥ n1. Setting

zn = (xn + anxn−τ1 + bnxn+τ2)
α ,

and

yn = zn + aβzn−τ1 + bβzn+τ2 . (2.9)

Then zn > 0, yn > 0, and

∆2zn = qnx
β
n−σ1 + pnx

γ
n+σ2 ≥ 0, n ≥ n1.

Then {∆zn} is of one sign eventually. From (1.1) and (2.9) we have

∆2yn = ∆2zn + aβ∆2zn−τ1 + bβ∆2zn+τ2

= qnx
β
n−σ1 + pnx

γ
n+σ2 + aβ

(
qn−τ1x

β
n−σ1−τ1 + pn−τ1x

γ
n+σ2−τ1

)
+ bβ

(
qn+τ2x

β
n−σ1+τ2 + pn+τ2x

γ
n+σ2+τ2

)
.

Using Lemma 2.1 and using the fact a ≤ 1, b ≤ 1 in the above equation, we obtain

∆2yn ≥ Qn (xn−σ1 + axn−τ1−σ1 + bxn+τ2−σ1)
β

+
Pn

4γ−1
(xn+σ2 + axn−τ1+σ2 + bxn+τ2+σ2)

γ

∆2yn = Qnz
β/α
n−σ1 +

Pn
4γ−1

z
γ/α
n+σ2 . (2.10)
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Next we consider the following two cases:

Case(1). If ∆zn < 0, then ∆yn < 0 for all n ≥ n1. Inview of (2.10), we get

∆2yn ≥ Qnz
β/α
n−σ1 . (2.11)

From the monotonicity of {zn} , we find

zn ≥
yn+τ1

(1 + aβ + bβ)
.

Substituting the above inequality in (2.11), we obtain

∆2yn ≥
Qn

(1 + aβ + bβ)β/α
y
β/α
n+τ1−σ1 .

Therefore {yn} is a positive decreasing solution of the difference inequality (2.7) which is

a contradiction.

Case (2). If ∆zn > 0, then ∆yn > 0 for all n ≥ n1. Inview of (2.10), we get

∆2yn ≥
1

4γ−1
Pnz

γ/α
n+σ2 . (2.12)

Again using the monotonicity of {zn} , we find

zn ≥
yn−τ2

(1 + aβ + bβ)
.

Substituting the above inequality in (2.12), we obtain

∆2yn ≥
Pn

4γ−1 (1 + aβ + bβ)γ/α
y
γ/α
n−τ2+σ2 .

Therefore {yn} is a positive increasing solution of the difference inequality (2.8) which is

a contradiction. This completes the proof.

From the Lemmas 2.2 and 2.3 and the Theorem 2.4, we obtain the following corollary.

Corollary 2.5.Let β < α < γ, a ≤ 1, b ≤ 1, σ1 ≥ τ1 + 1, σ2 ≥ τ2 + 2. If

∞∑
n=n0

n+σ1−τ1∑
s=n

Qs =∞, (2.13)

and
∞∑

n=n0

n−1∑
s=n−σ2+τ2+1

Ps =∞ (2.14)

then every solution of equation (1.1) is oscillatory.
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Theorem 2.6.Let β ≥ 1, 0 < γ ≤ 1, a ≥ 1, b ≥ 1, σ1 > τ1, and σ2 > τ2. Assume that

(i) the difference inequality

∆2yn −
Qn

4β−1 (1 + aβ + bβ)β/α
y
β/α
n+τ1−σ1 ≥ 0 (2.15)

has no eventually positive decreasing solution, and

(ii) the difference inequality

∆2yn −
Pn

(1 + aβ + bβ)γ/α
y
γ/α
n−τ2+σ2 ≥ 0 (2.16)

has no eventually positive increasing solution, then every solution of equation (1.1) is

oscillatory.

Proof. Let {xn}be a nonoscillatory solution of equation (1.1). Without loss of generality,

we may assume that there exists an integer n1 ≥ n0 such that xn > 0, xn−τ1 > 0, xn+τ2 >

0, xn−σ1 > 0 and xn+σ2 > 0 for all n ≥ n1. Setting

zn = (xn + anxn−τ1 + bnxn+τ2)
α ,

and

yn = zn + aβzn−τ1 + bβzn+τ2 .

