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1. Introduction 

 The concept of fuzzy sets and fuzzy set operations were first introduced by L. A. Zadeh [12] 

in 1965, describing fuzzyness mathematically for the first time. C. L. Chang [4] developed 

the theory of fuzzy topological spaces in 1968. The concept of Q – compact fuzzy sets was 

introduced by D. M. Ali and M. A. M. Talukder in [2]. The purpose of this paper is to 

introduce and study the concept of countably Q – compact fuzzy sets and to obtain their 

several properties. In doing this, we have used the idea of q – coincident of a fuzzy singleton 

with a fuzzy set or the same between two fuzzy sets. We find that this concept has many 

tangible flavors. 

2. Preliminaries 
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 In this section, we recall some fundamental definitions which are essential in our study and 

can be found in the papers referred to.  

Definition 2.1 [12]: Let X be a non-empty set and I is the closed unit interval [0, 1]. A fuzzy 

set in X is a function u: X →  I which assigns to every element x ∈ X. u(x) denotes a degree 

or the grade of membership of x. The set of all fuzzy sets in X is denoted by XI . A member 

of XI  may also be called a fuzzy subset of X. 

Definition 2.2 [12]: Let X be a non-empty set and A ⊆  X. Then the characteristic function 

A1 (x): X →  {0, 1 } defined by A1 (x) = 




∉
∈

Axif
Axif

0
1

 

Thus we can consider any subset of a set X as a fuzzy set whose range is { 0, 1 }. 

Definition 2.3 [10]: A fuzzy set is empty iff its grade of membership is identically zero. It is 

denoted by 0 or φ . 

Definition 2.4 [10]: A fuzzy set is whole iff its grade of membership is identically one in X . 

It is denoted by 1 or X. 

Definition 2.5 [4]: Let u and v be two fuzzy sets in X. Then we define  

(i) u = v iff u(x) = v(x) for all x ∈ X  

(ii) u ⊆  v iff u(x) ≤  v(x) for all x ∈ X  

(iii) λ  = u ∪ v iff λ (x) = (u ∪ v) (x) = max [ u(x), v(x) ] for all x ∈ X  

(iv) µ  = u∩ v iff µ (x) = (u∩ v) (x) = min [ u(x), v(x) ] for all x ∈ X  

(v) γ  = cu  iff γ (x) = 1 – u(x) for all x ∈ X.  

Remark: Two fuzzy sets u and v are disjoint iff u ∩  v = 0.  

Definition 2.6 [4]: In general, if { iu : i  ∈ J } is family of fuzzy sets in X, then union ∪ iu  

and intersection ∩ iu  are defined by 

∪ iu (x) = sup { iu (x): i  ∈ J and x ∈ X } 

∩ iu (x) = inf { iu (x): i  ∈ J and x ∈ X }, where J is an index set. 
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Definition 2.7 [4]: Let f: X →  Y be a mapping and u be a fuzzy set in X. Then the image of 

u, written )(uf , is a fuzzy set in Y whose membership function is given by 

f(u) (y) = 






=
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−
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φ

φ

)(0
)(})(:)({sup
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 . 

Definition 2.8 [4]: Let f: X →  Y be a mapping and v be a fuzzy set in Y. Then the inverse of 

v, written 1−f (v), is a fuzzy set in X whose membership function is given by 1−f (v) (x) = 

v(f(x)). 

Distributive laws 2.9 [12]: Distributive laws remain valid for fuzzy sets in X i.e. if u, v and 

w are fuzzy sets in X, then 

(i) u ∪ ( v ∩  w ) = ( u ∪  v ) ∩  ( u ∪  w ) 

(ii) u ∩  ( v ∪  w ) = ( u ∩  v ) ∪  ( u ∩  w ). 

Definition 2.10 [4]: Let X be a non-empty set and t ⊆  XI  i.e. t is a collection of fuzzy set in 

X. Then t is called a fuzzy topology on X if  

(i) 0, 1 ∈ t 

(ii) iu ∈ t for each i ∈J, then 


i
iu ∈ t 

(iii) u, v ∈ t, then u ∩  v ∈t 

The pair ( )tX ,  is called a fuzzy topological space and in short, fts. Every member of t is 

called a t-open fuzzy set. A fuzzy set is t-closed iff its complements is t-open. In the sequel, 

when no confusion is likely to arise, we shall call a t-open ( t-closed ) fuzzy set simply an 

open ( closed ) fuzzy set.  

Definition 2.11 [4]: Let ( )tX ,  and ( )sY ,  be two fuzzy topological spaces. A mapping f: 

( )tX ,  →  ( )sY ,  is called an fuzzy continuous iff the inverse of each s-open fuzzy set is t-

open. 
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Definition 2.12 [10]: Let ( )tX ,  be an fts and A ⊆  X. Then the collection At = { u|A: u ∈ t } 

= { u ∩  A: u ∈ t } is fuzzy topology on A, called the subspace fuzzy topology on A and the 

pair ( )AtA ,  is referred to as a fuzzy subspace of ( )tX , . 

