
________________ 

*Corresponding author 

Received November 29, 2014 

237 

 

 

  

 

     

A NEW RELAXATION FOR THE SET PROBLEMS 

FARHAD DJANNATY1,*, MUHAMMAD YARALI2 

1Soran University, Soran, Iraq 

2Payame Noor, Tehran, Iran 

Copyright © 2015 Djannaty and Yarali. This is an open access article distributed under the Creative Commons Attribution License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. Set problems (SP) are an important class of combinatorial optimization problems which have many 

practical applications. Network relaxations of SP are alternative ways of relaxing the problem to find quick lower 

bound on the value of the objective function. Inspired by these relaxations, a new simple and much faster relaxation 

of the set problems is proposed. Using a standard cost allocation strategy and an innovative, the new relaxation is 

applied to a number of standard SP test problems and computational results are presented. 
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1 Introduction 

Set problems (SP) comprising, set covering problem (SCP), set partitioning problem (SPP), and 

set packing problem (SPK) have many applications in bus, railway,  airline crew scheduling, 

plant location, circuit switching, information retrieval, assembly line balancing, political 

districting, and truck delivery [3,9,10]. More recent applications of SCP are found in probe 

selection in hybridization experiments in DNA sequencing [7] and feature selection and pattern 

construction in logical analysis of data [8]. 

A number of procedures has been developed which can deal with set problems   [5,7,9]. They 

used either cutting plane algorithm and/or branch and bound algorithm and then found that these 

algorithms are shown to have exponential and data dependent computing time. Nemhauser, G.L. 

[11]. Beasley [5] has developed a tree search method to solve the SCP. The continuous 

development of mathematical programming has much improved the performance of exact 
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branch-and-bound algorithms [3, 5, 7, 9] accompanying with advances in computational 

machinery. Recent exact branch-and-bound algorithms enable us to solve large SCP instances 

with up to 400 rows and 4000 columns exactly [3]. Afif and et al have developed a new heuristic 

based on the flow algorithm of Ford and Fulkerson. The set covering problem can be relaxed to 

form an assignment problem, a minimal spanning tree problem, a shortest route problem [10]. 

Heuristic algorithms have also been studied extensively [12], and several efficient metaheuristic 

algorithms have been developed to solve huge SCP instances with up to 5000 rows and 

1,000,000 columns within about 1% of the optimum in a reasonable computing time [3, 4].  

This paper is organized in 4 sections. In section 2 the mathematical model of the Set problems is 

explained. In section 3 the proposed relaxation is described and  it is established that our 

relaxation is a proper one. In section 4 a numerical example is presented. In section 5 two cost 

allocation strategies are proposed. In section 6 a computational experiment is carried out which 

provides quick lower bounds for the set problem and the ending part is a concluding remark. 

 

2. Model of the Set Problems 

Let 𝑀 = {1,2, … , 𝑚} be the set of m integers and let S denote a set of n subsets of 

M. Thus 

𝑁 = {1,2, … , 𝑛} 

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}  where   𝑠𝑖  ⊆ M , i ∈ N 

Let 

𝑎𝑖𝑗 = {
1 ,   𝑖𝑓   𝑖 ∊   𝑠𝑗

0 ,   𝑖𝑓   𝑖 ∉   𝑠𝑗
       ( 𝑖 = 1,2, … 𝑚, 𝑗 = 1,2, … , 𝑛) 

          

The set covering problem (SCP) can be defined as follows: 

                  

                              Minimize Σ𝑐𝑗𝑥𝑗 

             Subject to       

               ∑ 𝑎𝑖𝑗𝑥𝑗
𝑗=𝑛
𝑗=1  ≥ 1,  (𝑖 = 1, … , 𝑚), 

                                  𝑥𝑗 ∊ { 0 , 1 },          ( 𝑗 = 1, … , 𝑛 ).  
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Where decision variable 𝑥𝑗 indicates whether 𝑥𝑗  is selected or not and 𝑐𝑗 is the cost associated 

with selecting 𝑠𝑗 . The problem can be interpreted as finding the minimum cost selection of 

subsets of S such that each member of M is covered by at least one member of the selected 

subset of S. If we replace  " ≥ "   by   " = " in each of the constraints of the above model, the 

modified problem is called the set partitioning problem (SPP). If " ≥ " is replaced by " ≤ " and 

the objective function is to be maximized, the resulting model is the set packing problem (SPK). 

