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Abstract. This paper examines the derivation and implementation of a self-starting four-step fifth order block

integrator for direct integration of stiff and oscillatory first-order ordinary differential equations using interpolation

and collocation procedures. The method was developed by collocation and interpolation of the combination of

power series and exponential function to generate a continuous implicit linear multistep method. The paper further

investigates the properties of the block integrator and found it to be zero-stable, consistent and convergent. The

efficiency of the integrator was also tested on some sampled stiff and oscillatory problems and found to perform

better than some existing ones.
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1. Introduction

In this paper, we present a self-starting four-step fifth-order block integrator for direct inte-

gration of stiff and oscillatory problems of the form,
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(1) y′ = f (x,y), y(a) = y0, x ∈ [a,b] ,

where f : ℜ×ℜm → ℜm, y,y0 ∈ ℜm, f satisfies Lipchitz condition which guarantees the

existence and uniqueness of solution of (1). The development of numerical integration formulas

for stiff as well as oscillatory differential equations has attracted considerable attention in the

past; see Fatunla [7]. A special problem arising in the solution of ODEs is stiffness. This

problem occurs in single linear and nonlinear ODEs, higher-order linear and nonlinear ODEs

and systems of linear and nonlinear ODEs; see Hoffman [9]. It is also important to note that

mathematical models of physical situations in kinetic chemical reactions, process control and

electrical circuit theory often results to stiff ODEs; see Fatunla [7]. According to Sanugi and

Evans [12], an interesting and important class of IVPs which can also arise in practice consists

of differential equations whose solutions are known to be periodic or to oscillate with a known

frequency. Examples of such problems can be found in the field of ecology, medical sciences

and oscillatory motion in a nonlinear force field.

Almost invariably, most conventional numerical integration solvers cannot efficiently cope

with stiff and oscillatory problems of the form (1) as they lack adequate stability characteristics,

see Fatunla [7]. The degree of stiffness of a problem depends on the definition of stiffness that

is applied; see Okunuga et al., [11]. There are various definitions of stiffness in the literature as

regards to ODEs. Lambert [10] gave a simple definition of stiffness of an ODE in such a manner

that problem (1) possesses some stiffness if Re(λ i)< 0, i = 1(1)m, where λ is the eigen value

of the problem.

Definition 1.1. [10] A stiff equation is a differential equation for which certain numerical

methods for solving the equation are numerically unstable, unless the step size is taken to be

extremely small. The main idea is that the equation includes some terms that can lead to rapid

variation in the solution.

Definition 1.2. [4] A nontrivial solution (function) of an ODE is called oscillating if it does

not tend either to a finite limit or to infinity (i.e. if it has an infinite number of roots). The

differential equation is called oscillating, if it has at least one oscillating solution.
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There are different concepts of the oscillation of a solution. The most widespread are oscil-

lation at a point (usually taken to +∞) and oscillation on an interval.

More recently, authors like Awoyemi et al. [3], Chollom et al. [5], Okunuga et al. [11],

Yakubu et al. [13], Ajie et al. [2], Adebayo and umar [1], among others, have all proposed

block methods to generate numerical solution to (1). These authors proposed methods in which

the approximate solution ranges from power series, Chebychev’s, Lagrange’s and Laguerre’s

polynomials.

In this paper, the derivation of the continuous self-starting block integrator is carried out using

an approximate solution which is a combination of power series and exponential function. This

would help in coming up with a more computationally reliable integrator that could solve stiff

and oscillatory problems of the form (1).

2. Preliminaries

2.1. Derivation Technique of the Self-Starting Block Integrator

We consider an approximate solution that combines power series and exponential function of

the form:

(2) y(x) =
r+s−1

∑
j=0

a jx j +ar+s

r+s

∑
j=0

α jx j

j!
.

Interpolation and collocation procedures are used by choosing interpolation point s at a grid

point and collocation points r at all points giving rise to ξ = s+ r system of equations whose

coefficients are determined by using appropriate procedures. The first derivative of (2) is given

by:

(3) y′(x) =
r+s−1

∑
j=0

ja jx j−1 +ar+s

r+s

∑
j=0

α jx j−1

( j−1)!
,

where a j,α
j ∈ℜ for j = 0(1)5 and y(x) is continuously differentiable. Let the solution of (1)

be sought on the partition πN : a = x0 < x1 < x2 < ... < xn < xn+1 < ...xN = b, of the integration

interval [a,b] with a constant step-size h, given by: h = xn+1− xn,n = 0,1,2, ...,N
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Then, substituting (3) in (1), we obtain that

(4) f (x,y) =
r+s−1

∑
j=0

ja jx j−1 +ar+s

r+s

∑
j=0

α jx j−1

( j−1)!
.