Definition 2.13 [5]: Let ( )AtA ,  and ( )BsB ,  be fuzzy subspaces of fuzzy topological 

spaces ( )tX ,  and ( )sY ,  respectively and f is a mapping from ( )tX ,  to ( )sY , , then we 

say that f is a mapping from ( )AtA ,  to ( )BsB ,  if f(A) ⊆  B.  

Definition 2.14 [5]: Let ( )AtA ,  and ( )BsB ,  be fuzzy subspaces of fts’s ( )tX ,  and 

( )sY ,  respectively. Then a mapping f: ( )AtA ,  →  ( )BsB ,  is relatively fuzzy continuous 

iff for each v ∈ Bs , the intersection 1−f (v) ∩  A ∈ At .  

Definition 2.15 [1]: Let λ  be a fuzzy set in X, then the set { x ∈ X: λ (x) > 0 } is called the 

support of λ  and is denoted by 0λ  or suppλ  .  

Definition 2.16 [1]: Let ( )TX ,  be a topological space. A function f: X →  R ( with usual 

topology ) is called lower semi-continuous ( l . s . c. ) if for each a ∈ R, the set 1−f ( a, ∞  ) 

∈ T. For a topology T on a set X, let ω ( T ) be the set of all l . s . c. functions from ( )TX ,  

to I ( with usual topology ); thus ω ( T ) = { u ∈ XI : 1−u ( a, 1 ] ∈ T, a ∈ 1I  } . It can be 

shown that ω ( T ) is a fuzzy topology on X. 

 Let P be a property of topological spaces and FP be its fuzzy topology analogue. Then FP is 

called a ‘ good extension’ of P “ iff the statement ( )TX ,  has P iff ( ))(, TX ω has FP” 

holds good for every topological space ( )TX , . Thus characteristic functions are l . s. c.  

Definition 2.17 [11]: An fts ( )tX ,  is said to be fuzzy – 1T  space iff for every x, y ∈ X, x 

≠  y, there exist u, v ∈ t such that u(x) = 1, u(y) = 0 and v(x) = 0, v(y) = 1.  
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Definition 2.18 [6]: An fts ( )tX ,  is said to be fuzzy Hausdorff iff for all x, y ∈ X, x ≠  y, 

there exist u, v ∈ t such that u(x) = 1, v(y) = 1 and u ∩ v = 0.  

Definition 2.19 [9]: An fts ( )tX ,  is said to be fuzzy Hausdorff iff for all x, y ∈ X, x ≠  y, 

there exist u, v ∈ t such that u(x) = 1, v(y) = 1 and u ⊆  1 – v.  

Definition 2.20 [9]: An fts ( )tX ,  is said to be fuzzy regular iff for each x ∈ X and u ∈ ct  

with u(x) = 0, there exist v, w ∈ t such that v(x) = 1, u ⊆  w and v ⊆  1 – w.  

Definition 2.21[3]: Let λ ∈  XI  and µ ∈  YI . Then ( λ × µ  ) is a fuzzy set in X ×Y for 

which (λ × µ  ) ( x, y ) = min { λ (x), µ (y) }, for every ( x, y ) ∈ X ×Y.  

Definition 2.22 [2]: Let ( )tX ,  be an fts and λ  be a fuzzy set in X . Let M = { iu : i∈ J } ⊆  

XI  be a family of fuzzy sets . Then M = }{ iu  is called a Q – cover of λ  iff λ (x) + iu (x) ≥  

1 for all x ∈ X and for some iu  ∈ M . If each iu  is open, then M = { iu } is called an open Q 

– cover of λ . 

3. Main results 

 In this section, we found certain tangible properties of countably Q – compact fuzzy sets.  

Also, A⊂X means that A is a proper subset of X. 

Definition 3.1: A fuzzy set λ  in X is said to be countably Q – compact iff every countable 

open Q – cover of λ  has a finite Q – subcover.  

Theorem 3.2: Let λ  be a fuzzy set in an fts ( )tX , , A ⊂  X and 0λ ⊆  A. Then the 

following are equivalent: 

(i) λ  is countably Q – compact fuzzy set with respect to t. 

(ii) λ  is countably Q – compact fuzzy set with respect to the subspace fuzzy topology At  on 

A. 

Proof: Suppose λ  is countably Q – compact fuzzy set with respect to t. Let { ku : k ∈ N } be 

a countable open Q – cover of λ  with respect to At . Then by definition of subspace fuzzy 
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topology, there exists kv ∈ t such that ku  = A ∩ kv  ⊆ kv . Hence λ (x) + ku (x) ≥  1 for all x 

∈  X and consequently λ (x) + kv (x) ≥  1 for all x ∈  X. Therefore { kv : k ∈  N } is a 

countable open Q – cover of λ  with respect to t. Since λ  is countably Q – compact fuzzy set 

in ( )tX , , then λ  has finite Q – subcover i.e. there exist 
rkv ∈ { kv } ( r  = 1, 2,…, n ) such 

that λ (x) + 
rkv (x) ≥  1 for all x ∈ X . But then λ (x) + (A ∩

rkv ) (x) ≥  1 for all x ∈ X and 

therefore λ (x) + 
rku (x) ≥  1 for all x ∈  X . Thus { ku : k ∈  N } contains a finite Q – 

subcover { 
rku } ( r  = 1, 2,…, n ) and hence λ  is countably Q – compact fuzzy set with 

respect to At  .  

