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Abstract: In this paper we investigate the boundary value problem according to a special Hilbert space and 
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1. Introduction 

It is well known that Sturm-Liouville Theory is an important aid in solving many problems in 

mathematical physics. The literature is voluminous and we refer to [2,5,13,21]. In particular 

[5,9,13,15,17] and [19] contains many references to problems in physics and mechanics. The 

theory of discontinuous Sturm-Liouville type problems mainly has been developed by 

Muhtarov and his students [1,4,7,10,11,18]. Particularly, there has been an increasing interest 

in the spectral analysis of  boundary value problems with eigenvalue-dependent boundary 
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conditions [1,2,4,5,6,7,10,11,13,14,18,20].    

In this paper we investigate the Sturm-Liouville equation                   

(1)                 uu)x(qu:u '' λ=+−=τ , 

to hold in finite interval (-1,1) except at one inner point x 0= , subject to the            

eigenparameter-dependent boundary conditions 

(2)                 0)1(u)1(u:)u(L '
1 =−+−= , 

(3)                 0)1(u)()1(u:)u(L '
2 =β−λ+λα= , 

and transmission conditions at the inner point  x 0=   

(4)                 0)0(u)0(u:)u(L3 =−−+= , 

(5)                 )u(L4 := )0(u)()0(u)0(u 21
'

2
'

1 δ+λδ=+γ−−γ , 

where λ is a complex eigenvalue parameter; the function q(x)  is real-valued and 

continuous in each of the intervals [-1,0) and (0,1] and has finite limits 

x 0 i iq( ) : lim q(x); , , ,→±± = α β γ δ   (i=1,2) are real numbers. Throughout this study we assume 

that 0αβ > .  

It must be noted that some special cases of this problem arises after an application of the 

method of separation of variables to the varied assortment of physical problems, heat and 

mass transfer problems (see, for example, [9]), vibrating string problems when the string 

loaded additionally with point masses (see, for example, [15]), diffraction problems (see, for 

example, [19]). 

2. Operator-Theoretic Formulation of the Problem in the Adequate Hilbert 

Space 

Throughout this paper we shall assume that the coefficients 1 2 1, ,γ γ δ  and 2δ  are positive. 

For a suitable operator-theoretic formulation of the considered problem (1)-(5), we introduce 
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a new equivalent inner product on H=L2 [ ]1,1- ⊕C⊕C by 

(6)             ∫ ∫
− αβ

γ
+

δ
+γ+γ>=<

0

1

1

0
22

2
11

1
21 γfγf1δx)x(γ)x(fδx)x(γ)x(fG,F    

for 















=

2

1

f
f

)x(f
F    ve  
















=

2

1

g
g

)x(g
G  H∈ . 

 In this Hilbert space we construct the lineer operator A:H→  H with domain  

    

[ ) ( ]
[ ]

'

'

1 '

2
'

1 1 2

f  and f  absolutely continuous in 1,0  and 0,1 ;
f (x)

    and has finite limits f(0 ), f (0 ); f 1,1 ;
D(A) f

         f(-1) f (-1)=0, f(0 )=f(0-)=f(0),f
              f = f(0), f = f(1) f (1)

-
 

± ± t ∈ - =   + + 
 

da  +

 

 

 
 
 
 
 
 
 

         

 which acts by the rule                   

     
( )

( ) ( ) ( )
( )

1 2 2

f q x f

AF f 0 f 0 f 0

f 1

′′− + 
 

′ ′= γ − + γ + − δ 
 ′β 

 with 
( )
( )

( ) ( )
( )1

f x

F f 0 D A

f 1 f 1

 
 

= δ ∈ 
 ′α + 

. 

 So we can pose the considered problem (1)-(5) in the operator-equation form as 

(7)           AU = λU, 
( )
( )

( ) ( )
( )1

u x

U u 0 D A

u 1 u 1

 
 

= δ ∈ 
 ′α + 

     

Naturally, by eigenvalues and eigenfunctions of the problem (1)-(5) we mean eigenvalues 

and first components of corresponding eigenelements of the operator A, respectively.                              

