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Abstract. In this paper, we examine the equations kφG(β ) = q(β )±1 and kφG(β ) = q(β ) in the domains

of Gaussian integers Z[i] and the polynomial rings over finite fields Zp[x], where p is prime in Z. Properties con-

cerning the existence of solutions are studied. Complete characterization for the solutions of the above equations

is given in the two domains.
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1. Introduction

The Euler’s totient function φ was generalized by El-Kassar [1] to any principle ideal do-

main(P.I.D) as follows: if G is a P.I.D and β is a non-zero element in G, then φG(β ) =
r

∏
j=1

[
q(p j)

]α j−1 [q(p j)−1
]
, where

r
∏
j=1

p j
α j is a factorization of β into distinct prime powers

and q(p j) is the order of the factor ring G/ < p j >. φG(β ) is the order of the group of units of

G / < β > . If β = a + ib is a non zero element in the domain of Gaussian integers Z[i], then

q(β ) = a2 +b2 and q(βδ ) = q(β )q(δ ) for any β and δ in Z[i]. An element β is a unit in Z[i] if
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and only if q(β ) = 1 and an element [γ] ∈ Z[i]/ < β > is a unit if and only if gcd(γ,β )∼ 1, see

[4]. Lehmer [2] introduced the equations kφ(n) = n±1, where k and n are positive integers.

The purpose of this paper is to study equations similar to that of Lehmer’s and their generaliza-

tion in unique factorization domain (U. F.Ds), in particular in the domain of Gaussian integers

Z[i] and the domain of polynomial rings over finite fields Zp[x]. Throughout this paper, assume

that p is a prime integer and k is a positive integer.

2. Equations in Z[i]

Consider the equations

kφG(β ) = q(β )+1 (2.1)

kφG(β ) = q(β )−1 (2.2)

kφG(β ) = q(β ) (2.3)

that are similar to that of Lehmer’s but in the domain of Gaussian integers Z[i].

Lemma 2.1 Equation 2.3 is solvable if and only if k = 2, and the corresponding solution is of

the form (1+ i)α where α is a positive integer.

Proof. If β =
r

∏
j=1

p j
α j is a solution to 2.3 with r ≥ 1, then

k
r

∏
j=1

[
q(p j)

]α j−1 [q(p j)−1
]
=

r

∏
j=1

q(p j)
α j . (2.4)

Since the left hand side of 2.4 is even, then p j = 1+ i for certain j with 1 ≤ j ≤ r. Assume

p1 = 1+ i, then q(p j) has the form 4k j +1 for every 2≤ j ≤ r and

k
r

∏
j=2

[
q(p j)

]α j−1 [q(p j)−1
]
= 2

r

∏
j=2

q(p j)
α j . (2.5)

The right hand side of 2.5 is divisible by 2, while its left hand side is divisible by 22r−2 with

r > 1. Therefore r = 1, β = (1+ i)α with α ≥ 1 and the corresponding value of k is 2.

Lemma 2.2 If β =
r

∏
j=1

p j
α j is a solution to equations 2.1 or 2.2, then α j = 1 for every j.
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Proof. Equations 2.1 and 2.2 give

k
r

∏
j=1

q(p j)
α j−1(q(p j)−1) =

r

∏
j=1

q(p j)
α j ±1

and k
r

∏
j=1

q(p j)
α j−1(q(p j)−1)−

r
∏
j=1

q(p j)
α j = ±1. Since φG(β ) and q(β ) are relatively prime,

it follows that q(pα j−1
j ) = 1 for every 1 ≤ j ≤ r. Now, if α j > 1, then p j must be a unit in

G = Z[i], which contradicts that p j is prime in G.

The above lemma states that any solution to equations 2.1 or 2.2 must be square free. In the

next two lemmas, we will consider the case where β is a prime Gaussian integer.

Lemma 2.3 β = γ is a prime solution to 2.1 if and only if β = 1+ i with k = 3.

Proof. Equation 2.1 gives

k =
q(β )+1
q(β )−1

= 1+
2

q(β )−1
.

Then q(β )−1= 1 or q(β )−1= 2. The second case is dismissed since q(β ) = 3 has no solution

in Z[i]. If q(β ) = 2, then β = 1+ i with corresponding k = 3. The converse is straight forward.

Lemma 2.4 Equation 2.2 has prime solutions if and only if k = 1.