Conversely, suppose λ  is countably Q – compact fuzzy set with respect to At . Let { kv : k ∈ 

N } be a countable open Q – cover of λ  with respect to t. Set ku  = A ∩ kv , then λ (x) + kv  

(x) ≥  1 for all x ∈ X . Therefore λ (x) + (A ∩ kv  ) (x) ≥  1 for all x ∈ X and consequently 

λ (x) + ku (x) ≥  1 for all x ∈ X . But ku ∈ At , then { ku : k ∈ N } is a countable open Q – 

cover of λ  with respect to At . Since λ  is countably Q – compact fuzzy set with respect to At , 

then λ  has a finite Q – subcover i.e. there exist 
rku ∈ { ku  } ( r  = 1, 2, ……, n ) such that 

λ (x) + 
rku (x) ≥  1 for all x ∈ X . This implies that λ (x) + (A ∩

rkv ) (x) ≥  1 for all x ∈ X 

and hence λ (x) + 
rkv (x) ≥  1 for all x ∈  X . Thus { kv : k ∈  N } contains a finite Q – 

subcover { 
rkv } ( r  = 1, 2, ……, n ) and therefore λ  is countably Q – compact fuzzy set 

with respect to t .  

Theorem 3.3: Let ( )tX ,  and ( )sY ,  be two fuzzy topological spaces and f: ( )tX ,  →  

( )sY ,  be fuzzy continuous, one – one and onto. If λ  is countably Q – compact fuzzy set in 

( )tX , , then f(λ ) is also countably Q – compact fuzzy set in ( )sY ,  . 
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Proof: Let { ku : k ∈ N } be a countable open Q – cover of f(λ ) in ( )sY ,  i.e. (f(λ )) (x) 

+ ku (x) ≥  1 for all x ∈Y . Since f is fuzzy continuous, then 1−f ( ku ) ∈  t and hence                 

{ 1−f ( ku ): k ∈ N } is a countable open Q – cover of λ in ( )tX , . As λ  is countably Q – 

compact fuzzy set in ( )tX , , then λ  has a finite Q – subcover i.e. there exist 
rku ∈ { ku  }   

( r  = 1, 2, ……, n ) such that λ (x) + ( 1−f (
rku ) ) (x) ≥  1 for all x ∈ X . Again, let u be any 

fuzzy set in Y. Since f is onto, then for any y ∈Y, we have f( 1−f ( u )) (y) = sup { 1−f ( u ) 

(z): z ∈ 1−f ( y), 1−f ( y) ≠  φ  } = sup {u(f(z)): f(z) = y } = sup {u(y) } = u(y) i.e. f( 1−f ( u )) 

= u . This is true for any fuzzy set in Y. As f is one – one and onto, so f(1) = 1 . Hence f(λ (x) 

+ ( 1−f (
rku ) ) (x)) ≥  f(1) implies that ( f (λ )) (x) + (

rku ) ) (x) ≥  1 for all x ∈ Y . Therefore 

f(λ ) is countably Q – compact fuzzy set in ( )sY ,  .  

Theorem 3.4: Let ( )tX ,  and ( )sY ,  be two fuzzy topological spaces and f: ( )tX ,  →  

( )sY ,  be open and bijective. If λ is countably Q – compact fuzzy set in ( )sY , , then 

1−f ( λ  ) is countably Q – compact fuzzy set in ( )tX , .  

Proof: Let { ku : k  ∈  N } be a countable open Q – cover of 1−f ( λ  ) in ( )tX ,  i.e. 

( 1−f ( λ  ) ) (x) + ku (x) ≥  1 for all x ∈ X. Then { f( ku ): k  ∈ N } is a countable open Q – 

cover of λ  in ( )sY , . Since λ  is countably Q – compact fuzzy set in ( )sY , , then λ  has a 

finite Q – subcover i.e. there exist f(
rku ) ∈ { f( ku ) } ( r  = 1, 2, ……, n ) such that λ (x) + 

f(
rku ) (x) ≥  1 for all x ∈. Again, let u be any fuzzy set in X. Since f is bijective, then for any 

x ∈ X, we have 1−f ( f(u) ) (x) = f(u) ( f(x) ) = u ( 1−f ( f(x)) ) = u(x). Thus 1−f ( f(u) ) = u 

and this is true for any fuzzy set in X. As f is bijective, so f(1) = 1. Hence 1−f ( λ (x) + f(
rku ) 
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(x) ) ≥  f(1) implies that ( 1−f (λ  ) ) (x) + 
rku (x) ≥  1. Therefore 1−f ( λ  ) is countably Q – 

compact fuzzy set in ( )tX , .  

Theorem 3.5: Let ( )tX ,  be  an fts and ( )AtA ,  be  subspace of ( )tX ,  and f : ( )tX , →   

( )AtA ,   be continuous and onto. If λ  is countably Q – compact fuzzy set in ( )tX , , then f  

(λ ) is countably Q – compact fuzzy set in ( )AtA , . 

