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Abstract. Some new oscillation results are established for the difference equation

∆
(
an(∆(xn + pnxτ(n)))

α
)

+ qnx
β
σ(n) = 0

via comparison theorems. Examples are provided to illustrate the main results.
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1. Introduction

In this paper, we study the oscillatory behavior of second order quasilinear neutral

difference equation of the form

(1.1) ∆
(
an(∆(xn + pnxτ(n)))

α
)

+ qnx
β
σ(n) = 0, n ≥ n0 ∈ N,

where ∆ is the forward difference operator defined by ∆xn = xn+1 − xn and N =

{0, 1, 2, . . . }, subject to the following hypotheses:

(H1) {pn} and {qn} are nonnegative real sequences with {qn} not identically zero for

infinitely many values to n;
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(H2) {an} is a positive real sequence such that
∞∑

n=n0

1

a
1
α
n

<∞;

(H3) α and β are ratios of odd positive integers;

(H4) {τ(n)} and {σ(n)} are nondecreasing sequences of positive integers such that

lim
n→∞

σ(n) = lim
n→∞

τ(n) =∞ and τ ◦ σ = σ ◦ τ ;

(H5) there is a constant p such that 0 ≤ pn ≤ p <∞.

By a solution of equation (1.1) we mean a real sequence {xn} defined and satisfies

equation (1.1) for all n ≥ n0 ∈ N. We consider only those solutions {xn} of equation

(1.1) which satisfy sup{|xn|; n ≥ N} > 0 for all N ≥ n0. We assume that equation (1.1)

possesses such a solution. A solution {xn} of equation (1.1) is oscillatory if it is neither

eventually positive nor eventually negative and nonoscillatory otherwise.

In recent years, there has been much research activities concerning the oscillation of

delay and neutral type difference equations, see for example [1, 2, 5], and the references

cited therein. In [7, 8], the authors considered difference equation of the type (1.1) and

obtained oscillation criteria when
∞∑

n=n0

1

a
1
α
n

<∞ and 0 ≤ pn ≤ p < 1 or
∞∑

n=n0

1

a
1
α
n

=∞ and

0 ≤ pn ≤ p <∞, respectively.

Motivated by this observation in this paper, we establish sufficient conditions for the

oscillation of all solutions of equation (1.1) when
∞∑

n=n0

1

a
1
α
n

< ∞ and 0 ≤ pn ≤ p < ∞. In

Section 2, we present some basic lemmas and in Section 3, we establish oscillation results

for the equation (1.1). In Section 4, we present some examples to illustrate the main

results. Thus our results extend and complement to those obtained in [7, 8].

2. Some Basic Lemmas

In this section, we present some basic lemmas which will be used to prove the main

results.

Lemma 2.1. Let A ≥ 0, B ≥ 0 and γ ≥ 1. Then

(2.1) (A+B)γ ≤ 2γ−1(Aγ +Bγ).

Proof. The proof can be found in [3, pp.292], and also in [4, Remark 2.1]. �
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Lemma 2.2. Let A ≥ 0, B ≥ 0 and 0 < γ ≤ 1. Then

(2.2) (A+B)γ ≤ Aγ +Bγ.

Proof. The proof can be found in [9].

Next we present the structure of positive solution of equation (1.1) since the opposite

case is similar. �

Lemma 2.3. If {xn} is a positive solution of equation (1.1), then zn = xn + pnxτ(n)

satisfies the following two cases eventually:

(I) zn > 0, ∆zn > 0, ∆ (an(∆zn)α) ≤ 0;

(II) zn > 0, ∆zn < 0, ∆ (an(∆zn)α) ≤ 0.

Proof. The proof is similar to that of in [7] and hence details are omitted.

Next we state two lemmas given in [6]. �

Lemma 2.4. Let γ > 1 be a quotient of odd positive integers. Assume that k is a positive

integer, {dn} is a positive sequence defined for all n ≥ n0 ∈ N, and there exists λ > 1
k

log γ

such that

(2.3) lim
n→∞

inf
[
dn exp(e−λn)

]
> 0.