Teorem 2.1. The lineer operator A is symmetric. 

 Proof.  Let F,G D(A)∈ . Twice integrating by parts we find 

   (8)          >=<−>< AG,FG,AF )1;g,f( W)1;g,f( W)0;g,f( W 211 γ+−γ−−γ  
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                      





 −γ++γ− )1('g)1(f)1(g)1('f)0;g,f( W 22  

                           ( ))0(g)0(f)0(g)0(f ''
1 −−−γ+  

                           ( ))0(g)0(f)0(g)0(f ''
2 +−+γ+                               

where, as usual. W(f ,g; x)  denotes the Wronskian of f and g; 

 ( ) ( ) ( ) ( ) ( )xgxfxgxf:x;g,fW '' −= .        

     Since F,G D(A)∈   

                   0)1(f)1(f ' =−+− ,  0)1(g)1(g ' =−+−  

                   )0(f)0(f)0(f =+=−  , )0(g)0(g)0(g =+=− . 

Substituing into (8) we have 

>>=<< AG,FG,AF     ( )F,G D(A)∈  

so A is symmetric. 

Corollary 2.2. All eigenvalue of (1)-(5) are real.      

We can now assume that all eigenfunctions of (1)-(5) are real-valued.         

Corollary 2.3.  Let λ ve μ be two different eigenvalues of (1)-(5). Then the corresponding φ (x, 

λ) and ψ (x, μ) of this problem are orthogonal in the sense of 
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( )∫∫ 



µψλφ+µψλφ

β
γ

+µψλφ
β
αγ

−=µµψλφγ+µψλφγ
−

1

0

''22
2

0

1
1 ),1(),1(),1(),1(),1(),1()d(x,)(x,)dx(x,)(x,

                        



µψλφδ+µψλφ

αβ
γ

+ ),0(),0(),1(),1( 1
''2  

3. Construction and Asymptotic Approximations of Fundamental Solutions 

Since the function q(x) is continuous on [-1,0) and has a finite left-hand-side limit  

q(-0), the Cauchy problem 

 uu)x(qu:u '' λ=+−=τ , [ )x 1,0∈ −  

(9)    1)1(u =− , 1)1(u ' −=−  

has a unique solution ( ) ),x(:x 11 λφ=φ λ  which is an entire function of λ for each 

[ )x 1,0∈ − . (See ,for example, [16, Theorem 1.5].) 

  Now we can define the solution ),x(:)x( 22 λφ=φ λ   of equation (1) on (0,1] by the 

initial conditions 

(10)    ),0()0(u 1 λφ=   ,   ),0()0(u '
1

2

1' λφ
γ
γ

= -
2

21 )(
γ

δ+λδ ),0(1 λφ .    

Consequently, the function ),x(:)x( λφ=φλ  defined  by 

)x(λφ =
[

]



∈φ
−∈φ

λ

λ

1,0(x ),x(
)0,1x ),x(

2

1  

is a solution of equation (1) on [-1,0) ∪  (0,1], which satisfies the boundary condition (2) and 

both transmission conditions (4) and (5). 
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To construct the another ),x(:)x( λχ=χλ  fundamental solution 

       )x(λχ =
[ )

]



∈χ
−∈χ

λ

λ

1,0(x ),x(
0,1x ),x(

2

1  

of the problem (1)-(5), we first define the solution ),x(:)x( 22 λχ=χ λ   of equation (1) on (0,1] 

by initial conditions 

(11)     λ−β=)1(u   ,  λα=)1(u '  

and then the solution ),x(:)x( 11 λχ=χ λ  of equation (1) on [-1,0) by initial conditions 

(12)     u(0) = χ2(0,λ)  ,    ),0(),0()0(u 2
1

21'
2

1

2' λχ
γ
δ+λδ

+λχ
γ
γ

=    

    Consequently, the function ),x(:)x( λχ=χλ  is a solution of equation on [-1,0) ∪ (0,1], 

which satisfies the other boundary condition (3) and both transmission conditions (4) and (5). 