Proof: Let { ku : k  ∈ N } be a countable open Q – cover of f (λ ) in ( )AtA ,  i.e. (f (λ ) ) (x) 

+ ku (x) ≥  1 for all x ∈  A. Since f is fuzzy continuous, then 1−f ( ku ) ∈  t and hence 

{ 1−f ( ku ): k  ∈ N } is a countable open Q – cover of λ  in ( )tX , . As λ  is countably Q – 

compact fuzzy set in ( )tX , , then λ  has a finite Q – subcover i.e. there exist 1−f (
rku ) ∈ 

{ 1−f ( ku ) } ( r  = 1, 2, ……, n ) such that λ  (x) + 1−f (
rku ) (x) ≥  1 for all x ∈ X. Again, let 

u be any fuzzy set in A. Since f is bijective, then for any y ∈A, we have f ( 1−f ( u )) (y) = sup 

{ 1−f ( u ) (z): z ∈ 1−f ( y), 1−f ( y) ≠  φ  } = sup {u(f(z)): f(z) = y } = sup {u(y) } = u(y) i.e. f 

( 1−f ( u ) ) = u . This is true for any fuzzy set in A and also f (1) = 1. Hence f (λ  (x) + 

1−f (
rku ) (x) )≥  f (1) ⇒  ( f (λ ) ) (x) + (

rku ) (x) ≥  1 for all x ∈  A. Therefore f (λ ) is 

countably Q – compact fuzzy set in ( )AtA , .  

Theorem 3.6: Let ( )AtA ,  and ( )BsB ,  be fuzzy subspaces of fuzzy topological spaces 

( )tX ,  and ( )sY ,  respectively. Let λ  be a countably Q – compact fuzzy set in ( )AtA ,  

and f: ( )AtA ,  →  ( )BsB ,  be relatively fuzzy continuous and onto. Then f (λ ) is also 

countably Q – compact fuzzy set in ( )BsB , . 

Proof: Let { kv : k  ∈ N } be a countable open Q – cover of f (λ ) in ( )BsB ,  i.e. (f (λ ) ) (x) 

+ kv (x) ≥  1 for all x ∈ B. Since kv  ∈ Bs , then there exists ku  ∈ s such that kv  = ku  ∩  B. 
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Hence ( f ( λ ) ) (x) + kv (x) ≥  1 for all x ∈  B. As f is fuzzy relatively continuous, then 

1−f ( kv ) ∩  A ∈ At  and hence { 1−f ( kv ) ∩  A: k  ∈ N } is a countable open Q – cover of 

λ in ( )AtA ,  i.e. { 1−f ( ku  ∩  B ) ∩  A: k  ∈ N } = { 1−f ( ku ) ∩ 1−f (B) ∩  A: k  ∈ N } = 

{ 1−f ( ku ) ∩  A: k  ∈  N } is a countable open Q – cover of λ in ( )AtA ,  i.e λ (x) + 

( 1−f ( ku ) ∩  A ) (x) ≥  1 for all x ∈  A. Since λ  is countably Q – compact fuzzy set in 

( )AtA , , so λ  has a finite Q – subcover i.e. there exist 1−f (
rku ) ∩  A ∈ { 1−f (

rku ) ∩  A } 

( r  = 1, 2, ……, n ) such that λ (x) + ( 1−f (
rku ) ∩  A ) (x) ≥  1 for all x ∈ A. Again, let v be 

any fuzzy set in B. As f is onto, then for any y ∈ B, we have f ( 1−f (v) ) (y) = sup { 1−f (v) 

(z): z ∈ 1−f (y), 1−f (y) ≠  φ  } = sup { v ( f(z) ): f(z) = y } = sup { v(y) } = v(y) i.e. f 

( 1−f (v) ) = v and this is true for any fuzzy set in B and also f (1) = 1. Hence f (λ (x) + 

( 1−f (
rku ) ∩  A ) (x) ) ≥  f (1) ⇒ ( f (λ ) ) (x) + ( (

rku ) ∩  f (A) ) (x) ) ≥  1 ⇒  ⇒  ( f (λ ) ) 

(x) + ( (
rku ) ∩  B ) (x) ) ≥  1 ⇒  ( f (λ ) ) (x) + (

rkv ) (x) ) ≥  1 for all x ∈ B. Therefore f (λ ) 

is countably Q – compact fuzzy set in ( )BsB , .  

Theorem 3.7: Let λ  be a countably Q – compact fuzzy set in a fuzzy – 1T  space ( )tX ,  

with 0λ  ⊂  X ( proper subset ). Let x ∉ 0λ  (λ (x) = 0 ), then there exist u, v ∈ t such that u(x) 

= 1 and 0λ ⊆  1−v ( 0, 1].  

