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Abstract. In this paper, we consider the three-dimensional Navier-Stokes equations, and show that if the Ḃ−1
∞,∞-

norm of the velocity field is sufficiently small, then the solution is in fact classical.
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1. INTRODUCTION

Consider the following three-dimensional (3D) Navier-Stokes equations:

(1)


uuut +(uuu ·∇)uuu−4uuu+∇π = 0,

∇ ·uuu = 0,

uuu(x,0) = uuu0,

where uuu = (u1(x, t),u2(x, t),u3(x, t)) is the fluid velocity, π = π(x, t) is a scalar pressure; and uuu0

is the prescribed initial velocity filed satisfying the compatibility condition ∇ ·uuu0 = 0.

The existence of a global weak solution

uuu ∈ L∞(0,T ;L2(R3))∩L2(0,T ;H1(R3))
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to (1) has long been established by Leray [10], see also Hopf [9]. But the issue of regularity

and uniqueness of uuu remains open. Initialed by Serrin [15, 16] and Prodi [14], there have been

a lot of literatures devoted to finding sufficient conditions to ensure uuu to be smooth, see, e.g.,

[1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 18, 19, 21, 20, 22, 23, 24, 25, 26, 27] and references cited therein.

Noticeably, the following Ladyzhenskaya-Prodi-Serrin condition ([6, 14, 15, 16]):

uuu ∈ Lp(0,T ;Lq(R3)), with
2
p
+

3
q
= 1, 3≤ q≤ ∞ (2)

can ensure the smoothness of the solution.

Note that the limiting case L∞(0,T ;L3(R3)) in (2) does not fall into the framework of stan-

dard energy method, which was proved by Escauriaza, Seregin and Šverák [6] using backward

uniqueness theorem. Due to the fact that

L3(R3)⊂ Ḃ−1
∞,∞(R3), but L3(R3) 6= Ḃ−1

∞,∞(R3),

we shall consider in this paper the regularity of solutions of (1) in Ḃ−1
∞,∞(R3). However, we

could not prove a regularity criterion as L∞(0,T ; Ḃ−1
∞,∞(R3)), since the function in Ḃ−1

∞,∞(R3) has

no decay at infinity, which ensures that the solution is smooth outside an big ball centered at

origin so that the backward uniqueness theorem can be applied.

Before stating the precise result, let us recall the weak formulation of (1).

Definition 1. Let uuu0 ∈ L2(R3) satisfying ∇ · uuu0 = 0, T > 0. A measurable vector-valued

function uuu defined in [0,T ]×R3 is said to be a weak solution to (1) if

(1) uuu ∈ L∞(0,T ;L2(R3))∩L2(0,T ;H1(R3));

(2) uuu satisfies (1)1,2 in the sense of distributions;

(3) uuu satisfies the energy inequality:

‖uuu(t)‖2
L2 +2

∫ t

0
‖∇uuu(s)‖2

L2 ds≤ ‖uuu0‖L2 , ∀ t ∈ [0,T ].

Now, our main result reads:

Theorem 2. Let uuu0 ∈ L2(R3) satisfying ∇ ·uuu0 = 0, T > 0. Assume that uuu is a weak solution

of (1) in [0,T ]. If there exists an absolute constant ε0 > 0 such that

‖uuu‖L∞(0,T ;Ḃ−1
∞,∞)
≤ ε0, (3)
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then uuu is smooth in (0,T ).

The rest of this paper is organized as follows. In Section 2, we recall the definition of Besov

spaces and an interpolation inequality. Section 3 is devoted to proving Theorem 2.

2. PRELIMINARIES

We first introduce the Littlewood-Paley decomposition. Let S (R3) be the Schwartz class of

rapidly decreasing functions. For f ∈S (R3), its Fourier transform F f = f̂ is defined as

f̂ (ξ ) =
∫
R3

f (x)e−ix·ξ dx.

Let us choose an non-negative radial function ϕ ∈S (R3) such that

0≤ ϕ̂(ξ )≤ 1, ϕ̂(ξ ) =

 1, if |ξ | ≤ 1,

0, if |ξ | ≥ 2,

and let

ψ(x) = ϕ(x)−2−3
ϕ(x/2), ϕ j(x) = 23 j

ϕ(2 jx), ψ j(x) = 23 j
ψ(2 jx), j ∈ Z.

For j ∈ Z, the Littlewood-Paley projection operators S j and4 j are, respectively, defined by

S j f = ϕ j ∗ f , 4 j f = ψ j ∗ f .

Observe that4 j = S j−S j−1. Also, it is easy to check that if f ∈ L2(R3), then

S j f → 0, as j→−∞; S j f → f , as j→ ∞,

in the L2 sense. By telescoping the series, we have the following Littlewood-Paley decomposi-

tion

f =
∞∑

j=−∞

4 j f ,

for all f ∈ L2(R3), where the summation is in the L2 sense.