Then all the solutions of the difference equation

(2.4) ∆yn + dny
γ
n−k = 0

are oscillatory.

Lemma 2.5. Let 0 < γ < 1 be a quotient of odd positive integers. Assume that k is a

positive integer and {dn} is a positive real sequence defined for all n ≥ n0 ∈ N such that

∞∑
n=n0

dn =∞.

Then all solutions of equation (2.4) are oscillatory.

Next we state a result given in [5].
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Lemma 2.6. Assume that {dn} is a positive sequence defined for all n ≥ n0 ∈ N, and

lim
n→∞

inf
n−1∑
s=n−k

ds >

(
k

k + 1

)k+1

where k is a positive integer. Then all solutions of equation (2.4) with γ = 1 are oscilla-

tory.

We conclude this section with the following lemmas proved in [8] and [9].

Lemma 2.7. Assume the difference inequality

∆yn + dny
γ
n−k ≤ 0

has an eventually positive solution. Then the difference equation (2.4) also has an even-

tually positive solution.

Lemma 2.8. Let {xn} be an eventually positive solution of equation (1.1), and suppose

case (II) of Lemma 2.3 holds. Then there exists an integer N ≥ n0 ∈ N such that {xn} is

nonincreasing for all n ≥ N.

3. Oscillation Theorems

In this section, we establish some new oscillation criteria for the equation (1.1). We

use the following notations throughout this paper without further mention;

Rn =
n−1∑
s=n0

1

a
1
α
s

, Bn =
∞∑
s=n

1

a
1
α
s

,

Qn = min{qn, qτ(n)}, Q∗n =
Qn

a
β
α

σ(n)−1

.

We begin with the following theorem.

Theorem 3.1. Let α = β = 1 in equation (1.1). Assume that σ(n) ≤ τ(n) ≤ n and

(i) the difference inequality

(3.1) ∆(yn + pyτ(n)) +Qn(Rσ(n) −Rn1)yσ(n) ≤ 0

has no positive solution, and
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(ii) for all large n1 ∈ N

(3.2)
∞∑

n=n1

[
Bn+1qn

(
1

1 + pn

)
− 1

anBn

]
=∞.

Then every solution of equation (1.1) is oscillatory.

Proof. Assume that {xn} is a positive solution of equation (1.1). Then the correspond-

ing function zn = xn+pnxτ(n) satisfies the two cases of Lemma 2.3 for all n ≥ n1 ≥ n0 ∈ N.

Case(I): From the definition of zn, we have

zσ(n) = xσ(n) + pσ(n)xτ(σ(n)) ≤ xσ(n) + pxσ(τ(n))

where we have used the hypothesis (H4) and (H5). From the equation (1.1), we have

(3.3) ∆(an∆zn) + qnxσ(n) = 0,

and

(3.4) p∆(aτ(n)∆zτ(n)) + pqτ(n)xτ(σ(n)) = 0.

Combining (3.3) and (3.4), we are led to

(3.5) ∆(an∆zn + paτ(n)∆zτ(n)) +Qnzσ(n) ≤ 0.

It follows from Lemma 2.3 that yn = an∆zn > 0 is decreasing, and then

(3.6) zn ≥
n−1∑
s=n1

1

as
(as∆zs) ≥ yn(Rn −Rn1).

Therefore, (3.6) together with (3.5) ensures that {yn} is a positive solution of the inequal-

ity (3.1), which is a contradiction.

Case(II): Define a function vn by

(3.7) vn =
an∆zn
zn

, n ≥ n1 ∈ N.

Then vn < 0 for n ≥ n1. Since {an∆zn} is nonincreasing, we have

∆zs ≤
an∆zn
as

for s ≥ n.
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Summing the last inequality from n to l − 1, we obtain

zl ≤ zn + an∆zn

l−1∑
s=n

1

as
.