Proof. β is a prime solution to 2.2 implies that β has the form 1 +i, p or π where p is a prime

integer of the form 4t + 3 and π is a Gaussian prime integer with ππ̄ is a prime integer of the

form 4t ′+1. Each form of β results with k = 1.

Lemma 2.5 Any solution to equations 2.1 or 2.2 has the form
r

∏
j=1

p j, with r > 1 and p j 6= 1+ i

for every 1≤ j ≤ r.

Proof. By lemma 2.2, β =
r

∏
j=1

p j and k
r

∏
j=1

[
q(p j)−1

]
=

r
∏
j=1

q(p j)±1. If r > 1 and p j = 1+ i

for certain 1 ≤ j ≤ r, then the left hand side of the last equation becomes even while its right

hand side is odd.

Lemma 2.6 Equation 2.1 has no solution of the form β =
r

∏
j=1

p j with r > 1.

Proof. By lemma 2.5, β =
r

∏
j=1

p j and p j 6= 1+ i for every j. Hence,

k
r

∏
j=1

[
q(p j)−1

]
=

r

∏
j=1

q(p j)+1.
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Since q(p j) has the form 4k j +1 for every j, the last equation is reduced to the form 2bk
r

∏
j=1

k j =

T with b≥ 3 and T is a nonnegative odd integer.

Lemma 2.7 Equation 2.2 has no solution of the form β =
r

∏
j=1

p j with r > 1.

Proof. If p j 6= 1+ i for every j, then

k
r

∏
j=1

[
q(p j)−1

]
=

r

∏
j=1

q(p j)−1.

Replacing q(p j) by 4k j +1, the preceding equation becomes

4r−1k
r

∏
j=1

k j =
r

∑
j=1

k j +4
r

∑
j,l=1
j<l

k jkl +42
r

∑
j,l,m=1
j<l<m

k jklkm + ...+4r−1
r

∏
j=1

k j. (2.6)

If k j is an odd integer for some 1 ≤ j ≤ r, then the left hand side of 2.6 is divisible by 4r−1

while its right hand side is not. If k j is an even integer for every 1 ≤ j ≤ r, that is k j = 2b jd j

where d j is an odd integer, then equation 2.6 becomes

2e−sk
r

∏
j=1

k j = T

where e= 2r−2+
r
∑
j=1

b j, bs =min(b1,b2, ...,br) and T is an odd integer. Note that e−s≥ r+1.

3. Main Result

The following theorem summarizes the above section and characterizes completely the so-

lutions to equations 2.1, 2.2 and 2.3 in the unique factorization domain Z[i]. It states that any

solution to any equation must be a prime or a prime power.

Theorem 3.1 Let β be a Gaussian integer of the form β =
r

∏
j=1

p j
α j , where p j is prime in Z[i]

for every 1≤ j ≤ r. Then

(1) β is a solution to equation 2.1 if and only if r = α1 = 1, p1 = 1+ i and k = 3.

(2) β is a solution to equation 2.2 if and only if r = α1 = k = 1.

(3) β is a solution to equation 2.3 if and only if r = 1, p1 = 1+ i, α ≥ 1 and k = 2.

4. Equations in Zp[x]
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In this section, the same previous equations are considered but in the domain of polynomial

rings over finite fields Zp[x]. Assume that f (x) is a polynomial of degree n in G = Zp[x], and

its factorization into distinct irreducible polynomials is
r

∏
j=1

hn j
j (x), where the degree of h j(x),

deg(h j(x)), is m j > 0. The order of the group of units of the factor ring G/ < f (x)> was given

by El-Kassar [1] as follows:

φG( f (x)) =
r

∏
j=1

[q(h j(x))]n j−1 [q(h j(x))−1
]

with q(h j(x)) = pm j . Hence,

φG( f (x)) = ps
r

∏
j=1

(pm j −1) (4.1)

where s =
r
∑
j=1

m j(n j−1).

Consider the equations

kφG( f (x)) = q( f (x))+1 (4.2)

kφG( f (x)) = q( f (x))−1 (4.3)

kφG( f (x)) = q( f (x)) (4.4)

Throughout this section, assume that h j(x) is an irreducible polynomial in Zp[x] of degree

m j > 0, f (x) =
r

∏
j=1

hn j
j (x) is a polynomial in Zp[x] of degree n and t =

r
∑
j=1

m jn j.

