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1. Introduction

Hájek [2] introduced a complete residuated lattice which is an algebraic structure for many

valued logic. Pawlak [7,8] introduced rough set theory as a formal tool to deal with imprecision

and uncertainty in data analysis. Radzikowska [9] developed fuzzy rough sets in complete resid-

uated lattice. Bělohlávek [1] investigated information systems and decision rules in complete

residuated lattices. Zhang [4,5] introduced Alexandrov L-topologies induced by fuzzy rough

sets. Kim [3,4] investigate relations between lower approximation operators as a generalization
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of fuzzy rough set and Alexandrov L-topologies. Algebraic structures of fuzzy rough sets are

developed in many directions [3,9,10].

In this paper, we investigate relations between L-upper (lower, join meet, meet join) approx-

imation operators and Alexandrov L-topologies. We give their examples by various L-fuzzy

relations.

2. Preliminaries

Definition 2.1. [1,2] An algebra (L,∧,∨,�,→,⊥,>) is called a complete residuated lattice if

it satisfies the following conditions:

(C1) L = (L,≤,∨,∧,⊥,>) is a complete lattice with the greatest element > and the least

element ⊥;

(C2) (L,�,>) is a commutative monoid;

(C3) x� y ≤ z iff x ≤ y → z for x, y, z ∈ L.

In this paper, we assume (L,∧,∨,�,→,∗⊥,>) is a complete residuated lattice with the law

of double negation;i.e. x∗∗ = x. For α ∈ L,A,>x ∈ LX , (α → A)(x) = α → A(x), (α �

A)(x) = α� A(x) and >x(x) = >,>x(y) = ⊥, otherwise.

Lemma 2.2. [1,2] For each x, y, z, xi, yi ∈ L, we have the following properties.

(1) If y ≤ z, (x� y) ≤ (x� z), x→ y ≤ x→ z and z → x ≤ y → x.

(2) x→ (
∧

i∈Γ yi) =
∧

i∈Γ(x→ yi).

(3) (
∨

i∈Γ xi)→ y =
∧

i∈Γ(xi → y).

(4)
∧

i∈Γ y
∗
i = (

∨
i∈Γ yi)

∗ and
∨

i∈Γ y
∗
i = (

∧
i∈Γ yi)

∗.

(5) (x� y)→ z = x→ (y → z) = y → (x→ z).

(6) x� y = (x→ y∗)∗.

(7) x� (x→ y) ≤ y.

(8) (x→ y)� (y → z) ≤ x→ z.

(9) (x→ y)→ (x→ z) ≥ y → z and (x→ z)→ (y → z) ≥ y → x.

(10) x� y → x� z ≥ y → z.
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Definition 2.3. [3,4] (1) A map H : LX → LX is called an L-upper approximation operator iff

it satisfies the following conditions

(H1) A ≤ H(A),

(H2) H(α� A) = α�H(A) where α(x) = α for all x ∈ X ,

(H3) H(
∨

i∈I Ai) =
∨

i∈I H(Ai).

(2) A map J : LX → LX is called an L-lower approximation operator iff it satisfies the

following conditions

(J1) J(A) ≤ A,

(J2) J(α→ A) = α→ J(A),

(J3) J(
∧

i∈I Ai) =
∧

i∈I J(Ai).

(3) A map K : LX → LX is called an L-join meet approximation operator iff it satisfies the

following conditions

(K1) K(A) ≤ A∗,

(K2) K(α� A) = α→ K(A),

(K3) K(
∨

i∈I Ai) =
∧

i∈I K(Ai).

(4) A map M : LX → LX is called an L-meet join approximation operator iff it satisfies the

following conditions

(M1) A∗ ≤M(A),

(M2) M(α→ A) = α�M(A),

(M3) M(
∧

i∈I Ai) =
∨

i∈I M(Ai).

Definition 2.4. [4,5] A subset τ ⊂ LX is called an Alexandrov L-topology if it satisfies:

(T1) ⊥X ,>X ∈ τ where >X(x) = > and ⊥X(x) = ⊥ for x ∈ X .

(T2) If Ai ∈ τ for i ∈ Γ,
∨

i∈ΓAi,
∧

i∈Γ Ai ∈ τ .