Now, interpolating (2) at point xn+s,s = 0 and collocating (4) at points xn+r,r = 0(1)4, leads

to the following system of equations:

(5) AX =U,

where

A = [a0 a1 a2 a3 a4 a5]
T ,

U = [yn fn fn+1 fn+2 fn+3 fn+4]
T

and

X =



1 xn x2
n x3

n x4
n

(
1+αxn +

α2x2
n

2! +
α3x3

n
3! +

α4x4
n

4! +
α5x5

n
5!

)
0 1 2xn 3x2

n 4x3
n

(
α +α2xn +

α3x2
n

2! +
α4x3

n
3! +

α5x4
n

4!

)
0 1 2xn+1 3x2

n+1 4x3
n+1

(
α +α2xn+1 +

α3x2
n+1

2! +
α4x3

n+1
3! +

α5x4
n+1

4!

)
0 1 2xn+2 3x2

n+2 4x3
n+2

(
α +α2xn+2 +

α3x2
n+2

2! +
α4x3

n+2
3! +

α5x4
n+2

4!

)
0 1 2xn+3 3x2

n+3 4x3
n+3

(
α +α2xn+3 +

α3x2
n+3

2! +
α4x3

n+3
3! +

α5x4
n+3

4!

)
0 1 2xn+4 3x2

n+4 4x3
n+4

(
α +α2xn+4 +

α3x2
n+4

2! +
α4x3

n+4
3! +

α5x4
n+4

4!

)


.

Solving (5), for a′js, j = 0(1)5 and substituting back into (2) gives a continuous linear multistep

method of the form:

(6) y(t) = α0(x)yn +h
4

∑
j=0

β j(x) fn+ j,
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where

(7)



α0 = 1

β 0 =
1

720(6t5−75t4 +350t3−750t2 +720t)

β 1 =− 1
360(12t5−135t4 +520t3−720t2)

β 2 =
1

60(3t5−30t4 +95t3−90t2)

β 3 =− 1
360(12t5−105t4 +280t3−240t2)

β 4 =
1

720(6t5−45t4 +110t3−90t2)


,

where t = x−xn
h . Evaluating (6) at t = 1(1)4 gives a continuous discrete block scheme of the

form:

(8) A(0)Ym = Eyn +hd f (yn)+hbF(Ym),

where

Ym = [yn+1 yn+2 yn+3 yn+4]
T , yn = [yn−3 yn−2 yn−1 yn]

T ,

F(Ym) = [ fn+1 fn+2 fn+3 fn+4]
T , f (yn) = [ fn−3 fn−2 fn−1 fn] ,

T

A =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , E =


0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

 ,

d =


0 0 0 251

720

0 0 0 29
90

0 0 0 27
80

0 0 0 14
45

 , b =


323
360

−11
30

53
360

−19
720

62
45

4
15

2
45

−1
90

51
40

9
10

21
40

−3
80

64
45

8
15

64
45

14
45

 .

2.2 Analysis of Basic Properties of the Self-Starting Block Integrator

2.2.1. Order of the Self-Starting Block Integrator

Let the linear operator L{y(x);h} associated with the block integrator (8) be defined as

(9) L{y(x);h}= A(0)Ym−Eyn−h(d f (yn)+bF(Ym))
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expanding using Taylor series and comparing the coefficients of h gives

(10) L{y(x);h}= c0y(x)+ c1hy′(x)+ c2h2y′′(x)+ ...+ cphpyp(x)+ cp+1hp+1yp+1(x)+ ....

Definition 2.1. [8] The linear operator L and the associated continuous linear multistep method

(6) are said to be of order p if c0 = c1 = c2 = ... = cp = 0 and cp+1 6= 0. cp+1 is called the

error constant and the local truncation error is given by

(11) tn+k = cp+1h(p+1)y(p+1)(xn)+©(hp+2).