Lemma 4.1 f (x) is a solution to 4.4 if and only if f (x) is a product of powers of linear polyno-

mials in Z2[x] with corresponding k = 2r.

Proof. Equation 4.4 gives

k
r

∏
j=1

pm j (n j−1)(pm j −1) = pt .

Hence,

k =
pt ′

r
∏
j=1

(pm j −1)
with t ′ =

r

∑
j=1

m j.

Note that p cannot be odd, so p = 2 and

k =
2t ′

r
∏
j=1

(2m j −1)
.
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It is seen easily that m j = 1 for every j and k = 2r. Since there are only two linear polynomials

in Z2[x], then r ≤ 2. The solutions are {xn1,(x+ 1)n2,xn1(x+ 1)n2} with n1 and n2 are positive

integers. The converse is straightforward.

Lemma 4.2 If f (x) is a solution to 4.2 or 4.3, then f (x) is a square free polynomial in Zp[x].

Proof. Using 4.2 and 4.3, we have

k
r

∏
j=1

pm j (n j−1)(pm j −1)− pt =±1.

This gives that

gcd(pt ,
r

∏
j=1

pm j (n j−1)(pm j −1)) = 1.

Hence,
r

∏
j=1

pm j (n j−1)(pm j −1) = 1

and pm j (n j−1) = 1 for every j. Therefore n j = 1 for every j.

Lemma 4.3 f (x) is a solution to φG( f (x)) = q( f (x))− 1 if and only if f (x) is a power of an

irreducible polynomial in Zp[x].

Proof. If k = 1 in 4.3, then

1 =
r

∏
j=1

pm j n j −
r

∏
j=1

pm j (n j−1)(pm j −1). (4.5)

It follows that

gcd

(
ps, pt ′

r

∏
j=1

(pm j −1)

)
= 1,

where t ′ =
r
∑
j=1

m j(n j−1). Thus, pt ′ = 1 and

pm j (n j−1) = 1 for every j.

Hence, f (x) is a square free polynomial. Equation 4.5 gives

ps−
r

∏
j=1

(pm j −1) = 1,

where s =
r
∑
j=1

m j. Therefore r = 1 and p is any prime integer. The converse follows directly

from the definition of φG( f (x)) in Zp[x].
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Lemma 4.4 f (x) =
r

∏
j=1

h j(x) is a solution to 4.2 if and only if f (x) is a product of at most two

irreducible polynomials in Z2[x] and Z3[x].

Proof. If r = 1, then

k =
pm1 +1
pm1−1

= 1+
2

pm1−1
.

Hence, pm1−1 must divide 2. So m1 = 1 and p = 2 or 3. If r > 1, then

k =
ps +1

r
∏
j=1

(pm j −1)
,

where s =
r
∑
j=1

m j. If p is odd prime integer, then p≡ 1 (mod 4) or p≡ 3 (mod 4). If p≡ 1 (mod

4), then so is ps for every integer s and ps +1 has the form 4t +2. Hence,

k =
2T1

4r
r

∏
j=1

t j

=
T1

22r−1T2
,

(4.6)

with t j, T1 and T2 are positive integers with T1 is odd. For the case where p≡ 3 (mod 4), we

have

ps ≡

 1 (mod 4) if s is even

3 (mod 4) if s is odd
.

For the case where s is even, consider the set M = {m j|m j ≡ 1 (mod 2)}, then the order of M,

|M|, is even and

k =
4t ′+2

|M|
∏
j=1

(
4t j +2

) r−|M|
∏
j=1

(
4t ′j
) =

2T3

22r−|M|
|M|
∏
j=1

(
2t j +1

) r−|M|
∏
j=1

t ′j

.
(4.7)

This contradicts that k is and integer since T1 and T3 are odd while the denominators of the

expressions 4.6 and 4.7 are even. A similar procedure follows for the case where s is odd.

Therefore, p must be an even prime. Now, if r ≥ 3, then

k =
2s +1

r
∏
j=1

(2m j −1)
.

k is an integer if m j = 1 for at least 3 values of j and the only distinct linear irreducible poly-

nomials in Z2[x] are x and x+ 1. Hence, f (x) is divisible by x2 or (x+ 1)2 which contradicts
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lemma 4.2. For r = 2,

k =
2m1+m2 +1

(2m1−1)(2m2−1)
= 1+

2m1 +2m2

(2m1−1)(2m2−1)
.