 Set problems are classified as NP-complete [10], which means that no polynomial time 

algorithm is known that guarantees to solve every instance of these problems. This increases the 

importance of relaxations which yield sharp lower and upper bounds as quickly as possible to be 

used in a branch and bound algorithm.  

 

3. A New Relaxation for the Set Problems 

A number of network based relaxations is proposed for the set problems by El-Darzi [10] which 

can provide quick lower bounds for the set problems. In these relaxations the columns of the set 

covering problem are decomposed into a number of segments of ones based on which a graph is 

constructed and the column costs are distributed among the arcs created from the same parent 

column and a lower bound is computed using a network flow algorithm. Column decomposition,  

storing the resulting network, plus more effort and memory usage are . Two of these relaxations 

are time consuming and produce weak bounds [14]. There are some faults with the assignment 

relaxation of El-Darzi which leads to infeasible relaxation and thus no lower bound can be 

obtained in most of the test problems used in this paper. A small example of this infeasibility is 

provided in [14]. Our computational experience reveals the fact that segments of two and more 

nonzeros which are the only advantage of the shortest route relaxation over the proposed 

relaxation is not utilized in finding the shortest route and thus in computing lower bound[9]. 

Only in the last two test problems, arcs associated with segments containing more than one 

nonzero entry  are contributing to the reduced network and thus contribute to the shortest route. 

Therefore,  our proposed relaxation does not suffer from not considering these kinds of segments.  

     In the proposed relaxation the original data of the problem such as the column costs, the 

number of non-zeros in the column and the position of the nonzero are used and there is no need 

for the column decomposition. The following notations are adopted in the paper:  

      Let                            𝑅𝑖 =  { 𝑗 | 𝑎𝑖𝑗 = 1, 𝑗 = 1,2, ⋯ , 𝑛 }   𝑖 = 1,2, ⋯ , 𝑚 
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                                        𝐻𝑗 =  { 𝑖 | 𝑎𝑖𝑗 = 1, 𝑖 = 1,2, ⋯ , 𝑚 }   𝑗 = 1,2, ⋯ , 𝑛 

Let associate with each non-zero entry  𝑎𝑖𝑗 in the A matrix a binary variable  𝑦𝑖𝑗 which is 1 if it's 

associated cost (which is determined during the cost allocation) is selected as the minimum cost 

of row i  and is 0 otherwise. The cost associated with  𝑦𝑖𝑗  is denoted by  𝑑𝑖𝑗  subject to the 

following condition:  

                                ∑ 𝑑𝑖𝑗𝑖∈𝐻𝑗
= 𝑐𝑗     𝑗 = 1,2, ⋯ , 𝑛 

The relaxed problem can be stated as follows: 

                                   𝑀𝑖𝑛 ∑ ∑ 𝑑𝑖𝑗  𝑦𝑖𝑗𝑗∈𝑅𝑖

𝑖=𝑚
𝑖=1  

                                             ∑ 𝑦𝑖𝑗𝑗∈𝑅𝑖
 ≥  1         𝑖 = 1,2 ⋯ , 𝑚  

                                             𝑦𝑖𝑗  ∈  {0,1}   𝑖 ∈ 𝐻𝑗   𝑎𝑛𝑑  𝑗 = 1,2, … , 𝑛 

If ≥ is replaced by = a new relaxation for the set partitioning problem will be resulted and if min 

is replaced by max and all cases of ≥ are replaced by ≤ a new upper bound for the set packing 

problem is obtained. 

The optimal solution to the above problem can easily be found by taking the minimum over all 

𝑑𝑖𝑗associated with row 𝑖 and set the corresponding binary variable 𝑦𝑖𝑗 equal to 1 and set the rest 

of  𝑦𝑖𝑗 's in row 𝑖 to 0. In other words let 

                                  𝐷𝑖 = 𝑚𝑖𝑛{𝑑𝑖𝑗| 𝑗 ∈  𝑅𝑖}     𝑖 = 1,2, … , 𝑚 

Let                             𝑦𝑖𝑗 = [
𝐷𝑖

𝑑𝑖𝑗
]    𝑖 = 1,2, … , 𝑚   𝑎𝑛𝑑   𝑗 ∈  𝑅𝑖 

Where  [𝑥]  is the greatest integer which is less than or equal to x. The reason for the optimality 

of the above solution is that it satisfies all the constraints and it produces the minimum objective 

function value. 