Let s ∈ R; p,q ∈ [1,∞], the homogeneous Besov space Ḃs
p,q(R3) is defined by the full dyadic

decomposition such as

Ḃs
p,q =

{
f ∈Z ′(R3); ‖ f‖Ḃs

p,q
=
∥∥∥{2 js∥∥4 j f

∥∥
Lp

}∞

j=−∞

∥∥∥
`q
< ∞

}
,
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where Z ′(R3) is the dual space of

Z (R3) =
{

f ∈S (R3); Dα f̂ (0) = 0, ∀ α ∈ N3} .
The following interpolatin inequality will be need in Section 3,

(4) ‖ f‖Lq ≤C‖ f‖
2
q

Ḣα( q
2−1)
‖ f‖

1− 2
q

Ḃ−α
∞,∞

, ∀ f ∈ Ḣα( q
2−1)(R3)∩ Ḃ−α

∞,∞(R3),

where 2 < q < ∞ and α > 0. See [11] for the proof.

3. PROOF OF THEOREM 2

In this section, we shall prove Theorem 2.

For any ε ∈ (0,T ), due to the fact that uuu ∈ L2(0,T ;H1(R3)), we may find a δ ∈ (0,ε), such

that ∇uuu(δ ) ∈ L2(R3). Take this uuu(δ ) as initial data, there exists an ũuu ∈ C([δ ,Γ ∗),H1(R3))∩

L2(0,Γ ∗;H2(R3)), where [δ ,Γ ∗) is the life span of the unique strong solution, see [17]. More-

over, ũuu ∈C∞(R3× (δ ,Γ ∗)). According to the uniqueness result, ũuu = uuu on [δ ,Γ ∗). If Γ ∗ ≥ T ,

we have already that uuu∈C∞(R3×(0,T )), due to the arbitrariness of ε ∈ (0,T ). In case Γ ∗ < T ,

our strategy is to show that ‖∇uuu(t)‖2 remains bounded independently of t↗ Γ ∗. The standard

continuation argument then yields that [δ ,Γ ∗) can not be the maximal interval of existence of

ũuu, and consequently Γ ∗ ≥ T . This concludes the proof.

Multiplying (1)1 by −4uuu, and integrating over R3, we obtain

(5)

1
2

d
dt
‖∇uuu‖2

L2 +‖4uuu‖2
L2 =

∫
R3
[(uuu ·∇)uuu] ·4uuudx

≡ I.

By Hölder inequality,

I ≤ ‖uuu‖L6 ‖∇uuu‖L3 ‖4uuu‖L2 .

Invoking (4) with q = 6, α = 1; and q = 3, α = 2, we may further estimate I as

(6)
I ≤C

(
‖uuu‖

1
3
Ḣ2 ‖uuu‖

2
3
Ḃ−1

∞,∞

)(
‖∇uuu‖

2
3
Ḣ1 ‖∇uuu‖

1
3
Ḃ−2

∞,∞

)
‖4uuu‖L2

=C‖uuu‖Ḃ−1
∞,∞
‖4uuu‖2

L2 .
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Substituting (6) into (5), we see

1
2

d
dt
‖∇uuu‖2

L2 +
(

1−C‖uuu‖Ḃ−1
∞,∞

)
‖4uuu‖2

L2 ≤ 0.

Thus, if

‖uuu‖Ḃ−1
∞,∞
≤ 1

C
≡ ε0,

we deduce that ‖∇uuu‖L2 is decreasing, and hence

‖∇uuu(t)‖L2 ≤ ‖∇uuu(δ )‖L2 , ∀ δ ≤ t < Γ
∗.

The proof of Theorem 2 is completed.

Conflict of Interests

The author declares that there is no conflict of interests.

Acknowledgments

The author was partially supported by the Youth Natural Science Foundation of Jiangxi Province

(20132BAB211007), the Science Foundation of Jiangxi Provincial Department of Education

(GJJ13658, GJJ13659), and the National Natural Science Foundation of China (11326138,

11361004).

REFERENCES

[1] H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in Rn, Chinese Ann. Math. Ser. B

16 (1995), 407-412.

[2] H. Beirão da Veiga, L.C. Berselli, On the regularizing effect of the vorticity direction in incompressible

viscous flows, Differential Integral Equations 15 (2002), 345-356.

[3] C.S. Cao, E.S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the

velocity gradient tensor, Arch. Rational Mech. Anal. 202 (2011), 919-932.

[4] D. Chae, J. Lee, Regularity criterion in terms of pressure for the Navier-Stokes equations, Nonlinear Anal.

46 (2001), 727-735.

[5] P. Constantin, C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes

equations, Indiana Univ. Math. J. 42 (1993), 775-789.

[6] L. Escauriaza, G. Seregin, V. Šverák, Backward uniqueness for parabolic equations, Arch. Ration. Mech.

Anal. 169 (2003), 147-157.



592 ZUJIN ZHANG

[7] J.S. Fan, S. Jiang, G.X. Ni, On regularity criteria for the n-dimensional Navier-Stokes equations in terms of

the pressure, J. Differential Equations 244 (2008), 2963-2979.

[8] X.W. He, S. Gala, Regularity criterion for the weak solutions to the Navier-Stokes equations in terms of the

pressure in the class L2(0,T ; Ḃ−1
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