Let us consider the Wronskians 

      =λω :)(j ( ) ( ) ( ) ( ) ( )xxxx x; ,W j
'
j

'
jjjj λλλλλλ χφ−χφ=χφ  

which are independent of x and entire functions. The short calculation gives                                                   

)()( 2211 λωγ=λωγ . 

Now we may introduce to the consideration the characteristic function )(λω  as 

       =λω :)( )()( 2211 λωγ=λωγ                  
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Theorem 3.1. The eigenvalues of the problem (1)-(5) are consist of the zeros of the functions    

)(λω   and   ( ) :∆ λ = ( ) ),0(),0()( 21 λχλφδ+λδ+λω .  

Proof. Let 0λ  be an eigenvalue and 0u (x)  be any corresponding eigenfunction. Show that 

0( ) 0ω λ =  or 0( ) 0∆ λ = . Let us assume the contrary, that 0( ) 0ω λ ≠  and  

0( ) 0∆ λ ≠ . Then this implies that j 0 j 0W( (x, ), (x, )) 0  (j=1,2)φ λ χ λ ≠ . Consequently, each 

pair of functions j 0(x, )φ λ and j 0(x, )χ λ   and linearly independent. Therefore eigenfunction 

0u (x)  can be written in the form  

               
[ )
( ]

1 1 0 2 1 0
0

3 2 0 4 2 0

c (x, ) c (x, ) ,  x 1,0
u (x)

c (x, ) c (x, ) ,  x 0,1

 φ λ + χ λ ∈ −= 
φ λ + χ λ ∈

              

where at least one of the constants jc  (1,2,3,4)  is not zero. By substituting this reprensentation 

in the conditions (2)-(5) we obtain a system of linear, homogenous equations for the 

determination of the constants jc  (1,2,3,4) . By routine calculation we see that the determinant 

of this system is equal to ( ) ( )ω λ ∆ λ , which is not zero by assumption. Hence this system of 

equations has only trivial solution jc =0 (1,2,3,4)  

and so we a contradiction. Thus it is shown that each eigenvalue is zero of the functions 

( ) or ( )ω λ ∆ λ . Now we must show that if 0 0( ) ( ) 0ω λ ∆ λ = , then 0λ  is an eigenvalue. Consider 

the possible cases 0( ) 0ω λ =  and 0( ) 0ω λ ≠ , 0( ) 0∆ λ =  separately. If 0( ) 0ω λ =  then 

1 0 1 0 1 0( ) W( (x, ), (x, )) 0ω λ = φ λ χ λ = , and consequently the functions 1 0 1 0(x, ), (x, )φ λ χ λ  are 

linearly dependent solutions of equation (1) in the [-1,0), 1 0 1 1 0(x, ) k (x, )φ λ = χ λ  for some 

1k 0≠ . In this case, since 1 0(x, )φ λ  satisfies the boundary condition (2), 1 0(x, )χ λ  also 
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satisfies boundary condition (2). Thus, the solution j 0(x, )χ λ  (j=1,2) satisfies all boundary 

and transmission conditions (2)-(5) and would be any eigenfunction for eigenvalue 0λ . 