          ∑ ∑ 𝑑𝑖𝑗  𝑦𝑖𝑗𝑗∈𝑅𝑖

𝑖=𝑚
𝑖=1  =   ∑ ∑ 𝑑𝑖𝑗 [

𝐷𝑖

𝑑𝑖𝑗
] ≥  𝑗∈𝑅𝑖

𝑖=𝑚
𝑖=1 ∑ ∑ 𝐷𝑖  [

𝐷𝑖

𝑑𝑖𝑗
]𝑗∈𝑅𝑖

𝑖=𝑚
𝑖=1  

         ∑ 𝐷𝑖 ∑  [
𝐷𝑖

𝑑𝑖𝑗
]𝑗∈𝑅𝑖

𝑖=𝑚
𝑖=1  ≥  ∑ 𝐷𝑖

𝑖=𝑚
𝑖=1 .   

Because at least once 𝐷𝑖 = 𝑑𝑖𝑗 for some 𝑗 ∈ 𝑅𝑖 . Therefore, ∑ 𝐷𝑖
𝑖=𝑚
𝑖=1  is a lower bound for both the 

set covering problem and the associated set partitioning problem. It is easy to show that this 

solution satisfies all the constraints, because 

                           ∑ 𝑦𝑖𝑗𝑗∈𝑅𝑖
=  ∑  [

𝐷𝑖

𝑑𝑖𝑗
]𝑗∈𝑅𝑖

 ≥   1        𝑖 = 1,2 ⋯ , 𝑚  
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The above inequality holds because   𝐷𝑖 =  𝑑𝑖𝑗  occurs at least once when 𝑗 ∈  𝑅𝑖  for 𝑖 =

1,2 ⋯ , 𝑚. Therefore, 𝑦𝑖𝑗 = 1 happens at least once when  𝑗 ∈  𝑅𝑖. 

In order to demonstrate that the proposed relaxation is a proper relaxation it is enough to show 

that an arbitrary solution of the set covering problem is included    in the solution set of the 

proposed relaxation. The corresponding solution in the relaxation is as follows: 

𝑦𝑖𝑗  = 𝑥𝑗     ∀ 𝑖 ∈ 𝑅𝑗 ,   and  ,    𝑗 = 1 , ⋯ , 𝑛 

Where 𝑥𝑗 is a decision variable of the set problem. 

 

4. Numerical Example 

The proposed relaxation is applied to the following set covering or set partitioning problem 

which is designed by the authors and the lower bound is numerically calculated. The reduced 

cost vector is assumed to be, 

[ 8 8 8 8 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10 10 10 12 12 12 12 12 12 ] 

And the following 15 × 30 matrix presents technological coefficients of the set problem:   

000001000001001100101001000001

000000000001000110000001001000

000000100001000101000000110001

000000010010001011100010000000

100000001000100000010000000000

010100000000000000000000001100

101001000000011000000000000010

010100000100100000001000110001

100011010010001000000011000000

011110100000000000001000001000

000000100000000001000000000010

111000010100010101100100001001

000010001010010000000100000010

000010001010001000000100000100

100001001010101010101000010001

 

𝐻𝑗s are successively found as follows:  

 

𝐻1 = {1,4,8,13,15}  𝐻2 =  {3,5,9} 𝐻3 =  {2,10} 𝐻4 =  {4,6,10,14} 𝐻5 =  {1,8,13} 𝐻6 =  {8,13}  
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𝐻7 = {7,14,15} 𝐻8 = {7,12} 𝐻9 = {2,3,4} 𝐻10 = {1,6,8,15} 𝐻11 = {11} 𝐻12 = {1,4,12,15} 