Then zn > 0, yn > 0, and

∆2zn = qnx
β
n−σ1 + pnx

γ
n+σ2 ≥ 0, n ≥ n1.

Hence {∆zn} is of one sign eventually. From equation (1.1) we have

∆2yn = ∆2zn + aβ∆2zn−τ1 + bβ∆2zn+τ2

= qnx
β
n−σ1 + pnx

γ
n+σ2 + aβ

(
qn−τ1x

β
n−σ1−τ1 + pn−τ1x

γ
n+σ2−τ1

)
+ bβ

(
qn+τ2x

β
n−σ1+τ2 + pn+τ2x

γ
n+σ2+τ2

)
.

Using Lemma 2.1 and the fact a ≥ 1, b ≥ 1 in the above equation, we obtain

∆2yn ≥
Qn

4β−1
(xn−σ1 + axn−τ1−σ1 + bxn+τ2−σ1)

β

Pn (xn+σ2 + axn−τ1+σ2 + bxn+τ2+σ2)
γ

∆2yn =
Qn

4β−1
z
β/α
n−σ1 + Pnz

γ/α
n+σ2 (2.17)
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Next we consider the following two cases:

Case(1). If ∆zn < 0, then ∆yn < 0 for all n ≥ n1. From (2.17), we get

∆2yn ≥
Qn

4β−1
z
β/α
n−σ1 . (2.18)

From the monotonicity of {zn} , we find

zn ≥
yn+τ1

(1 + aβ + bβ)
.

Substituting the above inequality in (2.18), we obtain

∆2yn ≥
1

4β−1 (1 + aβ + bβ)β/α
Qny

β/α
n+τ1−σ1 .

Therefore {yn} is a positive decreasing solution of the difference inequality (2.15) which

is a contradiction.

Case (2). If ∆zn > 0, then ∆yn > 0 for all n ≥ n1. From (2.17), we have

∆2yn ≥ Pnz
γ/α
n+σ2 . (2.19)

Again using the monotonicity of {zn} , we find

zn ≥
yn−τ2

(1 + aβ + bβ)
.

Substituting the above inequality in (2.19), we obtain

∆2yn ≥
1

(1 + aβ + bβ)γ/α
Pny

γ/α
n−τ2+σ2 .

Therefore {yn} is a positive increasing solution of the difference inequality (2.16) which

is a contradiction. This completes the proof.

Theorem 2.7.Assume that γ = β ≥ 1, σ1 ≥ τ1, σ2 ≥ τ2 + 2. If

∆2yn −
Pn

(4β−1)

(
1 + aβ +

bβ

2β−1

)β/αyβ/αn−τ2+σ2 ≥ 0, (2.20)

has no eventually positive increasing solution, and

∆2yn −
Qn

(4β−1)

(
1 + aβ +

bβ

2β−1

)β/αyβ/αn−σ1+τ1 ≥ 0 (2.21)
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has no eventually positive decreasing solution, then every solution of equation (1.1) is

oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1). Without loss of generality,

we may assume that there exists an integer n1 ≥ n0 such that xn > 0, xn−τ1 > 0, xn+τ2 >

0, xn−σ1 > 0 and xn+σ2 > 0 for all n ≥ n1. Setting

zn = (xn + anxn−τ1 + bnxn+τ2)
α,

and

yn = zn + aβzn−τ1 +
bβ

2β−1
zn+τ2 .

Then zn > 0, yn > 0, and

∆2zn = qnx
β
n−σ1 + pnx

β
n+σ2 ≥ 0.

Then {∆zn} is of one sign eventually. On the other hand

∆2yn = qnx
β
n−σ1 + pnx

β
n+σ2 + aβqn−τ1x

β
n−σ1−τ1 + aβpn−τ1x

β
n+σ2−τ1

+
bβ

2β−1
qn+τ2x

β
n−σ1+τ2 +

bβ

2β−1
pn+τ2x

β
n+σ2+τ2

Using (2.1) in the above inequality we obtain

∆2yn ≥
Qn

2β−1
(xn−σ1 + axn−σ1−τ1)

β +
qn+τ2
2β−1

bβxβn−σ1+τ2

+
Pn

2β−1
(xn+σ2 + axn+σ2−τ1)