Letting l→∞, we obtain

0 ≤ zn + an∆znBn, n ≥ n1,

or

(3.8) −1 ≤ vnBn ≤ 0, n ≥ n1.

From (3.7), we have

(3.9) ∆vn ≤
−qnxσ(n)

zn
− an+1∆zn+1

∆zn∆zn+1

∆zn.

From Lemma 2.8, ∆xn ≤ 0 for n ≥ n1 and by σ(n) ≤ τ(n) ≤ n, we have

(3.10)
xσ(n)
zn

=
xσ(n)

xn + pnxτ(n)
≥

xσ(n)
xσ(n) + pnxσ(n)

≥ 1

1 + pn
.

From (3.9) and (3.10), we have

(3.11) ∆vn + qn

(
1

1 + pn

)
≤ 0, n ≥ N ≥ n1.

Multiplying (3.11) by Bn+1 and summing it from N to n− 1, we obtain

n−1∑
s=N

Bs+1∆vs +
n−1∑
s=N

qsBs+1

(
1

1 + ps

)
≤ 0

or

(3.12) Bnvn −BNvN +
n−1∑
s=N

vs
as

+

n1∑
s=N

Bs+1qs

(
1

1 + ps

)
≤ 0.

From (3.8) and (3.12),we obtain

Bnvn ≤ BNvN −
n−1∑
s=N

[
Bs+1qs

(
1

1 + ps

)
− 1

Bsas

]
.

Letting n→∞ in the last inequality, we obtain a contradiction to (3.2). This completes

the proof. �
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Corollary 3.2. Let α = β = 1, σ(n) = n −m, τ(n) = n − k in equation (1.1) where m

and k are positive integers with m > k. If condition (3.2) and

(3.13) lim
n→∞

inf
n−1∑

s=n−m+k

QsRs−m > (1 + p)

(
m− k

1 +m− k

)1+m−k

hold, then every solution of equation (1.1) is oscillatory.

Proof. Let {xn} be a positive solution of equation (1.1),. Proceeding as in the proof

of Theorem 3.1, we have two cases. For the case (I), we have the inequality (3.1). Since

yn = an∆zn > 0 is decreasing and τ(n) = n− k, we have

wn = yn + pyτ(n) ≤ (1 + p)yn−k.

Using this in (3.1), we obtain

∆wn +
Qn

(1 + p)
(Rn−m −Rn1)wn−m+k ≤ 0.

By Lemma 2.7, the difference equation

(3.14) ∆wn +
Qn

(1 + p)
(Rn−m −Rn1)wn−m+k = 0

has a positive solution. By Lemma 2.6 the condition (3.13) implies that all solutions of

equation (3.14) are oscillatory, which is a contradiction. For the case (II), proceeding as

in Theorem 3.1, we obtain again a contradiction to condition (3.2). This completes the

proof. �

Next we consider the case 0 < β < 1 and σ(n) ≤ τ(n) ≤ n in equation (1.1).

Theorem 3.3. Let 0 < β < 1, β ≤ α and σ(n) ≤ τ(n) ≤ n for all n ≥ n0 ∈ N. If

(i) the difference inequality

(3.15) ∆(wn + pβwτ(n)) +Q∗nw
β
α

σ(n) ≤ 0

has no positive solution, and

(ii) for large n1 ∈ N and for some L > 0

(3.16)
∞∑

n=n1

[
Bn+1qn

(
1

1 + pn

)β
− Lα−β

Bα
na

1
α
n

]
=∞,

then every solution of equation (1.1) is oscillatory.
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Proof. Let {xn} be a positive solution of equation (1.1). Then zn satisfies two cases

of Lemma 2.3 for all n ≥ n1 ≥ n0 ∈ N.

Case(I) From equation (1.1), we have

(3.17) 0 = ∆(an(∆zn)α) + qnx
β
σ(n),

and

(3.18) 0 = pβ∆(aτ(n)(∆zτ(n))
α) + pβqτ(n)x

β
σ(τ(n)).