𝐻13 = {4,5,12,13} 𝐻14 = {1,12,14} 𝐻15 = {4,13,14,15} 𝐻16 = {1,2,7,9,12,15} 𝐻17 = {3,4,9} 

𝐻18 = {1,8,11} 𝐻19 = {13,14,15} 𝐻20 = {1,2,3,7,12} 𝐻21 = {4,8} 𝐻22 = {1,2,3,11} 𝐻23 = 

{4,7} 𝐻24 = {5,6,13} 𝐻25 = {1,7,9,15} 𝐻26 = {2,3,6,7} 𝐻27 = {6,8,10} 𝐻28 = {4,6,9}  

𝐻29 =  {4,6,8,10} , 𝐻30 = {1,4,7,9,11} 

 

 R𝑖 's are computed as follows: 

 

𝑅1 = {1,5,10,12,14,16,18,20,22,25,30} 𝑅2 = {3,9,16,20,22,26} 𝑅3 = {2,9,17,20,22,26} 

𝑅4 = {1,4,9,12,13,15,17,21,23,28,29,30} 𝑅5 = {2,13,24} 𝑅6 = {4,10,24,26,27,28,29} 

𝑅7 = {7,8,16,20,23,25,26,30} 𝑅8 = {1,5,6,10,18,21,27,29} 𝑅9 = {2,16 ,17,25,28,30} 

𝑅10 = {3,4,27,29} 𝑅11 = {11,18,27,30} 𝑅12 = {8,12,13,14,16,20,23}  

𝑅13 = {1,5,6,13,15,19,24} 𝑅14 = {4,7,14,15,19} 𝑅15 = {1,7,10,12,15,16,25} 

We should distribute the cost 𝐶𝑗 among nonzeros of the column j according to a predetermined 

strategy for example 𝑑𝑖𝑗 =  
𝑐𝑗

|𝐻𝑗|
  𝑖 ∈ 𝑅𝑗  , 𝑗 = 1,2, … , 𝑛  which means the costs are distributed 

equally among the nonzeros of each column.  Based on this cost allocation strategy the costs 

allocated to five nonzeros in column 1 are  
8

5
  likewise the costs allocated to each nonzero in all 

30 columns are presented as the following row vector: 

[
8

5
,

8

3
 ,

8

2
 ,

8

4
,

8

3
,

8

2
 ,

8

3
 ,

8

2
 ,

8

3
 ,

8

4
,

8

1
,

8

4
,

10

4
,

10

3
,

10

4
,

10

6
,

10

3
,

10

3
,

10

3
,

10

5
,

10

2
,

10

4
,

10

3
,

10

3
,

12

4
,

12

4
,

12

3
,

12

3
,

12

4
,

12

5
]  

Therefore, 

 𝑑11 =
8

5
, 𝑑15 =

8

3
, 𝑑110 =

8

4
, 𝑑112 =

8

3
, 𝑑114 =

10

3
, 𝑑116 =

10

6
, 𝑑118 =

10

3
, 𝑑120 =

10

5
, 𝑑122 =

10

4
, 𝑑125 =

12

4
  , 𝑑130 =  

12

5
  and 𝐷1 = 𝑚𝑖𝑛 {

8

5
,

8

3
,

8

4
,

8

3
,

10

3
,

10

6
,

10

3
,

10

5
,

10

4
,

12

4
,

12

5
} =  

8

5
 and the values 

of 𝐷's corresponding to other rows are  

𝐷2 =
10

6
, 𝐷3 =

10

5
, 𝐷4 =

8

5
, 𝐷5 =

10

4
, 𝐷6 =

8

4
, 𝐷7 =

10

6
, 𝐷8 =

8

5
, 𝐷9 =

10

6
, 𝐷10 =

8

4
, 𝐷11 =

12

5
,𝐷12 =

10

6
, 𝐷13 =

8

5
, 𝐷14 =

8

4
 , 𝐷15 =

8

5
 

Therefore the lower bound can be computed as follows: 

8

5
+

10

6
+

10

5
+

8

5
+

10

4
+

8

4
+

10

6
+

8

5
+

10

6
+

8

4
+

12

5
+

10

6
+

8

5
+

8

4
+

8

5
= 27.56 

The optimal objective function value is 42. 
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5. Two strategies for cost allocation 

Although there are infinite number of ways to allocate cost 𝐶𝑗 among nonzero entries of column j, 

two typical strategies are described below: 

 

Strategy 1. In this strategy the cost 𝐶𝑗 is distributed equally between |𝐻𝑗| nonzeros of column, j 

that is                𝑑𝑖𝑗 =  
𝑐𝑗

|𝐻𝑗|
   𝑗 = 1, … . , 𝑛  ,   𝑖 ∈  𝐻𝑗 . 