Proof: Let y ∈ 0λ . Then clearly x ≠  y. As ( )tX ,  is fuzzy – 1T  space, then there exist yu , 

yv ∈ t such that yu (x) = 1, yu (y) = 0 and yv (x) = 0, yv (y) = 1. Therefore λ (x) + yu (x) ≥  1, 

x ∈ X and λ (y) + yv (y) ≥  1, y ∈ 0λ  i.e. { yu , yv : y ∈ 0λ  } is a countable open Q – cover 

of λ  . Since λ  is countably Q – compact fuzzy set in ( )tX , , then λ  has a finite Q – 

subcover i.e. there exist 
kyu ∈ { yu } and 

kyv ∈ { yv } ( k  = 1, 2, ……, n ) such that λ (x) + 
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kyu (x) ≥  1 for all x ∈ X when λ (x) = 0 and some 
kyu ∈ { yu } and λ (y) + 

kyv (y) ≥  1 for 

all y ∈ X when λ (y) > 0 and some 
kyv ∈ { yv } . Now, let v = 

1yv ∪
2yv ∪  ….. ∪

nyv  and u 

= 
1yu ∩  

2yu ∩  …… ∩
nyu . Hence v and u are open fuzzy sets, as they are the union and 

finite intersection of open fuzzy sets respectively i.e. v, u ∈ t. Furthermore, 0λ ⊆  1−v ( 0, 1] 

and u(x) = 1, as 
kyu (x) = 1 for each k . 

Theorem 3.8: Let λ  and µ  be disjoint countably Q – compact fuzzy sets in a fuzzy – 1T  

space ( )tX ,  with 0λ , 0µ  ⊂  X ( proper subsets ). Then there exist u, v ∈ t such that 0λ  ⊆  

1−u ( 0, 1] and 0µ  ⊆  1−v ( 0, 1]. 

Proof: Let y ∈ 0λ . Then y ∉ 0µ , as λ  and µ  are disjoint. Since µ  is countably Q – compact 

fuzzy set in ( )tX , , then by theorem 3.7, there exist yu , yv ∈ t such that yu (y) = 1 and 0µ  

⊆ 1−
yv ( 0, 1]. As yu (y) = 1, then λ (x) + yv (x) ≥  1, x ∈ X and λ (y) + yu (y) ≥  1, y ∈ 0λ  i.e. 

{ yv , yu : y ∈ 0λ  } is a countable open Q – cover of λ  . Since λ  is countably Q – compact 

fuzzy set in ( )tX , , then λ  has a finite Q – subcover i.e. there exist 
kyv ∈ { yv } and 

kyu ∈ 

{ yu } ( k  = 1, 2, ……, n ) such that λ (x) + 
kyv (x) ≥  1 for all x ∈ X when λ (x) = 0 and 

some 
kyv ∈  { yv } and λ (y) + 

kyu (y) ≥  1 for all y ∈  X when λ (y) > 0 and some 
kyu ∈ 

{ yu }. Furthermore, µ (x) + 
kyv (x) ≥  1 for all x ∈ X when µ (x) > 0 and some 

kyv ∈ { yv } 

and µ  (y) + 
kyu (y) ≥  1 for all y ∈ X when µ  (y) = 0 and some 

kyu ∈ { yu }. Now, let u = 

1yu ∪  
2yu ∪  …… ∪

nyu  and v = 
1yv ∩

2yv ∩  …..∩  
nyv . Thus we see that 0λ  ⊆  1−u ( 0, 1] 

and 0µ  ⊆  1−v ( 0, 1], as µ ⊆
kyv  for each k . Hence u and v are open fuzzy sets, as they are 

the union and finite intersection of open fuzzy sets respectively i.e. u, v ∈ t. 
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Remark: If λ (x) ≠  0 for all x ∈ X i.e. 0λ  = X, then the above two theorems are not at all 

true.  

The following Example will show that the countably Q – compact fuzzy set in a fuzzy – 1T  

space need not be closed. 

Example – 3.9: Let X = { a, b } and I = [ 0, 1 ]. Let 1u , 2u  ∈ XI  with 1u (a) = 1, 1u (b) = 0 

and 2u (a) = 0, 2u (b) = 1. Now, take t = { 0, 1, 1u , 2u  }, then ( )tX ,  is a fuzzy – 1T  space. 

Let λ  ∈ XI  defined by λ (a) = 0.7, λ (b) = 0.9. Thus we see that λ (x) + ku (x) ≥  1 for all x 

∈ X and for some ku  ( k  = 1, 2 ). Then clearly λ  is countably Q – compact fuzzy set in 

( )tX , . But λ  is not closed, as its complement cλ  is not open in ( )tX , .  

Theorem 3.10: Let λ  be a countably Q – compact fuzzy set in a fuzzy Hausdorff space 

( )tX ,  ( in the sense of Definition 2.18 ) with 0λ  ⊂  X ( proper subset ). Let x ∉ 0λ  (λ (x) 

= 0 ), then there exist u, v ∈ t such that u(x) = 1, 0λ ⊆  1−v ( 0, 1] and u ∩ v = 0.  