Finally if 0( ) 0ω λ ≠ and 0( ) 0∆ λ = then, since i 0 i 0 i 0( ) W( (x, ), (x, )) 0ω λ = φ λ χ λ ≠  each of 

pair functions i 0(x, )φ λ and i 0(x, )χ λ  (j=1,2) are linearly independent. As a result , the 

general solution of equation (1) may be expressed as   

(13)              
[ )
( ]

1 1 0 2 1 0
0

3 2 0 4 2 0

c (x, ) c (x, ) ,  x 1,0
u(x, )  

c (x, ) c (x, ) ,  x 0,1

 φ λ + χ λ ∈ −λ = 
φ λ + χ λ ∈

   

where 1 2 3 4c ,c ,c ,c  are arbitrary constants. Again, substituting (13) in the conditions (2)-(5) we 

obtain a system linear, homogenous equations for determination of the constants 1 2 3 4c ,c ,c ,c , 

determinant of which is equal to 0 0( ) ( )ω λ ∆ λ , which is equal to zero by assumption. Hence 

there is nontrivial solution 1 2 3 4(c ,c ,c ,c ) (0,0,0,0)≠  of these system of equations. So the 

corresponding solution 0u(x, )λ would be an eigenfunction for the eigenvalue 0λ . 

Lemma 3.2. Let 2s=λ , its +s= . Then the solution ),x()x( jj λφ=φ λ  ( )2,1j =    satisfies 

the following integral equations for k = 0 and  k = 1: 

(14) [ ]( ) [ ]( ) [ ]( )∫
−

λλ φ−++−+=φ
x

1
1

)k()k()k()k(
1 dy)y()y(q)yx(ssin

s
1)1x(ssin

s
1)1x(scos)x(     

(15)  ( ) ( )( )( ) )k(
121

2'
11

2

)k(
1

)k(
2 )sxsin()0(s)0(

s
1)sxcos()0()x( λλλλ φδ+δ−φγ
γ

+φ=φ             

                   [ ]( )∫ λφ−+
x

0
2

)k( dy)y()y(q)yx(ssin
s
1                                             



HÜLYA GÜLTEKİN, NİHAT ALTINIŞIK                        392 

Proof.  For proving it is enough substitute  '' 2
1 1(y) s (y)λ λφ + φ  and '' 2

2 2(y) s (y)λ λφ + φ   instead 

of 1q(y) (y)λφ  and 2q(y) (y)λφ  in the integral ters of the (14) and (15) respectively and 

integrate by parts twice.                                                                                              

Lemma 3.3. Let 2s=λ , its +s= .Then the solution ),x()x( jj λχ=χ λ ( )2,1j =    satisfies the 

following integral equations for k = 0 and k = 1: 

(16)         ( ) ( )[ ]( ) )k(
221

2
22

1

)k(
2

)k(
1 )sxsin( )0(s)0('

s
1)sxcos()0()x( λλλλ χδ+δ+χγ
γ

+χ=χ                                                          

             [ ]( )∫ χ−+ λ

x

0
1

)k( dy)y()y(q)yx(ssin
s
1                                          

            

(17)        [ ]( ) [ ]( ) ( )2(k)(k) s1)s(x cos1)s(xsins(x)χ (k)
2λ −β−+−α=   

   

                 [ ]( )∫ λχ−−
1

x
2

)k( dy)y()y(q)yx(ssin
s
1          

 Proof.  For proving it is enough substitute '' 2
1 1(y) s (y)λ λχ + χ  and  '' 2

2 2(y) s (y)λ λχ + χ   

instead of  1q(y) (y)λχ  and 2q(y) (y)λχ   in the integral ters of the (16) and (17) respectively 

and integrate by parts twice.                                                                                              

Lemma 3.4. Let 2s=λ , its +s= . The following asymptotic formulas are satisfied as 

∞→λ  (k=0,1):     

(18)       ( ))1x(tk)k(
1 esO)x( +
λ =φ                                  

(19)       [ ]( ) ( ))1x(t1k)k()k(
1 esO)1x(scos)x( +−
λ ++=φ           

 

(20)       ( ))1x(t1k)k(
2 esO)x( ++
λ =φ                                    
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 (21)       ( ) ( )( )1xtk)k(

2

1)k(
2 esO)sxsin(scoss)x( +−
λ +

γ
δ

−=φ       

Proof. The asymptotic formulas for 1 (x)λφ  can be found easily by applying the 

Titchmarsh’s lemma [16, lemma 1.7]. But the proof of the formulas (20) and (21) need 

special consideration since the function 2 (x)λφ  is defined by the special type initial 

conditions of the form (10).                    