Network relaxations of the set problems do not produce good lower bounds when using this 

strategy whereas the lower bound obtained here is much stronger. 

 

Strategy 2. Let 𝑅′
𝑖 =  { 𝑗 | 𝑎𝑖𝑗 = 1, 𝑗 = 1,2, ⋯ , [

𝑛

3
] }    𝑖 = 1,2, ⋯ , 𝑚 where [x] is the greatest 

integer less than or equal to x. In this strategy the cost allocated to 𝑖𝑡ℎ nonzero in column j is 

 

                             𝑑𝑖𝑗 =  

1

(log(1.5+|𝑅𝑖
′|))4/9

∑
1

(log(1.5+|𝑅𝑘
′ |))4/9𝑘∈𝐻𝑗

     𝑗 = 1, … , 𝑛,   and  𝑖 ∈  𝑅𝑗  

 

The rationale behind the above choice of mathematical function and figures are explained in[14] 

and |X| is the cardinality of set X. 

 

6. Computational experiment 

The proposed relaxation was tested on a number benchmark instances taken from Powers [13], 

Paixao [12], Balas and Ho [1], and Beasley [4]. DUTY problems are two part duty crew 

scheduling problems randomly generated by Djannaty [9]. 
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Table 1. Comparing proposed relaxation with shortest route relaxation 

 

Columns 1,2,3, and 8 show characteristics of the test problems, columns 4 and 5 Represent lower 

bounds obtained by the shortest route relaxation and the proposed Relaxation, respectively, using 

the same strategy. Except for Duty problems lower        Bounds are almost the same. This reveals 

the fact that the two relaxations are Taking advantage of segments of length one in finding lower 

bounds and the difference in the last two rows is because these problems have no segments of 

length one in any column. Columns 7 and 8 present the best strategies of the shortest route 

relaxation and the proposed relaxation [9]. The above computational experiment proves that 

lower bounds similar to the shortest route relaxation can be achieved by our proposed relaxation 

without time consuming computations such as column decomposition, producing the network, 

storage and retrieval of the network, and finding the shortest route. In addition, less memory 

usage is another advantage of the proposed relaxation. 

 

7. Conclusions 

Network based relaxations attract attention because of their speed, however the proposed 

relaxation is much faster for not using column decomposition, network optimization, and 

Prob. 

Name 

Size of 

Problems. 

No. of 

Nonzero 

Strat. 1 

Djanaty 

St. 1  of 

Proposd 

St. 10 of 

Djanaty  

St. 10 of 

Proposd 

Opt.IP 

value 

AIR01 159×416 2203 12188.7 12188 12830.0 12131 16610 

RDM3 101×109 784 35.68 35.66 66.04 70.93 96 

RDM4 100× 106 742 38.72 37.89 61.11 62.79 97 

RDM6 100× 106 884 47.26 46.48 64.61 65.39 99 

RDM7   98×98 704 38.72 35.40 56.40 57.89 87 

SCP51 200×2000 11955 113.62 110.62 129.05 134.95 253 

SCPA1 300×3000 18000 97.72 97.31 105.2 106.45 253 

SCPB1 300×3000 47921 22.17 22.00 22.97 22.82 69 

SCPE1   50×500 5414 2.97 2.95 2.95 2.86 5 

DUTY3 200×2000 17700 159.4 101.46 201.11 144.9 260 

DUTY5 300×2000 17896 270.9 182.72 388.28 311.22 523 
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network algorithms. The proposed relaxation is very flexible and can replace the shortest route 

relaxation to find the solution of the set problems. 

It can also be used to obtain upper bounds for the set packing problem. It is proposed that our 

relaxation be utilized in a tree search algorithm to find the exact solution of the set problems. It 

was demonstrated that the proposed relaxation can produce similar bounds to those of network 

relaxations.                              
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