(T3) α� A ∈ τ for all α ∈ L and A ∈ τ .

(T4) α→ A ∈ τ for all α ∈ L and A ∈ τ .

Theorem 2.5. [4] (1) τ is an Alexandrov topology on X iff τ∗ = {A∗ ∈ LX | A ∈ τ} is an

Alexandrov topology on X .

(2) If H is an L-upper approximation operator, then τH = {A ∈ LX | H(A) = A} is an

Alexandrov topology on X .
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(3) If J is an L-lower approximation operator, then τJ = {A ∈ LX | J(A) = A} is an

Alexandrov topology on X .

(4) If K is an L-join meet approximation operator, then τK = {A ∈ LX | K(A) = A∗} is an

Alexandrov topology on X .

(5) If M is an L-meet join operator, then τM = {A ∈ LX | M(A) = A∗} is an Alexandrov

topology on X .

3. L-approximation operators and Alexandrov L-topologies

Theorem 3.1. Let H : LX → LX be an L-upper approximation operator. Then the following

properties hold.

(1) For A ∈ LX , H(A)(y) =
∨

x∈X(A(x)�H(>x)(y)).

(2) Define JH(B) =
∨
{A | H(A) ≤ B}. Then JH : LX → LX with

JH(B)(x) =
∧
y∈X

(H(>x)(y)→ B(y))

is an L-lower approximation operator such that (H,JH) is a residuated connection;i.e.,

H(A) ≤ B iff A ≤ JH(B).

Moreover, τH = τJH
.

(3) If H(H(A)) = H(A) for A ∈ LX , then JH(JH(A)) = JH(A) for A ∈ LX such that

τH = τJH
with

τH = {H(A) =
∨
x∈X

(A(x)�H(>x)) | A ∈ LX},

τJH
= {JH(A)(x) =

∧
y∈X

(H(>x)(y)→ A(y)) | A ∈ LX}.

(4) If H(H∗(A)) = H∗(A) for A ∈ LX , then H(H(A)) = H(A) such that

τH = {H∗(A) =
∧
x∈X

(A(x)→ H∗(>x)) | A ∈ LX} = (τH)∗.

(5) Define Js(A) = H(A∗)∗. Then Js : LX → LX with

Js(B)(x) =
∧
y∈X

(H(>y)(x)→ B(y))
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is an L-lower approximation operator. Moreover, τJs = (τH)∗.

(6) If H(H(A)) = H(A) for A ∈ LX , then Js(Js(A)) = Js(A) for A ∈ LX such that

τJs = (τH)∗ = (τJH
)∗. with

τJs = {Js(A) =
∧
y∈X

(H(>y)→ A(y)) | A ∈ LX}.

(7) If H(H∗(A)) = H∗(A) for A ∈ LX , then Js(J
∗
s(A)) = J∗s(A) such that

τJs = {J∗s(A) =
∨
y∈X

(H(>y)� A∗(y)) | A ∈ LX} = (τJs)∗.

(8) Define MH(A) = H(A∗). Then MH : LX → LX with

MH(A) =
∨
y∈X

(H(>y)� A∗(y))

is an L-meet join approximation operator.

(9) If H(H(A)) = H(A) for A ∈ LX , then MH(M∗
H(A)) = M∗

H(A) for A ∈ LX such that

τMH
= (τH)∗ with

τMH
= {M∗

H(A) =
∧
y∈X

(H(>y)→ A(y)) | A ∈ LX}.

(10) If H(H∗(A)) = H∗(A) for A ∈ LX , then MH(MH(A)) = M∗
H(A) such that

τMH
= {MH(A) =

∨
y∈X

(H(>y)� A∗(y)) | A ∈ LX} = (τMH
)∗.

(11) Define KH(A) = (H(A))∗. Then KH : LX → LX with

KH(A)(y) =
∧
x∈X

(A(x)→ H∗(>x)(y))

is an L-join meet approximation operator. Moreover, τKH
= τH.