For our method

(12) L{y(x);h}=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




yn+1

yn+2

yn+3

yn+4

−


0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1




yn−3

yn−2

yn−1

yn



−h


251
720

323
360

−11
30

53
360

−19
720

29
90

62
45

4
15

2
45

−1
90

27
80

51
40

9
10

21
40

−3
80

14
45

64
45

8
15

64
45

14
45





fn

fn+1

fn+2

fn+3

fn+4





.

Expanding (12) in Taylor series, we find that

(13)



∑
∞
j−0

(h) j

j! y j
n− yn− 251h

720 y′n−∑
∞
j=0

h j+1

j! y j+1
n

 323
360(1)

j− 11
30(2)

j

+ 53
360(3)

j− 19
720(4)

j


∑

∞
j−0

(2h) j

j! y j
n− yn− 29h

90 y′n−∑
∞
j=0

h j+1

j! y j+1
n

 62
45(1)

j + 4
15(2)

j

+ 2
45(3)

j− 1
90(4)

j


∑

∞
j−0

(3h) j

j! y j
n− yn− 27h

80 y′n−∑
∞
j=0

h j+1

j! y j+1
n

 51
40(1)

j + 9
10(2)

j

+21
40(3)

j− 3
80(4)

j


∑

∞
j−0

(4h) j

j! y j
n− yn− 14h

45 y′n−∑
∞
j=0

h j+1

j! y j+1
n

 64
45(1)

j + 8
15(2)

j

+64
45(3)

j + 14
45(4)

j





=



0

0

0

0


.
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Hence, c0 = c1 = c2 = c3 = c4 = c5 = 0, c6 = [1.88(−02) 1.11(−02) 1.88(−02) −8.47(−03)]T .

Therefore, the self-starting block integrator is of order five.

2.2.2. Zero Stability

Definition 2.2. [8] The block integrator (8) is said to be zero-stable, if the roots zs,s = 1,2, ...,k

of the first characteristic polynomial ρ(z) defined by ρ(z) = det(zA(0)−E) satisfies |zs| ≤ 1

and every root satisfying |zs| ≤ 1 have multiplicity not exceeding the order of the differential

equation. Moreover, as h→ 0,ρ(z) = zr−µ(z− 1)µ where µ is the order of the differential

equation, r is the order of the matrices A(0) and E (see Awoyemi et al. [3] for details).

For our integrator,

(14) ρ(z) =

∣∣∣∣∣∣∣∣∣∣∣∣
z


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−


0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣
= 0

ρ(z) = z3(z−1) = 0 =⇒ z1 = z2 = z3 = 0, z4 = 1. Hence, the self-starting block integrator

is zero-stable.

2.2.3. Consistency

The block integrator (8) is consistent since it has order p = 5≥ 1.

2.2.4. Convergence

The self-starting block integrator is convergent by consequence of Dahlquist theorem below.

Theorem 2.1. [6] The necessary and sufficient conditions that a continuous LMM be convergent

are that it be consistent and zero-stable.

2.2.5. Region of Absolute Stability

Definition 2.3. [14] Region of absolute stability is a region in the complex z plane, where

z = λh . It is defined as those values of z such that the numerical solutions of y′ =−λy satisfy

y j→ 0 as j→ ∞ for any initial condition.
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To determine the absolute stability region of the self-starting block integrator, we adopt the

boundary locus method. This is achieved by substituting the test equation

(15) y′ =−λy

into the block formula (8). This gives

(16) A(0)Ym(w) = Eyn(w)−hλDyn(w)−hλBYm(w).

Thus,

(17) h(w) =−

(
A(0)Ym(w)−Eyn(w)
Dyn(w)+BYm(w)

)

since h is given by h = λh and w = eiθ . Equation (17) is our characteristic or stability

polynomial. For our integrator, equation (17) is given by

(18)

h(w)=−h4
(

1
5

w3− 1
5

w4
)
−h3

(
5
6

w4 +
5
6

w3
)
−h2

(
7
4

w3− 7
4

w4
)
−h
(
2w4 +2w3)+w4−w3.

This gives the stability region shown in fig. 1 below.
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According to Fatunla [8], stiff algorithms have unbounded RAS. Also, Lambert [10] showed

that the stability region for L-stable schemes must encroach into the positive half of the complex

plane.