β +
pn+τ2
2β−1

bβxβn+σ2+τ2

∆2yn ≥
1

(4β−1)

(
Qnz

β/α
n−σ1 + Pnz

β/α
n+σ2

)
, n ≥ n1. (2.22)

Next we consider the following two cases:

Case (1). Assume ∆zn > 0. Then ∆yn > 0 for all n ≥ n1. From (2.22), we have

∆2yn+τ2 ≥
1

(4β−1)
Pn+τ2z

β/α
n+σ2+τ2 . (2.23)

Applying the monotonicity of {zn} , we find

yn+σ2 = zn+σ2 + aβzn−τ1+σ2 +
bβ

2β−1
zn+τ2+σ2 ≤

(
1 + aβ +

bβ

2β−1

)
zn+τ2+σ2 . (2.24)
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Combining (2.23) and (2.24) we have

∆2yn+τ2 ≥
Pn+τ2

(4β−1)

(
1 + aβ +

bβ

2β−1

)β/αyβ/αn+σ2 . (2.25)

Thus

∆2yn −
Pn

(4β−1)

(
1 + aβ +

bβ

2β−1

)β/αyβ/αn−τ2+σ2 ≥ 0.

Therefore {yn} is a positive increasing solution of the difference inequality (2.20), a con-

tradiction.

Case (2). Assume ∆zn < 0. Then ∆yn < 0 for all n ≥ n1. From (2.22) we see that

∆2yn−τ1 ≥
1

(4β−1)
Qn−τ1z

β/α
n−τ1−σ1 .

From the monotonicity of {zn} , we find

yn−σ1 ≤
(

1 + aβ +
bβ

2β−1

)
zn−τ1−σ1 .

Combining the last two inequalities, we obtain

∆2yn−τ1 ≥
Qn−τ1

(4β−1)

(
1 + aβ +

bβ

2β−1

)β/αyβ/αn−σ1 (2.26)

or

∆2yn −
Qn

(4β−1)

(
1 + aβ +

bβ

2β−1

)β/αyβ/αn−σ1+τ1 ≥ 0.

Therefore {yn} is a positive decreasing solution of the difference inequality (2.21), a con-

tradiction. This completes the proof.

Theorem 2.8.Assume that γ = β = α ≥ 1, σ1 ≥ τ1, σ2 ≥ τ2 + 2. If

lim sup
n→∞

n+σ2−τ2−2∑
s=n

( n+ σ2 − τ2 − s− 1)Ps > (4α−1)

(
1 + aα +

bα

2α−1

)
, (2.27)

and

lim sup
n→∞

n∑
s=n−σ1+τ1

( n− s+ 1)Qs > (4α−1)

(
1 + aα +

bα

2α−1

)
, (2.28)

hold, then every solution of equation (1.1) is oscillatory.
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Proof. Conditions (2.27) and (2.28) imply that the difference inequalities (2.20) and

(2.21) has no positive increasing solution and no positive decreasing solutions respectively,

see [2, Lemma 7.6.15]. The result now follows from Theorem 2.7.

Theorem 2.9.Assume that 0 < γ = β ≤ 1, σ1 ≥ τ1, σ2 ≥ τ2 + 2. If

∆2yn −
Pn

(1 + aβ + bβ)β/α
y
β/α
n−τ2+σ2 ≥ 0 (2.29)

has no eventually positive increasing solution, and

∆2yn −
Qn

(1 + aβ + bβ)β/α
y
β/α
n−σ1+τ1 ≥ 0 (2.30)

has no eventually positive decreasing solution, then every solution of equation (1.1) is

oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1). Without loss of generality,

we may assume that there exists an integer n1 ≥ n0 such that xn > 0, xn−τ1 > 0, xn+τ2 >

0, xn−σ1 > 0 and xn+σ2 > 0 for all n ≥ n1. Setting

zn = (xn + anxn−τ1 + bnxn+τ2)
α,

and

yn = zn + aβzn−τ1 + bβzn+τ2 .

Then zn > 0, yn > 0, and

∆2zn = qnx
β
n−σ1 + pnx

β
n+σ2 ≥ 0.