(12) If H(H(A)) = H(A) for A ∈ LX , then KH(K∗H(A)) = KH(A) for A ∈ LX such that

τKH
= (τH)∗ with

τKH
= {KH(A)(y) =

∨
x∈X

(A(x)�H(>x)(y)) | A ∈ LX}.

(13) If H(H∗(A)) = H∗(A) for A ∈ LX , then KH(KH(A)) = K∗H(A) such that

τHK
= {KH(A)(y) =

∧
x∈X

(A(x)→ H∗(>x)(y)) | A ∈ LX} = (τHK
)∗.
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(14) Define MJH (A) = (JH(A))∗. Then MJH : LX → LX with

MJH (A)(y) =
∨
x∈X

(A∗(x)�H(>y)(x))

is an L-meet join approximation operator. Moreover, τMJH
= τH.

(15) If H(H(A)) = H(A) for A ∈ LX , then MJH (M∗
JH

(A)) = MJH (A) for A ∈ LX such

that τMJH
= (τH)∗ with

τMJH
= {M∗

JH
(A)(y) =

∧
x∈X

(H(>y)(x)→ A(x)) | A ∈ LX}.

(16) If JH(J∗H(A)) = J∗H(A) for A ∈ LX , then MJH (MJH (A)) = M∗
JH

(A) such that

τMJH
= {MJH (A)(y) =

∨
x∈X

(A∗(x)�H(>y)(x)) | A ∈ LX} = (τMJH
)∗.

(17) Define KJH (A) = JH(A∗). Then KJH : LX → LX with

KJH (A)(y) =
∧
x∈X

(A(x)→ H∗(>y)(x))

is an L-join meet approximation operator. Moreover, τKJH
= (τH)∗.

(18) If H(H(A)) = H(A) for A ∈ LX , then KJH (K∗JH (A)) = KJH (A) for A ∈ LX such

that τKJH
= (τH)∗ with

τKJH
= {K∗JH (A)(y) =

∨
x∈X

(H(>y)(x)� A(x)) | A ∈ LX}.

(19) If JH(J∗H(A)) = J∗H(A) for A ∈ LX , then KJH (KJH ) = K∗JH (A) such that

τKJH
= {KJH (y) =

∧
x∈X

(A(x)→ H∗(>y)(x)) | A ∈ LX} = (τKJH
)∗.

(20) (KJH ,KH) is a Galois connection;i.e,

A ≤ KJH (B) iff B ≤ KH(A).

Moreover, τKH
= (τKJH

)∗.

(21) (MH ,MJH ) is a dual Galois connection;i.e,

MJH (A) ≤ B iff MH(B) ≤ A.

Moreover, τMH
= (τJHM

)∗.
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Proof. (1) Since A =
∨

x∈X(A(x) � >x), by (H2) and (H3), H(A)(y) =
∨

x∈X(A(x) �

H(>x)(y)).

(2) Since H(A)(y) =
∨

x∈X(A(x)�H(>x)(y)) ≤ B(y) iff A(x) ≤ H(>x)(y)→ B(y), we

have

JH(B)(x) =
∧
y∈Y

(H(>x)(y)→ B(y)).

(J1) Since H(JH(B)) ≤ B, we have JH(B) ≤ H(JH(B)) ≤ B.

(J2) Since H(a�JH(a→ B)) = a�H(JH(a→ B)) ≤ a�(a→ B) ≤ B, by the definition

of JH , then a� JH(a→ B) ≤ JH(B)). We have

JH(a→ B) ≤ a→ JH(B)).

Since a � H(a → JH(B)) = H(a � (a → JH(B))) ≤ H(JH(B)) ≤ B, then H(a →

JH(B)) ≤ a→ B. By the definition of JH , we have

a→ JH(B) ≤ JH(a→ B).

(J3) By the definition of JH , since JH(A) ≤ JH(B) for B ≤ A, we have

JH(
∧
i∈Γ

Ai) ≤
∧
i∈Γ

JH(Ai).

Since H(
∧

i∈Γ JH(Ai)) ≤ H(JH(Ai)) ≤ Ai, then H(
∧

i∈Γ JH(Ai)) ≤
∧

i∈Γ Ai. Thus

JH(
∧
i∈Γ

Ai) ≥
∧
i∈Γ

JH(Ai).

