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Abstract. The purpose of the present work is to construct new geometrical models for the motion

of plane and space curves using an approach different from the one proposed by R. Mukherjee and R.

Balakrishnan [1]. This approach is applied to a pair of coupled nonlinear partial differential equations

(CNLPDEs) governing the time evolution of the curvature and torsion of the evolving curve. For each

model, solutions for CNLPDEs have been displayed by numerical integration of Frenet−Seret equations..
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1. Introduction

A lot of physical processes can be modeled in terms of the motion of curves, including

the dynamics of vortex filaments in fluid dynamics [2], the growth of dendritic crystals in

a plane [3], and more generally, the planar motion of interfaces [4]. The Subject of how

space curves evolve in time is of great interest and has been investigated by many authors.

Pioneering work is attributed to Hasimoto who showed in [2] the nonlinear Schrödinger

equation describing the motion of an isolated non−stretching thin vortex filament. Lamb

[5] used the Hasimoto transformation to connect other motions of curves to the mKdV

and sine−Gordon equations. Nakayama, et al [6] obtained the sine−Gordon equation
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by considering a nonlocal motion. Also Nakayama and Wadati [7] presented a general

formulation of evolving curves in two dimensions and its connection to mKdV hierarchy.

Nassar, et al [8, 9, 10, 11] studied the evolution of plane curves, the motion of hyper

surfaces and the evolution of space curves in Rn. R. Mukherjee and R. Balakrishnan [1]

applied their method to the sine-Gordon equation and obtained links to five new classes

of space curves, in addition to the two which were found by Lamb [5]. For each class, they

displayed the rich variety of moving curves associated with the one−soliton, the breather,

the two−soliton and the soliton−antisoliton solutions.

In this paper, we derive a pair of coupled nonlinear partial differential equations govern-

ing the time evolution of the curvature and torsion of the evolving curve. Exact solutions

for these equations have been obtained. Also we have reconstructed the evolving curve

from its curvatures. In addition, we shall present new geometrical models different from

those in [1].

The article is organized as follows. In section 2, we introduce General curve evolution

and derive CNLPDEs which formulates the problem directly in terms of the curvature

and torsion. In section 3, we get exact solutions for CNLPDEs and display the moving

curve for these solutions. In section 4, the heat equation for the curvature is derived in

the case of plane curve and the moving curve associated with its solution is displayed.

2. CNLPDEs associated with space curve

2.1 General curve evolution and governing equations

In this section, we derive time−evolution equations that the intrinsic quantities of

curves satisfy. Let us consider a curve embedded in three-dimensional space described

in parametric form by a position vector r = r(s), s being the usual arclength variable.

The unit tangent vector t = rs, the principal normal n and the binormal b form an
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orthonormal triad of unit vectors that satisfy the Frenet–Serret equations [12]

ts = κn,

ns = −κt+ τb,(1)

bs = −τn

Here and hereafter, the subscripts denote partial derivatives. κ and τ are the curvature

and torsion of the curve, κ > 0, whereas τ can carry a sign. There is a metric on the

curve. that is

(2) g(s, t) = ⟨rs, rs⟩

where ⟨, ⟩ is the Euclidean scaler product. If this curve moves with time u, then all

quantities in Eqs. (1) become functions of both s and u. The general temporal evolution

in which the triad {t,n,b} remains orthonormal adopts the following form [13]

tu = αn+ βb,

nu = −αt+ γb,(3)

bu = −βt− γn.

As is clear, the parameters α, β and γ (which are the velocities of the moving frame

{t,n,b}) determine the motion of the curve. Here for an inextensible curves, the triad

must satisfy the following compatibility conditions

(4) tus = tsu, nus = nsu, bus = bsu.

Inextensible curves mean that the flow defined by the equations Eqs.(3) preserves the

class of curves in arc−length parametrization [14]

∂

∂u
∥∂r
∂s

∥2 =
∂

∂u
⟨rs, rs⟩

= 2⟨rus, rs⟩, where rus = rsu

= 2⟨tu, rs⟩, by using first Eq. in (1,3) we obtain

= 0.
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Apply the condition 4 to the systems(1),(3) yield

κu = αs − τβ,

τu = γs + κβ,(5)

βs = κγ − τα.