Then {∆zn} is of one sign eventually. On the other hand

∆2yn =qnx
β
n−σ1 + pnx

β
n+σ2 + aβqn−τ1x

β
n−σ1−τ1 + aβpn−τ1x

β
n+σ2−τ1

+ bβqn+τ2x
β
n−σ1+τ2 + bβpn+τ2x

β
n+σ2+τ2 .

Using (2.2) in the above inequality we obtain

∆2yn ≥ Qnz
β/α
n−σ1 + Pnz

β/α
n+σ2 , n ≥ n1. (2.31)
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Next we consider the following two cases:

Case (1). Assume ∆zn > 0. Then ∆yn > 0 for all n ≥ n1. From (2.31), we have

∆2yn ≥ Pnz
β/α
n+σ2 . (2.32)

Applying the monotonicity of {zn} , we find

yn+σ2 = zn+σ2 + aβzn−τ1+σ2 + bβzn+τ2+σ2 ≤
(
1 + aβ + bβ

)
zn+τ2+σ2 . (2.33)

Combining (2.32) and (2.33), we have

∆2yn+τ2 ≥
Pn+τ2

(1 + aβ + bβ)β/α
y
β/α
n+σ2 . (2.34)

Thus

∆2yn −
Pn

(1 + aβ + bβ)β/α
y
β/α
n−τ2+σ2 ≥ 0.

Therefore {yn} is a positive increasing solution of the difference inequality (2.29), a con-

tradiction.

Case (2). Assume ∆zn < 0 then ∆yn < 0 for all n ≥ n1. From (2.31) we see that

∆2yn−τ1 ≥ Qn−τ1z
β/α
n−τ1−σ1 .

Using the monotonicity of {zn} we find

yn−σ1 ≤
(
1 + aβ + bβ

)
zn−τ1−σ1 .

Combining the last two inequalities, we obtain

∆2yn−τ1 ≥
Qn−τ1

(1 + aβ + bβ)β/α
y
β/α
n−σ1 . (2.35)

or

∆2yn −
Qn

(1 + aβ + bβ)β/α
y
β/α
n−σ1+τ1 ≥ 0.

Therefore {yn} is a positive decreasing solution of the difference inequality (2.30), a con-

tradiction. This completes the proof.

Remark 2.1.If α = β = γ = 1, Theorem 2.9 reduces to Theorem 7.6.6 of [2]. Further the

results established in this paper extend and complement to the results obtained in [2,3,4,5].

3. Examples
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In this section we present some examples to illustrate the main results.

Examples 3.1.Consider the difference equation

∆2

(
xn +

1

2
xn−1 +

1

3
xn+2

)
=

1

n+ 1
x
1/3
n−3 +

n

n+ 1
x3n+4, n ≥ 2. (3.1)

Here an =
1

2
, bn =

1

3
, τ1 = 1, τ2 = 2, σ1 = 3, σ2 = 4, pn =

n

n+ 1
,

qn =
1

n+ 1
, α = 1, β =

1

3
, and γ = 3. It is easy to see that all conditions of Corollary

2.5 are satisfied and hence all solutions of equation (3.1) are oscillatory.

Example 3.2.Consider the difference equation

∆2

(
xn +

1

2
xn−1 +

1

3
xn+2

)3

=
1

n
xn−3 +

(
1

n
+

125

54

)
x5n+4, n ≥ 2. (3.2)

Here an = 2, bn = 3, τ1 = 1, τ2 = 2, σ1 = 3, σ2 = 4, pn =

(
1

n
+

125

54

)
,

qn =
1

n
, α = 3, β = 1, and γ = 5. It is easy to see that all conditions of Corollary 2.5 are

satisfied and hence all solutions of equation (3.2) are oscillatory. In fact {xn} = {(−1)n}

is one such solution of equation (3.2).

Example 3.3.Consider the difference equation

∆2 (xn + 3xn−1 + 4xn+2)
3 =

240n

n+ 1
x3n−2 + n x3n+4, n ≥ 1. (3.3)

Here an = 3, bn = 4, τ1 = 1, τ2 = 2, σ1 = 2, σ2 = 4, pn = n, qn =
240n

n+ 1
,

α = β = γ = 3. It is easy to see that all conditions of Theorem 2.8 are satisfied and hence

all solutions of equation (3.3) are oscillatory.
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