Thus JH : LX → LX is an L-lower approximation operator. By the definition of JH , we have

A ≤ JH(B) iff B ≤ H(A).

Since A ≤ JH(A) iff A ≤ H(A), we have τJH
= τH.

(3) Let H(H(A)) = H(A) for A ∈ LX . Since H(B) ≤ JH(A) iff H(H(B)) = H(B) ≤ A

from the definition of JH , we have

JH(JH(A)) =
∨
{B | H(B) ≤ JH(A)}

=
∨
{B | H(H(B)) = H(B) ≤ A}

= JH(A).
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(4) Let H∗(A) ∈ τH. Since H(H∗(A)) = H∗(A), H(H(A)) = H(H∗(H∗(A))) = (H(H∗(A)))∗ =

H(A). Hence H(A) ∈ τH; i.e. H∗(A) ∈ (τH)∗. Thus, τH ⊂ (τH)∗.

Let A ∈ (τH)∗. Then A∗ = H(A∗). Since H(A) = H(H∗(A∗)) = H∗(A∗) = A, then

A ∈∈ τH. Thus, (τH)∗ ⊂ τH.

(5) (J1) Since A∗ ≤ H(A∗), Js(A) = H(A∗)∗ ≤ A.

(J2)

Js(α→ A) = (H((α→ A)∗)∗ = (H(α� A∗))∗

= (α�H(A∗))∗ = α→ H(A∗)∗

= α→ Js(A).

(J3)

Js(
∧

i∈ΓAi) = (H(
∧

i∈ΓAi)
∗)∗ = (H(

∨
i∈ΓA

∗
i ))
∗

= (
∨

i∈Γ H(A∗i ))
∗ =

∧
i∈Γ(H(A∗i ))

∗

=
∧

i∈Γ Js(Ai).

Hence Js is an L-lower approximation operator such that

Js(B)(x) = (H(B∗)(x))∗ =
∧
y∈X

(H(>y)(x)→ B(y)).

Moreover, τJs = (τH)∗ from:

A = Js(A) iff A = H(A∗)∗ iff A∗ = H(A∗).

(6) Let H(H(A)) = H(A) for A ∈ LX . Then

Js(Js(A)) = H∗(J∗s(A)) = (H(H(A∗)))∗

= H∗(A∗) = Js(A).

Hence τJs = {Js(A) =
∧

y∈X(H(>y)→ A(y)) | A ∈ LX}.

(7) Let H(H∗(A)) = H∗(A) for A ∈ LX . Then

Js(J
∗
s(A)) = H∗(Js(A)) = (H(H∗(A∗)))∗

= (H∗(A∗))∗ = J∗s(A).

Hence τJs = {J∗s(A) =
∨

y∈X(H(>y)� A∗(y)) | A ∈ LX}.

Js(Js(A)) = Js(J
∗
s(J
∗
s(A)))

= J∗s(J
∗
s(A)) = Js(A).
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By a similar method in (4), τJs = (τJs)∗.

(8) It is similarly proved as (4).

(9) If H(H(A)) = H(A) for A ∈ LX , then MH(M∗
H(A)) = MH(A)

MH(M∗
H(A)) = MH(H∗(A∗)) = H(H(A∗))

= H(A∗) = MH(A).

(10) If H(H∗(A)) = H∗(A) for A ∈ LX , then MH(MH(A)) = M∗
H(A)

MH(MH(A)) = H(M∗
H(A)) = H(H∗(A∗))

= H∗(A∗) = M∗
H(A).

Since MH(MH(A)) = M∗
H(A),

MH(M∗
H(A)) = MH(MH(MH(A)))

= M∗
H(MH(A)) = MH(A).

Hence τMH
= {MH(A) | A ∈ LX} = (τMH

)∗.

(11), (12), (13) and (14) are similarly proved as (5), (9), (10) and (5), respectively.

(15) If H(H(A)) = H(A) forA ∈ LX , then JH(JH(A)) = JH(A). Thus, MJH (M∗
JH

(A)) =

MJH (A)

MJH (M∗
JH

(A)) = MJH (JH(A))

= (JH(JH(A)))∗ = (JH(A))∗ = MJH (A).