The temporal evolution of the curvature κ and the torsion τ of a curve may now be

expressed in terms of the components of velocity {α, β, γ} which can be written as coupled

nonlinear partial differential equations as follows,

κu = αs − βτ,

τu = (
βs + τα

κ
)s + κβ.

(6)

Eqs.(6) is the main result of this paper. For a given {α, β, γ}, the motion of the curve

is determined from these equations. MATHEMATICA package software (computation-

al software program used in scientific, engineering, mathematical fields and other areas

of technical computing) was used for solving the Eqs.(6) which applies the tanh−and

sech−methods [15]. The outline for given {α, β, γ} is that we get {κ, τ}. In the next

subsection we shall show how to recreate curves in space from their curvature and torsion

via numerical integration of Frenet−Seret equations up to its position in space.

2.2 Reconstruction of a Curve from its Curvatures

One of the basic problems in geometry is to determine exactly the geometric quan-

tities which distinguish one figure from another. For example, line segments are uniquely

determined by their lengths, circles by their radii, triangles by side-angle-side, etc. It turn-

s out that this problem can be solved in general for sufficiently smooth regular curves.

We will see that a regular curve is uniquely determined by two scalar quantities, called

curvature and torsion, as functions of the natural parameter, which follows from the next

theorem.

2.2.1 Theorem (Fundamental existence and uniqueness theorem for space curves)
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[16] Let κ(s) and τ(s) be arbitrary continuous functions on a ≤ s ≤ b. then there

exists, except for position in space , one and only one space curve C for which κ(s) is the

curvature, τ(s) is the torsion and s is a natural parameter along C.

The figures in the next section represent snapshots of the evolving space curve ob-

tained by solving the Frenet−Serret equations (1) for a specified curvature and torsion

using Mathematica [17]. Any moving space curve can be studied from two perspectives,

namely the shape of the curve and the evolution of the curve. At every fixed time u,

we clearly have a representation of the corresponding static space curve at that instant.

The program [17] as it stands generates static space curves. It was extended slightly to

generate the evolution of the space curves with time u.

3. New geometrical models for the motion of space curve

In this section we consider some models of curve evolution specified by its local geom-

etry. The nonlinear partial differential equations are generally difficult to solve and their

exact solutions are difficult to obtain; therefore the models that we study depend on the

viability of solving CNLPDEs. The set of five geometric parameters {κ, τ, α, β, γ} ap-

pearing in the intrinsic Frenet-triad evolution equations (1) and (3) essentially describes

a moving curve. Our strategy is to see under what conditions we can consistently find

these functions such that (i) they satisfy all the compatibility conditions of (4), and (ii)

they can be determined from κ and τ which satisfy the CNLPDEs Eqs. (6). In this study

, we present five models of moving curves that satisfy the above requirements.

Before proceeding, we note that the basic Eqs.(1) and (3) when taken together, are

invariant under the interchanges

(7) κ ↔ τ, α ↔ γ, β ↔ −β

along with

(8) b ↔ t, n ↔ −n
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Thus, if we can find a nontrivial set {κ, τ, α, β, γ} that satisfy our requirements, another

set can be found using the interchanges (7) but here we do not use such interchanges.

3.1 Model (1)

For a curve moving in space by the velocities

(9) {α, β, γ} = {κ, κs,
κss + τκ

κ
}.

The evolution equations for the curvature and the torsion of the curve given from Eqs.(6)

as follows,

κu = κs − κsτ,

τu = (
κss + τκ

κ
)s + κκs.