Combining (3.17) and (3.18), we obtain

(3.19) ∆(an(∆zn)α + pβaτ(n)(∆zτ(n))
α) +Qn

(
xβσ(n) + pβxβσ(τ(n))

)
≤ 0.

By Lemma 2.2, we have

zβσ(n) = (xσ(n) + pσ(n)xσ(τ(n)))
β

≤ xβσ(n) + pβxβσ(τ(n)).(3.20)

Using (3.20) in (3.19), we have

(3.21) ∆(an(∆zn)α + pβaτ(n)(∆zτ(n))
α) +Qnz

β
σ(n) ≤ 0.

It follows from Lemma 2.3 that wn = an(∆zn)α > 0 is decreasing and so

zn ≥
n−1∑
s=n1

(as(∆zs)
α)

a
1
α
s

1
α

≥ w
1
α
n

a
1
α
n−1

.

Using the last inequality in (3.21), we see that {wn} is a positive solution of

∆(wn + pβwτ(n)) +Q∗nw
β
α

σ(n) ≤ 0

which is a contradiction.

Case(II) Define a function vn by

(3.22) vn =
an(∆zn)α

zβn
, n ≥ n1,
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then vn < 0 for n ≥ n1. From (3.22), we have

∆vn =
−qnxβσ(n)

zβn
− an+1(∆zn+1)

α

zβn+1z
β
n

∆zβn

≤ −qn
(

xσ(n)
xn + pnxτ(n)

)β
.

Since σ(n) ≤ τ(n) ≤ n and ∆xn ≤ 0, we have

∆vn ≤
−qn

(1 + pn)β
, n ≥ n1.

Multiplying the last inequality by Bn+1 and then summing from N ≥ n1 to n−1, we have

(3.23) Bnvn −BNvN +
n−1∑
s=N

vs

a
1
α
s

+
n−1∑
s=N

Bs+1qs
(1 + ps)β

≤ 0.

Since {an(∆zn)α} is nonincreasing, we have

∆zs ≤
a

1
α
n ∆zn

a
1
α
s

for s ≥ n.

Summing the last inequality from n to l − 1 and then letting l→∞, we obtain

0 ≤ zn + a
1
α
n ∆znBn, n ≥ n1

or

(3.24) −zα−βn ≤ Bα
nvn, n ≥ n1.

Since zn > 0 is decreasing and α ≥ β, we have zα−βn ≤ Lα−β for some L > 0. Using this

in (3.24), we obtain

(3.25) −1 ≤ Bα
nvn

Lα−β
, n ≥ n1.

From (3.23) and (3.25), we obtain

Bnvn ≤ BNvN −
n−1∑
s=N

[
Bs+1qs

(1 + ps)β
− Lα−β

Bα
s a

1
α
s

]
.

Letting n→∞ in the last inequality, we obtain a contradiction to (3.16). This completes

the proof. �
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Theorem 3.4. Let 0 < β < 1, and β ≥ α and σ(n) ≤ τ(n) ≤ n for all n ≥ n0 ∈ N. If

the difference inequality (3.15) has no positive solution and

(3.26)
∞∑

n=n1

[
Lβ−αBn+1qn

(1 + pn)β
− a

−1
α
n

(α + 1)α+1

]
=∞

for some constant L > 0, then every solution of equation (1.1) is oscillatory.

Proof. Let {xn} be a positive solution of equation (1.1). Then {zn} satisfies the two

cases of Lemma 2.3 for all n ≥ n1 ≥ n0 ∈ N. The proof of case (I) is same as that of case

(I) of Theorem 3.3. Next we consider case (II). Define a function vn by

(3.27) vn =
an(∆zn)α

zαn
, n ≥ n1.

Then vn < 0, for n ≥ n1. From (3.27), we have

∆vn =
−qnxβσ(n)

zαn
− an+1(∆zn+1)

α

zαn+1z
α
n

∆zαn

≤ −qn
(

xσ(n)
xn + pnxτ(n)

)β
Lβ−α − αv

1+ 1
α

n

a
1
α
n

(3.28)

where we have used zn > 0 is decreasing and β ≥ α. Since σ(n) ≤ τ(n) ≤ n and ∆xn ≤ 0,

we have

(3.29)
xσ(n)

xn + pnxτ(n)
≥ 1

1 + pn
.