3. Main results

We shall evaluate the performance of the self-starting block integrator on some challenging

stiff and oscillatory problems which have appeared in the literature and compare the results with

solutions from some methods of similar derivation. The following notations shall be used in the

tables below;

ERR- |Exact Solution-Computed Result|

ERO- Error in Okunuga et al. [11]

ERA- Error in Adebayo and Umar [1]

3.1. Numerical Examples

Problem 3.1. Consider the highly stiff ODE

(19) y′ =−10(y−1)2,y(0) = 2,

which has the exact solution

(20) y(x) = 1+
1

(1+10x)
.

This problem was earlier discussed by Lambert [10], he showed that many predictor-corrector

and block methods become unstable with this problem, including the hybrid methods. However,

the newly derived block intgerator is used for the integration of this problem within the interval

0 ≤ x ≤ 0.1.Okunuga et al. [11] solved this stiff problem by adopting a new 2-point block

method with step-size ratio at r = 1.

Problem 3.2. Consider the Prothero-Robinson oscillatory ODE

(21) y′ = L(y− sinx)+ cosx, L =−1, y(0) = 0

with the exact solution

(22) y(x) = sinx.
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Adeboye and Umar [1] solved this problem using generalized rational approximation method

via Pade approximants with step number k = 6.

Table 3.1. Showing the result for stiff problem 3.1

x Exact Solution Computed Solution ERR ERO

0.0100 1.9090909090909092 1.9090874944198133 3.414671e−006 1.07e−03

0.0200 1.8333333333333335 1.8333305836980267 2.749635e−006 2.38e−03

0.0300 1.7692307692307692 1.7692173398056399 1.342943e−005 2.21e−03

0.0400 1.7142857142857144 1.7141948078088534 9.090648e−005 5.36e−03

0.0500 1.6666666666666665 1.6665869698207376 7.969685e−005 7.53e−03

0.0600 1.6250000000000000 1.6249300511359952 6.994886e−005 9.00e−03

0.0700 1.5882352941176470 1.5881725936414972 6.270048e−005 9.98e−03

0.0800 1.5555555555555556 1.5554953845413360 6.017101e−005 1.06e−02

0.0900 1.5263157894736841 1.5262616763962231 5.411308e−005 1.10e−02

0.1000 1.5000000000000000 1.4999511902154874 4.880978e−005 1.12e−02

Table 3.2. Showing the result for Prothero-Robinson oscillatory problem 3.2

x Exact Solution Computed Solution ERR ERA

0.1000 0.0998334166468282 0.0998334166192123 1.452952e−011 2.0e−11

0.2000 0.1986693307950612 0.1986693307257173 1.621117e−011 3.0e−11

0.3000 0.2955202066613396 0.2955202066226441 2.131013e−011 1.0e−10

0.4000 0.3894183423086505 0.3894183423146642 1.379910e−011 2.0e−10

0.5000 0.4794255386042030 0.4794255386278611 2.744084e−011 1.0e−10

0.6000 0.5646424733950355 0.5646424733206178 1.111424e−011 2.0e−10

0.7000 0.6442176872376911 0.6442176872324257 2.865663e−011 1.0e−10

0.8000 0.7173560908995228 0.7173560901091701 1.921784e−010 2.0e−10

0.9000 0.7833269096274835 0.7833269097514037 1.239202e−010 3.0e−10

1.0000 0.8414709848078966 0.8414709849550068 1.471102e−010 3.0e−10

0.1. Discussion of Results. We have considered two numerical examples in this paper. The

first problem (which is stiff) was solved by Okunuga et al. [11] where they applied 2-point
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block method with step-size ratio at r = 1 while the second problem (which is oscillatory) was

solved by Adebayo et al. [1] where they adopted generalized rational approximation method via

Pade approximants with step number k = 6. We solved the two problems using the self-starting

block integrator developed. Tables 3.1 and 3.2 above showed that the block integrator gives

better results than the existing ones.

4. Conclusion

In this paper, we have presented a self-starting four-step fifth-order block numerical inte-

grator for the solution of stiff and oscillatory first-order ordinary differential equations. The

approximate solution (basis function) adopted in this research produced a block integrator with

L-stable stability region. This made it possible for the block integrator to perform well on stiff

and oscillatory problems. The block integrator proposed was also found to be zero-stable, con-

sistent and convergent. The new integrator was also found to perform better than some existing

methods.
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