Since H(A) = A iff JH(A) = A iff MJH (A) = A∗, τMJH
= (τH)∗ with

τMJH
= {M∗

JH
(A)(y) =

∧
x∈X

(H(>y)(x)→ A(x)) | A ∈ LX}.

(16) If JH(J∗H(A)) = J∗H(A) for A ∈ LX , then MJH (MJH (A)) = M∗
JH

(A)

MJH (MJH (A)) = MJH (J∗H(A)) = J∗H(J∗H(A))

= JH(A) = M∗
JH

(A).

(17), (18) and (19) are similarly proved as (14), (15) and (16), respectively.

(20) (KJH ,KH) is a Galois connection; i.e,

A ≤ KJH (B) iff A ≤ JH(B∗)

iff H(A) ≤ B∗ iff B ≤ H∗(A) = KH(A)
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Moreover, since A∗ ≤ KH(A) iff A ≤ KJH (A∗), τKH
= (τKJH

)∗.

(21) (MH ,MJH ) is a dual Galois connection; i.e,

MJH (A) ≤ B iff JH(A) ≥ B∗

iff H(B∗) ≤ A iff MH(B) ≤ A.

Since MJH (A∗) ≤ A iff MH(A) ≤ A∗, τMH
= (τMJH

)∗.

Definition 3.2. [3,4] Let X be a set. A function R : X ×X → L is called:

(R1) reflexive if R(x, x) = > for all x ∈ X .

(R2) symmetric if R(x, y) = R(y, x) for all x, y ∈ X .

(R3) transitive if R(x, y)�R(y, z) ≤ R(x, z), for all x, y, z ∈ X .

(R4) Euclidean if R(x, z)�R(y, z) ≤ R(x, y), for all x, y, z ∈ X .

If R satisfies (R1) and (R3), R is called an L-fuzzy preorder.

If R satisfies (R1), (R2) and (R3), R is called an L-fuzzy equivalence relation.

Let R ∈ LX×X be an L-fuzzy relation. Define operators as follows

HR(A)(y) =
∨

x∈X(A(x)�R(x, y)),

JR(A)(y) =
∧

x∈X(R(x, y)→ A(x)),

KR(A)(y) =
∧

x∈X(A(x)→ R(x, y))

MR(A)(y) =
∨

x∈X(A∗(x)�R(x, y)).

Example 3.3. Let R be a reflexive L-fuzzy relation. Define HR : LX → LX as follows:

HR(A)(y) =
∨
x∈X

(A(x)�R(x, y)).

(1) (H1) HR(A)(y) ≥ A(y) � R(y, y) = A(y). HR satisfies the conditions (H1) and (H2).

Hence HR is an L-upper approximation operator.

(2) Define JHR
(B) =

∨
{A | HR(A) ≤ B}. Since HR(A)(y) ≤ B(y) iff A(x) ≤∧

y∈X(R(x, y)→ B(y)), then

JHR
(B)(x) =

∧
y∈X

(R(x, y)→ B(y)) = JR−1(B)(x).



L-APPROXIMATION OPERATORS AND ALEXANDROV L-TOPOLOGIES 45

By Theorem 3.1(2), JHR
= JR−1 is an L-lower approximation operator such that (HR,JHR

) is

a residuated connection; i.e.,

HR(A) ≤ B iff A ≤ JHR
(B).

Moreover, τJHR
= τHR

.

(3) If R is an L-fuzzy preorder, then R−1 is an L-fuzzy preorder. Since

HR(HR(A))(z) =
∨

y∈X(HR(A)(y)�R(y, z))

=
∨

y∈X(
∨

x∈X(A(x)�R(x, y))�R(y, z))

=
∨

x∈X(A(x)�
∨

x∈X(R(x, y)�R(y, z)))

=
∨

x∈X(A(x)�R(x, z)) = HR(A)(z).

By Theorem 3.1(3), JHR
(JHR

(A)) = JHR
(A). By Theorem 3.1(3), τJHR

= τHR
with

τJHR
= τJR−1 = {JR−1(A) =

∧
x∈X

(R(−, x)→ A(x)) | A ∈ LX},

τHR
= {HR(A) =

∨
x∈X

(A(x)�R(x,−)) | A ∈ LX}.