Proof: Suppose y ∈ 0λ . Then clearly x ≠  y. Since ( )tX ,  is fuzzy Hausdorff, then there 

exist yu , yv ∈ t such that yu (x) = 1, yv (y) = 1 and yu ∩  yv  = 0. Hence λ (x) + yu (x) ≥  1, x 

∈ X and λ (y) + yv (y) ≥  1, y ∈ 0λ  i.e. { yu , yv : y ∈ 0λ  } is a countable open Q – cover of 

λ  . As λ  is countably Q – compact fuzzy set in ( )tX , , then λ  has a finite Q – subcover 

i.e. there exist 
kyu ∈ { yu } and 

kyv ∈ { yv } ( k  = 1, 2, ……, n ) such that λ (x) + 
kyu (x) ≥  

1 for all x ∈ X when λ (x) = 0 and some 
kyu ∈ { yu } and λ (y) + 

kyv (y) ≥  1 for all y ∈ X 

when λ (y) > 0 and some 
kyv ∈ { yv } . Now, let v = 

1yv ∪
2yv ∪  ….. ∪

nyv  and u = 
1yu ∩  

2yu ∩  …… ∩
nyu . Thus we see that v and u are open fuzzy sets, as they are the union and 
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finite intersection of open fuzzy sets respectively i.e. v, u ∈ t. Furthermore, 0λ ⊆  1−v ( 0, 1] 

and u(x) = 1, as 
kyu (x) = 1 for each k . 

Finally, we have to show that u ∩ v = 0. First, we observe that 
kyu ∩

kyv = 0 implies u 

∩
kyv = 0, by distributive law, we see that u ∩ v = u ∩ ( 

1yv ∪
2yv ∪  ….. ∪

nyv ) = 0.  

Theorem 3.11: Let λ  and µ  be disjoint countably Q – compact fuzzy sets in a fuzzy 

Hausdorff space ( )tX ,  ( in the sense of Definition 2.18 ) with 0λ , 0µ  ⊂  X ( proper 

subsets ). Then there exist u, v ∈ t such that 0λ  ⊆  1−u ( 0, 1], 0µ  ⊆  1−v ( 0, 1] and u ∩ v = 0. 

Proof: Suppose y ∈ 0λ . Then y ∉ 0µ , as λ  and µ  are disjoint. Since µ  is countably Q – 

compact fuzzy set in ( )tX , , then by theorem 3.10, there exist yu , yv ∈ t such that yu (y) = 

1, 0µ  ⊆  1−
yv ( 0, 1] and yu ∩  yv  = 0. As yu (y) = 1, then λ (x) + yv (x) ≥  1, x ∈ X and λ (y) 

+ yu (y) ≥  1, y ∈ 0λ  i.e. { yv , yu : y ∈ 0λ  } is a countable open Q – cover of λ  . Since λ  is 

countably Q – compact fuzzy set in ( )tX , , then λ  has a finite Q – subcover i.e. there exist 

kyv ∈ { yv } and 
kyu ∈ { yu } ( k  = 1, 2, ……, n ) such that λ (x) + 

kyv (x) ≥  1 for all x ∈ X 

when λ (x) = 0 and some 
kyv ∈ { yv } and λ (y) + 

kyu (y) ≥  1 for all y ∈ X when λ (y) > 0 

and some 
kyu ∈ { yu }. Furthermore, µ (x) + 

kyv (x) ≥  1 for all x ∈ X when µ (x) > 0 and 

some 
kyv ∈  { yv } and µ  (y) + 

kyu (y) ≥  1 for all y ∈  X when µ  (y) = 0 and some 
kyu ∈ 

{ yu }. Now, let u = 
1yu ∪  

2yu ∪  …… ∪
nyu  and v = 

1yv ∩
2yv ∩  …..∩  

nyv . Hence we see 

that 0λ  ⊆  1−u ( 0, 1] and 0µ  ⊆  1−v ( 0, 1], as µ ⊆
kyv  for each k . Hence u and v are open 

fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively i.e. u, v 

∈ t.  
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Finally, we have to show that u ∩ v = 0 . As 
kyu ∩

kyv = 0 implies 
kyu ∩ v= 0, by distributive 

law, we have u ∩ v = (
1yu ∪  

2yu ∪  …… ∪
nyu )∩ v = 0. 

Remark: If λ (x) ≠  0 for all x ∈ X i.e. 0λ  = X, then the above two theorems are not at all 

true.  

Note: Example – 3.9 is also valid for remain that countably Q – compact fuzzy set in a fuzzy 

Hausdorff space ( in the sense of Definition 2.18 ) need not be closed.  

Theorem 3.12: Let λ  be a countably Q – compact fuzzy set in a fuzzy Hausdorff space 

( )tX ,  ( in the sense of Definition 2.19 ) with 0λ  ⊂  X ( proper subset ). Let x ∉ 0λ  (λ (x) 

= 0 ), then there exist u, v ∈ t such that u(x) = 1, 0λ  ⊆  1−v ( 0, 1] and u ⊆  1 – v.  