From (3.28) and (3.29) we have

∆vn ≤
−Lβ−αqn
(1 + pn)β

− αv
1+ 1

α
n

a
1
α
n

, n ≥ n1.

Multiply the last inequality by Bn+1 and then summing it from N ≥ n1 to n− 1, we have

(3.30) Bnvn −BNvN +
n−1∑
s=N

Bs+1qsL
β−α

(1 + ps)β
+

n−1∑
s=N

(
vs

a
1
α
s

+
α

a
1
α
s

v
1+ 1

α
s

)
≤ 0.

Let un = −vn. Then un > 0 and uα+
1
α = v

α+ 1
α

n , since α is a ratio of odd positive integers.

From (3.30) we have

(3.31) Bnvn −BNvN +
n−1∑
s=N

Bs+1qsL
β−α

(1 + ps)β
−

n−1∑
s=N

(
us

a
1
α
s

− α

a
1
α
s

u
α+1
α

s

)
≤ 0.
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Using the inequality Bu−Auα+1
α ≤ αα

(α + 1)α+1

Bα+1

Aα
with B =

1

a
1
α
n

and A =
1

a
1
α
n

, we have

from (3.31), that

Bnvn ≤ BNvN −
n−1∑
s=N

(
Lβ−αBs+1qs

(1 + ps)β
− 1

(α + 1)α+1a
1
α
s

)
.

Letting n→∞ in the above inequality, we obtain a contradiction to (3.26). The proof is

now complete.

From Theorems 3.3 and 3.4, we obtain the following corollaries. �

Corollary 3.5. Let 0 < β < 1, β < α, σ(n) = n−m and τ(n) = n−k with m > k where

m and k are positive integers. If condition (3.16) and

(3.32)
∞∑

n=n1

Q∗n =∞

hold, then every solution of equation (1.1) is oscillatory.

Proof. Let {xn} be a positive solution of equation (1.1). Proceeding as in the proof of

Theorem 3.3, we have two cases to consider for the sequence {zn}. For the case (I), we

have the inequality (3.15). Since wn = an(∆zn)α > 0 is decreasing and τ(n) = n− k, we

have

yn = wn + pβwτ(n) ≤ (1 + pβ)wn−k.

Using this in (3.15), we obtain

∆yn +
Q∗n

(1 + pβ)
β
α

y
β
α
n−m+k ≤ 0.

By Lemma 2.7, the corresponding equation

(3.33) ∆yn +
Q∗n

(1 + pβ)
β
α

y
β
α
n−m+k = 0.

has a positive solution. From condition (3.32) and Lemma 2.5 we obtain a contradiction.

The proof for the case (II) is similar to that of Theorem 3.3. This completes the proof. �

Corollary 3.6. Let 0 < β < 1, β > α, σ(n) = n−m, τ(n) = n− k with m > k where m

and k are positive integers. If there exists a λ >
1

(m− k)
log β

α
such that

(3.34) lim
n→∞

inf
[
Q∗n exp

(
e−λn

)]
> 0
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and condition (3.16) hold, then every solution of equation (1.1) is oscillatory.

Proof. The proof is similar to that of Corollary 3.5 by using Lemma 2.4 instead of

Lemma 2.5. �

Theorem 3.7. Let β > 1, β ≤ α and σ(n) ≤ τ(n) ≤ n for all n ≥ n0 ∈ N. If

(i) the difference inequality

(3.35) ∆(wn + pβwτ(n)) +
Q∗n

2β−1
w

β
α

σ(n) ≤ 0

has no positive solution, and

(ii) for all n1 ≥ n0 ∈ N and for some L > 0

(3.36)
∞∑

n=n1

[
Bn+1qn

(
1

1 + pn

)β
− Lα−β

Bα
na

1
α
n

]
=∞,

then every solution of equation (1.1) is oscillatory.