Substituting (18) in (15) (for k=0) we get 

[ ] (y)dyq(y) 
x

0
y)s(xsin

s
1

sin(sx) coss
sγ

)δδ(s
sin(sx) sins

γ
γ

cos(sx) coss(x) 2λ
2

21
2

2

1
2λ φ∫ −+

+
−−=φ 








 

       ( ) ( )











γ
δ+δ

−
γ
γ

+









+ t

2

21
2

t

2

1t e
s
1O)sxsin(

s
seO)sxsin(

s
e

s
1O)sxcos( .                                      

     

Taking into account that ( )xteO)sxsin( = , ( )xteO)sxcos( =  and denoting 

)x(es)x(F 2
)1x(t1

2 λ
+−−

λ φ=  we have 

















γ

δ+δ
−

γ
γ

−= +−
λ )sxsin(scos

s
)s()sxsin(ssin)sxcos(scose

s
1)x(F

2

21
2

2

1)1x(t
2  

         

  [ ]∫ 









+−+ λ

−
x

0
2

)yx(t−

s
1Ody)y(Fq(y)e )yx(ssin 

s
1 . 

Now, denoting =λ)(F2 1x0
max

≤≤
)(2 xF λ , from the last equation we can derive that         

( ) ( )∫ +λ+
γ
δ

+
γ
δ

+
γ
γ

+≤λ
1

0
222

2

2

2

1

2

1
2 s

MδyF)y(q
s
1

s
1 

s
1

s
1F   

for some M > 0. Consequently )1(O)(F2 =λ  as ∞→λ , so  

 ( ))1x(t
2 e sO)x( +
λ =φ  as ∞→λ . 

The case k=1 of the (20) follows by applying the same procedure as in the case k=0.  

The proof of (21) is similar to that of (20) and hence omitted. 

Lemma 3.5. Let 2sλ = ,  t s Im = . The following asymptotic formulas are satisfied as 
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∞→λ  (k=0,1):     

(22)     ( ))x1(t3k)k(
1 esO)x( −+
λ =χ  

(23)     ( ) ( ))x1(t2k)k(

1

13)k(
1 esO)sxsin()scos(s)x( −+
λ +

γ
δ

−=c  

(24)     ( ))x1(t2k)k(
2 esO)x( −+
λ =χ      

(25)     ( ) ( ))x1(t1k)k(2)k(
2 esO)1x(scoss)x( −+
λ +−−=c           

Theorem 3.6. tIms  ,s2 ==λ . Then the functions ( ) λω and )(λ∆  have the following 

asymtotic reprensentations: 

(26)      ( ) ∞→λ+δ−=λω   ,esOscoss)( t232
1

4    

(27)     ( ) ∞→λ+δ−=λ∆   ,esOscoss2)( t232
1

4                                              

4. Asymptotic Formulas for Eigenvalues         

Theorem 4.1. Let 2sλ = , its +s= . Then the following asymptotic formulas hold for the 

eigenvalues of the boundary-value-transmission problem (1)-(5). 

(28)       





+






 +π=

n
1O

2
1nS'

n  

       

(29)       





+






 −π=

n
1O

2
1nS ''

n  

Proof. Denoting by 1( )ω λ  and 2 ( )ω λ  the first and O-term of the right of (26) respectively. 

It is readily showed that )( )( 21 λω>λω  on the contours 

{  s C ''
n ∈= C    ( )})1n(s' +π=  

for sufficiently large n. 

    Let  ...'
2

'
1

'
0 ≤λ≤λ≤λ  are zeros of )(λw , and 2

n
'

n
' S=λ . 