(4) LetR be a reflexive and Euclidean L-fuzzy relation. Since (R(x, y)→ A(x))�R(y, z)�

R(x, z) ≤ (R(x, y) → A(x)) � R(x, y) ≤ A(x), then (R(x, y) → A(x)) � R(y, z) ≤

R(x, z)→ A(x). Thus, HR(H∗R(A)) = H∗R(A) from:

HR(H∗R(A))(z) =
∨

y∈X(H∗R(A)(y)�R(y, z))

=
∨

y∈X(
∧

x∈X(R(x, y)→ A(x))�R(y, z))

≤
∧

x∈X(R(x, z)→ A(x)) = H∗R(A)(z).

By Theorem 3.1(4), HR(HR(A)) = HR(A) for A ∈ LX . Thus, τHR
= (τHR

)∗ with

τHR
= {H∗R(A) =

∧
x∈X

(R(x,−)→ A(x)) = JR(A) | A ∈ LX}.

(5) Define Js(A) = HR(A∗)∗. By Theorem 3.1(5), Js = JR is an L-lower approximation

operator such that

Js(A)(y) = (
∨
x∈X

A∗(x)�R(x, y))∗ =
∧
x∈X

(R(x, y)→ A(x)).

Moreover, τJs = (τHR
)∗ = (τJHR

)∗.
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(6) If R is an L-fuzzy preorder, then HR(HR(A)) = HR(A) for A ∈ LX . By Theorem

3.1(6), then Js(Js(A)) = Js(A) for A ∈ LX such that τJs = (τHR
)∗ = (τJHR

)∗ with

τJs = {Js(A) =
∧
y∈X

(R(y,−)→ A(y)) | A ∈ LX}.

(7) If R is a reflexive and Euclidean L-fuzzy relation, then HR(H∗R(A)) = H∗R(A) for A ∈

LX . By Theorem 3.1(7), Js(J
∗
s(A)) = J∗s(A) such that

τJs = {J∗s(A) =
∨
y∈X

(R(y,−)� A∗(y)) = MR(A) | A ∈ LX} = (τJs)∗.

(8) Define MHR
(A) = HR(A∗). Then MHR

: LX → LX with

MHR
(A)(y) =

∨
x∈X

(R(x, y)� A∗(x)) = MR(y)

is an L-meet join approximation operator. Moreover, τMHR
= (τHR

)∗.

(9) R is an L-fuzzy preorder, then HR(HR(A)) = HR(A) for A ∈ LX . By Theorem 3.1(9),

MHR
(M∗

HR
(A)) = MHR

(A) for A ∈ LX such that τMHR
= (τHR

)∗ with

τMHR
= {M∗

HR
(A) =

∧
x∈X

(R(x,−)→ A(x)) = JR(A) | A ∈ LX}.

(10) If R is a reflexive and Euclidean L-fuzzy relation, then HR(H∗R(A)) = H∗R(A) for

A ∈ LX . By Theorem 3.1(10), MHR
(MHR

(A)) = M∗
HR

(A) such that

τMHR
= {MHR

(A) =
∨
x∈X

(R(x,−)� A∗(x)) | A ∈ LX} = (τMHR
)∗.

(11) Define KHR
(A) = (HR(A))∗. Then KHR

: LX → LX with

KHR
(A)(y) =

∧
x∈X

(A(x)→ R∗(x, y)) = KR∗(A)(y)

is an L-join meet approximation operator. Moreover, τKHR
= τHR

.

(12) If R is an L-fuzzy preorder, then HR(HR(A)) = HR(A) for A ∈ LX . By Theorem

3.1(12), KHR
(K∗HR

(A)) = KHR
(A) for A ∈ LX such that τKHR

= τHR
with

τKHR
= {K∗HR

(A) =
∨
x∈X

(A(x)�R(x,−)) | A ∈ LX}.