This gives m1 = m2 = 1 or m1 = 1 and m2 = 2. Therefore, f (x) ∈ {x, x+ 1, x+ 2, 2x, 2x+ 1,

2x+2, x(x+1), x(x2 + x+1), (x+1)(x2 + x+1)}. The converse is immediate.

Note that the only quadratic irreducible polynomial in Z2[x] is x2 + x+1 and the only cubic

irreducible polynomials in Z2[x] are x3 + x+1 and x3 + x2 +1.

Lemma 4.5 Let r > 1, then f (x) is a solution to 4.3 if and only if f (x) is a product of at most

three distinct irreducible polynomials in Z2[x].

In the preceding lemma, f (x) = x(x+1) when r = 2.

5. Characterizing the solutions

In this section, we consider the case where f (x) is divisible by at most three distinct irre-

ducible polynomials. The proof for the sufficient condition is straightforward and only the

necessary condition is proved when necessary.

Lemma 5.1 Let f (x) be an irreducible polynomial. Then f (x) is a solution to 4.2 if and only if

it is a linear polynomial in Z2[x] or Z3[x].

Proof. If deg( f (x)) = n, equation 4.2 becomes

k = 1+
2

pn−1
.

Hence, pn = 2 or 3. For pn = 2, f (x) = x or x+ 1 in Z2[x] with corresponding k = 3. For the

second case, f (x) ∈ {x,x+1,x+2,2x,2x+1,2x+2} in Z3[x] with corresponding k = 2.

Lemma 5.2 Equation 4.3 has an irreducible solution if and only if k = 1.

In the following two lemmas, f (x) is taken as a product of two irreducible polynomials.

Lemma 5.3 f (x) = h1(x)h2(x) is a solution to 4.2 if and only if f (x) = x(x+ 1) in Z2[x] with

k = 5.
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Lemma 5.4 f (x) = h1(x)h2(x) is solution to 4.3 if and only if h1(x) and h2(x) are linear

polynomials in Z2[x] or Z3[x].

Proof. Equation 4.3 results in

k(pm1−1)(pm2−1) = pm1+m2−1.

Solving for k, we get

k = 1+
1

(pm1−1)
+

1
(pm2−1)

.

Hence, p = 2 and m1 = m2 = 1 with corresponding k = 5 or p = 3 and m1 = m2 = 1 with

corresponding k = 2. The solutions are x(x+ 1) in Z2[x], or f (x) ∈ {x(x+ 1), x(x+ 2), x(2x),

x(2x+1), x(2x+2), 2x(x+1), 2x(x+2)} in Z3[x].

Lemma 5.5 f (x) = h1(x)h2(x)h3(x) is a solution to 4.3 if and only if p = 2 and

a. m j = 2 for exactly one j and mi = 1 for i 6= j with k = 5.

or

b. mi = i for i = 1,2 or 3 with k = 3.

6. Main Result

A complete characterization for the solutions to equations 4.2, 4.3 and 4.4 in Zp[x] is given

in the next theorem.

Theorem 6.1 Let G=Zp[x] and let
r

∏
j=1

hn j
j (x) be the factorization of f (x) into distinct irreducible

polynomials, where the deg
(
h j(x)

)
= m j. Then,

(1) f (x) is a solution to equation 4.2 if and only if one of the following is true

a. p = 2, k = 3 and f (x) = x or x+1

b. p = 3, k = 2 and f (x) ∈ {x, x+1, x+2, 2x, 2x+1, 2x+2}.

c. p = 2, k = 5 and f (x) = x(x+1) .

d. p = 2, k = 3 and f (x) =∈ {x(x2 + x+1),(x+1)(x2 + x+1)}.

2. f (x) is a solution to equation 4.3 if and only if one of the following is true

a. p is any prime integer, k = 1 and f (x) = h1(x).
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b. p = 2, k = 5 and f (x) = x(x+1).

c. p = 3, k = 2 and f (x) ∈ {x(x+1), x(x+2), x(2x), x(2x+1),

x(2x+2)}.

d. p = 2,m j = 2 for exactly one j and mi = 1 for i 6= j with

k = 5.

e. p = 2,mi = i for i = 1,2,3 with k = 3.

3. f (x) is a solution to equation 4.4 if and only if p = 2 and one of the following is true

a. k = 2 and f (x) = xn1 or (x+1)n1 .

b. k = 4 and f (x) = xn1(x+1)n2.
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