Proof: Let y ∈ 0λ . Then clearly x ≠  y. Since ( )tX ,  is fuzzy Hausdorff, then there exist yu , 

yv ∈ t such that yu (x) = 1, yv (y) = 1 and yu  ⊆  1 – yv . Hence λ (x) + yu (x) ≥  1, x ∈ X and 

λ (y) + yv (y) ≥  1, y ∈ 0λ  i.e. { yu , yv : y ∈ 0λ  } is a countable open Q – cover of λ . As λ  

is countably Q – compact in ( )tX , , then λ  has a finite Q – subcover i.e. there exist 
kyu ∈ 

{ yu } and 
kyv ∈ { yv } ( k  = 1, 2, ……, n ) such that λ (x) + 

kyu (x) ≥  1 for all x ∈ X when 

λ (x) = 0 and some 
kyu ∈ { yu } and λ (y) + 

kyv (y) ≥  1 for all y ∈ X when λ (y) > 0 and 

some 
kyv ∈  { yv }. Now, let v = 

1yv ∪
2yv ∪  ….. ∪

nyv  and u = 
1yu ∩  

2yu ∩  …… ∩
nyu . 

Thus we see that v and u are open fuzzy sets, as they are the union and finite intersection of 

open fuzzy sets respectively i.e. v, u ∈ t . Furthermore, 0λ ⊆  1−v ( 0, 1] and u(x) = 1, as 

kyu (x) = 1 for each k . 

Finally, we have to show that u ⊆  1 – v. As yu  ⊆  1 – yv  implies that u ⊆  1 – yv  . Since 

kyu (x) ≤  1 –
kyv (x) for all x ∈ X and for each k , then u ⊆  1 – v . If not, then there exist x ∈ 

X, such that yu (x) >1 – yv (x). But we have yu (x) ≤  
kyu (x) for each k . Then for some k , 
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kyu (x) >1 –
kyv (x). This is a contradiction, as 

kyu (x) ≤  1 –
kyv (x) for each k . Hence u ⊆  1 – 

v. 

Theorem 3.13: Let λ  and µ  be disjoint countably Q – compact fuzzy sets in a fuzzy 

Hausdorff space ( )tX ,  ( in the sense of Definition 2.19 ) with 0λ , 0µ  ⊂  X ( proper 

subsets ). Then there exist u, v ∈ t such that 0λ  ⊆  1−u ( 0, 1], 0µ  ⊆  1−v ( 0, 1] and u ⊆  1 – 

v.  

Proof: Let y ∈ 0λ . Then y ∉ 0µ , as λ  and µ  are disjoint . As µ  is countably Q – compact 

fuzzy set in ( )tX , , then by theorem 3.12, there exist yu , yv ∈ t such that yu (y) = 1, 0µ  ⊆  

1−
yv ( 0, 1] and yu  ⊆  1 – yv . Since yu (y) = 1, then λ (x) + yv (x) ≥  1, x ∈  X and λ (y) + 

yu (y) ≥  1, y ∈ 0λ  i.e. { yv , yu : y ∈ 0λ  } is a countable open Q – cover of λ  . As λ  is 

countably Q – compact fuzzy set in ( )tX , , then λ  has a finite Q – subcover i.e. there exist 

kyv ∈ { yv } and 
kyu ∈ { yu } ( k  = 1, 2, ……, n ) such that λ (x) + 

kyv (x) ≥  1 for all x ∈ X 

when λ (x) = 0 and for some 
kyv ∈ { yv } and λ (y) + 

kyu (y) ≥  1 for all y ∈ X when λ (y) > 

0 and for some 
kyu ∈ { yu }. Furthermore, µ (x) + 

kyv (x) ≥  1 for all x ∈ X when µ (x) > 0 

and for some 
kyv ∈ { yv } and µ  (y) + 

kyu (y) ≥  1 for all y ∈ X when µ  (y) = 0 and some 

kyu ∈ { yu }. Now, let u = 
1yu ∪  

2yu ∪  …… ∪
nyu  and v = 

1yv ∩
2yv ∩  …..∩  

nyv . Thus 

we see that 0λ  ⊆  1−u ( 0, 1] and 0µ  ⊆  1−v ( 0, 1], as µ ⊆
kyv  for each k . Hence u and v are 

open fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively 

i.e. u, v ∈ t.  

Finally, we have to show hat u ⊆  1 – v . As 
kyu ⊆  1 – 

kyv  for each k  implies that 
kyu ⊆1– v 

for each  

k  and it is clear that u ⊆  1 – v.  
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Remark: If λ (x) ≠  0 for all x ∈ X i.e. 0λ  = X, then the above two theorems are not at all 

true. 

Note: Example – 3.9 is also valid for remain that countably Q – compact fuzzy set in a fuzzy 

Hausdorff space ( in the sense of Definition 2.19 ) need not be closed.  

Theorem 3.14: Let λ  be a countably Q – compact fuzzy set in a fuzzy regular space ( )tX ,  

with 0λ  ⊂  X ( proper subset ). If for each x ∈ 0λ , there exist u ∈ ct  with u(x) = 0, we have v, 

w ∈ t such that v(x) = 1, u ⊆  w, 0λ  ⊆  1−v ( 0, 1 ] and v ⊆  1 – w.  

Proof: Let ( )tX ,  be a fuzzy regular space and λ  be a countbly Q – compact fuzzy set in X. 