Proof. The proof is similar to that Theorem 3.3 using Lemma 2.1 instead of Lemma

2.2 and hence the details are omitted.

Similar to that of Theorem 3.4 and Lemma 2.1 we have the following theorem. �

Theorem 3.8. Let β > 1, β ≥ α and σ(n) ≤ τ(n) ≤ n for all n ≥ n0 ∈ N. If the

difference inequality (3.35) has no positive solution and

(3.37)
∞∑

n=n1

[
Lβ−αBn+1qn

(1 + pn)β
− a

−1
α
n

(α + 1)α+1

]
=∞

for some constant L > 0, then every solution of equation (1.1) is oscillatory.

From Theorem 3.7, and Lemmas 2.7 and 2.5 we have the following corollary.

Corollary 3.9. Let β > 1, β < α and σ(n) = n −m and τ(n) = n − k with m > k. If

(3.32) and (3.36) hold then every solution of equation (1.1) is oscillatory.

Finally from Theorem 3.8 and Lemmas 2.7 and 2.4, we obtain the following corollary.

Corollary 3.10. Let β > 1, β > α and σ(n) = n−m and τ(n) = n− k with m > k. If

there exists a λ >
1

(m− k)
log β

α
such that (3.34) and (3.37) hold then every solution of

equation (1.1) is oscillatory.
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4. Examples

In this section we provide some examples to illustrate the main results.

Example 4.1. Consider the difference equation

(4.1) ∆((n+ 3)(n+ 4)∆(xn + 2xn−1)) +
4(n+ 2)2

(n+ 1)
xn−2 = 0, n ≥ 1.

Here an = (n+ 3)(n+ 4), p = 2, m = 2, k = 1, qn =
4(n+ 2)2

(n+ 1)
, and α = β = 1.

Then Rn =
(n− 1)

4(n+ 3)
, Qn = 4

(
n+ 2

n+ 1

)
and clearly condition (3.13) holds. Further

∞∑
n=1

[
Bn+1

qn
(1 + pn)

− 1

anBn

]
=
∞∑
n=1

(
n2 + n+ 1

3(n+ 1)(n+ 4)

)
=∞

and therefore condition (3.2) holds. Hence, by Corollary 3.2 every solution of equation

(4.1) is oscillatory.

Example 4.2. Consider the difference equation

(4.2) ∆(23n(∆(xn + 3xn−1))
3) + 24nx

1
3
n−2 = 0, n ≥ 1

Here an = 23n, p = 3, qn = 24n, α = 3, β =
1

3
, k = 1, m = 2. Further Bn =

1

2n−1
, Q∗n =

2
11n
3
− 29

9 . It is easy to verify that all conditions of Corollary 3.5 are satisfied and hence

every solution of equation (4.2) is oscillatory.

Example 4.3. Consider the difference equation

(4.3) ∆(2n(∆(xn + 2xn−1))
1
3 ) + exp(e2n)x3n−2 = 0, n ≥ 1.

Here an = 2n, p = 2, qn = exp(e2n), α = 1
3
, β = 3, k = 1 and m = 2. Choose λ = 2,

then it is easy to see that all conditions of Corollary 3.10 are satisfied and hence every

solution of equation (4.3) is oscillatory.

We conclude the paper with the following remarks.

Remark 4.4. 1. The results of this paper may be extended to forced equation of the form

∆(an(∆(xn + pnxτ(n)))
α) + qnx

β
σ(n) = en
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where {en} is a sequence of real numbers.

2. The results of this paper are extendable to equations of form

∆(an(∆(xn + pnxτ(n)))
α) + qnx

β
σ(n) + rnx

γ
δ(n) = 0

where {δ(n)} is a sequence of integers and lim
n→∞

δ(n) = 0, α, β and γ are ratio of odd

positive integers.

The details are left to the reader.
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