L-APPROXIMATION OPERATORS AND ALEXANDROV L-TOPOLOGIES 47

(13) If R is a reflexive and Euclidean L-fuzzy relation, then HR(H∗R(A)) = H∗R(A) for

A ∈ LX . By Theorem 3.1(13), KHR
(KHR

(A)) = K∗HR
(A) such that

τKHR
= {KHR

(A) =
∧
x∈X

(A(x)→ R∗(x,−)) | A ∈ LX} = (τKHR
)∗.

(14) Define MJHR
(A) = (JHR

(A))∗. Then MJHR
: LX → LX with

MJH (A)(y) =
∨
x∈X

(A∗(x)�R(y, x)) = MR−1(A)(y)

is an L-join meet approximation operator. Moreover, τMR−1 = τHR
= τJR−1 .

(15) If R is an L-fuzzy preorder, then HR(HR(A)) = HR(A) for A ∈ LX . By Theorem

3.1(15), MR−1(M∗
R−1(A)) = MR−1(A) for A ∈ LX such that τMR−1 = τHR

= τJR−1 with

τMR−1 = {M∗
R−1(A)(y) =

∧
x∈X

(R(y, x)→ A(x)) | A ∈ LX}.

(16) Let R−1 be a reflexive and Euclidean L-fuzzy relation. Since (R(y, x) → A(x)) �

R(z, y)�R(z, x) ≤ R(y, x)→ A(x))�R(y, x) ≤ A(x), then (R(y, x)→ A(x))�R(z, y) ≤

R(z, x)→ A(x). Thus,

MR−1(MR−1(A))(z) =
∨

y∈X(MR−1(A)(y)�R(z, y))

=
∨

y∈X(
∧

x∈X(R(y, x)→ A(x))�R(z, y))

≤
∧

x∈X(R(z, x)→ A(x)) = MR−1(A)(z).

By (M1), MR−1(MR−1(A)) = M∗
R−1(A) such that

τMR−1 = {MR−1(A) =
∨
x∈X

(A∗(x)�R(−, x)) | A ∈ LX} = (τMR−1 )∗.

(17) Define KJHR
(A) = JHR

(A∗). Then KJHR
: LX → LX is an L-join meet approximation

operator as follows:

KJHR
(A)(y) =

∧
x∈X(R(y, x)→ A∗(x))

=
∧

x∈X(A(x)→ R∗(y, x))

= KR−1∗(A)(y).

Moreover, τKJHR
= (τHR

)∗.
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(18) If R is an L-fuzzy preorder, then HR(HR(A)) = HR(A) for A ∈ LX . By Theorem

3.1(18), KJHR
(K∗JHR

(A)) = KJHR
(A) for A ∈ LX such that τKJH

= (τH)∗ with

τKJHR
= {K∗JHR

(A)(y) =
∨
x∈X

(R(y, x)� A(x)) = HR−1(A)(y) | A ∈ LX}.

(19) Let R be a reflexive and Euclidean L-fuzzy relation. Since R(z, y)�R(z, x) ≤ R(y, x)

iff R(z, y) ≤ R(z, x)→ R(y, x) iff R(z, x)�R∗(y, x) ≤ R∗(z, y), we have

R(z, x)� A(x)� (A(x)→ R∗(y, x)) ≤ R(z, x)�R∗(y, x) ≤ R∗(z, y).

Thus,

KR−1∗(KR−1∗(A))(z) =
∧

y∈X(KR−1∗(A)(y)→ R∗(z, y))

=
∧

y∈X(
∧

x∈X(A(x)→ R∗(y, x))→ R∗(z, y))

≥
∨

x∈X(R(z, x)� A(x)) = KR−1∗(A)(z).

Moreover,

τKJHR
= {KJHR

(y) =
∧
x∈X

(A(x)→ R(y, x)∗) | A ∈ LX} = (τKJHR
)∗.

(20) (KJHR
= KR−1∗ ,KHR

= KR∗) is a Galois connection;i.e,

A ≤ KJHR
(B) iff B ≤ KHR

(A).

Moreover, τKHR
= (τKJHR

)∗.

(21) (MHR
= MR,MJHR

= MR−1) is a dual Galois connection;i.e,

MJHR
(A) ≤ B iff MHR

(B) ≤ A.

Moreover, τMHR
= (τJHMR

)∗.
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