Then for each x ∈ 0λ , there exists u ∈ ct  with u(x) = 0. As ( )tX ,  is fuzzy regular, we have 

xv , xw  ∈ t such that xv (x) = 1, xu  ⊆  xw  and xv  ⊆  1 – xw . Thus we see that λ (x) + xv (x) 

≥  1 for all x ∈ X i.e. { xv : x ∈ 0λ  } is a countable open Q – cover of λ . As λ  is countably 

Q – compact fuzzy set in ( )tX , , so λ  has a finite subcover i.e. there exist 
kxv ∈ { xv } ( k  

= 1, 2, ……, n ) such that λ (x) + 
kxv (x) ≥  1 for all x ∈ X. Now, let v = 

1xv ∪
2xv ∪  ...... 

∪
nxv  and w = 

1xw ∩
2xw ∩  ...... ∩

nxw . Hence we see that v and w are open fuzzy sets, as 

they are the union and finite intersection of open fuzzy sets respectively i.e. v, w ∈  t. 

Furthermore, 0λ  ⊆  1−v ( 0, 1 ], v(x) = 1and u ⊆  w, as u ⊆  
kxw for each k .  

Finally, we have to show that v ⊆  1 – w. As 
kxv ⊆  1 – 

kxw  for each k  implies that 
kxv ⊆  1 – 

w for each k  and hence it is clear that v ⊆  1 – w.  

The “ good extension property” does not remain valid in countably Q – compact fuzzy sets. 

Example 3.15: Let X = { a, b, c } and T = { {b}, {c}, {b, c}, φ , X }, then ( )TX ,  is a 

topological space. Let 1u , 2u , 3u  ∈  XI  with 1u (a) = 0, 1u (b) = 0.4, 1u (c) = 0 ; 2u (a) = 0, 

2u (b) = 0, 2u (c) = 0.6 and 3u (a) = 0, 3u (b) = 0.4, 3u (c) = 0.6. Then ω ( T ) = { 1u , 2u , 3u , 0, 
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1 } and ( ))(, TX ω  is an fts. Now, let G = { b, c }. Then clearly G is countably compact in 

( )TX , . But G1  is not countably Q – compact fuzzy set in ( ))(, TX ω  as there do not 

exist ku  ∈ { ω ( T ) } ( k  = 1, 2, 3 ) such that G1 (a) + ku (a) ≥  1 for a ∈ X.  

Again, let 1v , 2v , 3v , 4v  ∈ XI  with 1v (a) = 0, 1v (b) = 0.3, 1v (c) = 0 ; 2v (a) = 0, 2v (b) = 0, 

2v (c) = 0.8 ; 3v (a) = 0, 3v (b) = 1, 3v (c) = 1 and 4v (a) = 0, 4v (b) = 0.3, 4v (c) = 0.8. Then 

ω ( T ) = { 1v , 2v , 3v , 4v , 0, 1 } and ( ))(, TX ω  is an fts.  

Now, let λ  ∈ XI  defined by λ (a) = 1, λ (b) = 0.7, λ (c) = 0. We observe that, λ (x) + 3v (x) 

≥  1 for all x ∈ X. Then clearly λ  is countably Q – compact fuzzy set in ( ))(, TX ω , but 

1−λ ( 0, 1 ] = { a, b } is not countably compact in ( )TX , . It is, therefore, observe that “ good 

extension property” does not hold good for countably Q – compact fuzzy sets.  

Theorem 3.16: Let λ  and µ  be countably Q – compact fuzzy sets in an fts ( )tX , . Then 

(λ × µ ) is also countably Q – compact in ( )ttXX ×× , . 

Proof : Let M = { ka  : ka ∈  t ×  t and k ∈  N } be a countable Q – cover of ( λ × µ ) in 

( )ttXX ×× , . Then (λ × µ ) (x , y) + ka (x , y) ≥  1 for all (x ,y) ∈ X×X. Now, we can write 

ka = ku × kv , where ku , kv ∈ t. Thus we have (λ × µ ) (x ,y) + ( ku × kv ) (x ,y) ≥  1 for all 

(x ,y) ∈ X×X. Hence it is clear that λ (x) + ku (x) ≥  1 for all x ∈X and µ (y) + kv (y) ≥  1 

for all y ∈X. Therefore, { ku : k ∈ N }  and { kv : k ∈ N } are countable Q – covers of λ  and 

µ  respectively. Since λ  and µ  are countably Q – compact, then { ku : k ∈ N }  and { kv : 

k ∈ N } have finite Q – subcovers i.e. there exist 
rku ∈ { ku } ( r  = 1, 2,…, n ) and 

rkv ∈ 

{ kv  } ( r  = 1, 2,…, n ) such that λ (x) + 
rku (x) ≥  1 for all x ∈X and µ (y) + 

rkv (y) ≥  1 for 



M. A. M. TALUKDER AND D. M. ALI                                                 462 

all y ∈X respectively. Thus we can write (λ × µ ) (x ,y) + (
rku ×

rkv ) (x ,y) ≥  1 for all (x ,y) 

∈ X×X. Hence (λ × µ ) is countably Q – compact in ( )ttXX ×× , . 
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