Then, by applying well-known Rouche’s theorem which assert that if f(s) and g(s) are 
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analytic inside and on a closed contour C, and g(s) f (s)<  on C, then f(s) and f(s)+ g(s) 

have the same number zeros inside C provided that each zeros is counted according to their 

multiplicity, we have   

'
n

'
n 2

1nS δ+





 +π= , 

2
'

n
π

≤δ   for sufficiently large n. 

By putting this in (26) we get 

0SO
2
1ncosS

3'
n

'
n

2
1

4'
n =





+








δ+






 +πδ−  

and consequently 













=








δ+






 +π

'
n

'
n

2

S
1O

2
1ncos  . 

Since  '
n

2'
n

2 sin
2
1ncos δ=








δ+






 +π    and  






=















n
1O

S
1O '
n

, we have 







=δ

n
1Osin '

n
2 . 

From this, since 
2

'
n

π
≤δ , follows that 






=δ

n
1O'

n , which completes the proof for 

the first formula. The proof of the other formula is similar. 

5. Asymptotic Formulas for Eigenfunctions 

Theorem 5.1. Let '
nS and ''

nS  be eigenvalues of the problem (1)-(5). Then the following 

asymptotic formulas hold for the corresponding eigenfunctions )x(1
nφ  and )x(2

nφ  of this 

problem. 

(30)        
( ) [ )

( ]









∈







∈





+














 +π−

=φ

+

1,0x,                                              
n

nO

1,0− x,     
n

1Ox
2
1nsin1

)x(

1n

1 
n  
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(31)        
( ) [ )

( ]









∈







∈





+














 −π−

=φ

1,0x,                                               
n

nO

1,0−   x,     
n

1Ox
2
1n sin1

)x(

n

2 
n  

Proof. By putting λ= ( )2 '
nS  in (19) and (21) gives 

(32)         ( ) ( )( ) ( )[ ]













++=φ=φ

'
n

'
n

2'
n1

1
n1 S

1O1xS cosS ,x:x            

and 

(33)         ( ) ( )( ) ( ) ( )1OxSsinScosSS ,x:x '
n

'
n

2

1'
n

2'
n2

1
n2 +

γ
δ

−=φ=φ  

respectively. 

From (28) we obtain the equalities  

(34)        





=

n
1O

S
1
'
n

 

and 

          ( ) 













+






 +π=

n
1Ox

2
1nsinxSsin '

n  

              













 +π






+






















 +π= x

2
1ncos

n
1Osin

n
1Ocosx

2
1nsin . 

Since  

        





+=








n
1O1

n
1Ocos     ,     






=








n
1O

n
1Osin  

we get 

(35)     ( ) 





+














 +π=

n
1Ox

2
1nsinxSsin '

n   

Putting x=1 in (35) yields 

(36)     ( ) 













+






 +π=

n
1O

2
1nsinSsin '

n  

           ( ) 





+−=

n
1O1 n    
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Similary, we obtain 

(37)      






=
n

1OScos '
n . 

In addition,  

(38)      ( ) ( ) ( ) '
n

'
n

'
n

'
n SsinxSsinScosxScos'

nSx'
nS cos 1x'S cos 

n
−=





 +=



 +   . 

                                                    

Substituing (28), (35), (36) ve (37)  asymtotic equalities in (38)yields 

(39)       ( )[ ] ( ) 





+














 +π−=+ +

n
1Ox

2
1nsin11xScos 1n'

n                                          

Substituing  (34) ve (39) formulas in (32) yields   

(40)        ( ) ( ) 





+














 +π−=φ +

n
1Ox

2
1nsin1x 1n1

n1                                                  

Substituing  (28), (35) ve (37) equalities in (33) yields 

(41)        )
n

n(O)x(1
n2 =φ                                                                                          

Consequently , we have 

           
( ) [ )

( ]









∈







∈





+














 +π−

=φ

+

1,0x,                                              
n

nO

1,0− x,     
n

1Ox
2
1nsin1

)x(

1n

1 
n . 

 The proof of (31) formula is similar.  
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