(10)

The general solutions to this system are given by

κ1(u, s) = 2c2sech(c1u+ c2s+ c3),

τ1(u, s) =
c2 − c1

c2
, c2 ̸= 0,

(11)

κ2(u, s) = c4,

τ2(u, s) = c5f(c6u+ c6s+ c7),
(12)

where ci, (i = 1, ..., 7) are arbitrary real constants and f is an arbitrary function of the

parameter y = (c6u+ c6s+ c7). There are other solutions but we take the solution which

has a geometric interpretation. As the first solution, it is easily verified that the set

(13)

{κ, τ, α, β, γ} = {2c2sech(y), 1−
c1
c2
, 2c2sech(y),−2c22sech(y) tanh(y), 1−

c1
c2
+c22−2c22sech

2(y)}

satisfies the compatibility conditions Eqs. (5). If we take c1 = 0.4, c2 = 0.5, c3 = 0 in

Eq. (11), then κ = sech(0.4u + 0.5s), τ = 0.2. we see that κ → 0 as s → ±∞. Thus,

for large values of s, the curve straightens out at both ends as shown in Fig. 1. If we

take κ = 3, τ = sin(s + u) as a special case from Eq. (12), then we find τ → ±1 as

s → ±∞. Hence, the curve takes a helix form as in Fig. 2. The curve in this case repeats

on intervals of length 2π because of the periodic function sin(s+u). Model (1) represents

the motion of an inextensible curve of constant curvature and torsion.
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(a) u=-1 (b) u=0 (c) u=1

Figure 1. Mod. (1) κ = sech(0.5s+ 0.4u), τ = 0.2.

(a) u=-1 (b) u=0 (c) u=1

Figure 2. Mod. (1) κ = 3, τ = sin(s+ u).

In all the figures here and hereafter, we have used the total curve length of 20 (−10 ≤

s ≤ 10). In practice, the range of variation of u must remain much smaller than that

of s so that the length of the curve suffices to display the complete geometric structure

corresponding to the solution concerned.

3.2 Model (2)

We consider the case that the velocities are given by

(14) {α, β, γ} = {0, κ, κs

κ
}.
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The evolution equations for the curvature and the torsion of the curve given from Eqs.

(6) as follows,

κu = −κτ,

τu = (
κs

κ
)s + κ2.

(15)

The general solution to this system is given by

(16) κ(u, s) =
√

c21 + c22sech(c1u+ c2s+ c3), τ(u, s) = c1 tanh(c1u+ c2s+ c3).

where c1, c2, c3 are arbitrary real constants. If we take c1 = 1, c2 = 1, c3 = 0 in Eq. (16),

then κ =
√
2sech(u+ s), τ(u, s) = tan(u+ s). we see that κ → 0 as s → ±∞, τ → ±1 as

s → ±∞. Thus, for large values of s, the curve straightens out at both ends as shown in

Fig. 3.

(a) u=-1 (b) u=0 (c) u=1

Figure 3. Mod. (2) κ =
√
2sech(s+ u), τ = tanh(u+ s).

3.3 Model (3)

Consider a curve moving in space such that the velocity of the frame is

{α, β, γ} = {τκ, 0, τ 2}.

The evolution equations for the curvature and the torsion of the curve given from Eqs.(6)

as follows,

κu = κsτ + κτs,

τu = 2ττs.
(17)
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The general solution to this system is given by

(18) κ(u, s) = c1f(u+ s/c2 + c3), τ(u, s) = c2,

where c1, c2, c3 are arbitrary real constants and f is an arbitrary function of (u+s/c2+c3).

If we take κ = sinh(u+ s/5), τ = 5 as a special case from Eq. (18), we see that κ → ±∞,

as s → ±∞ as we find in Fig.(4), and we note that Fig. (5) is similar to Fig. (3) in the

work of Tomasz Lipniacki [18]

(a) u=-1 (b) u=0 (c) u=1

Figure 4. Mod. (3) κ = sinh(u+ s/5), τ = 5.

3.4 Model (4)

For a curve moving in space by the velocities

(19) {α, β, γ} = {τκ, κs,
κτ 2 + κss

κ
},

and from Eqs. (6) we have the system

κu = κτs,

τu = (
κτ 2 + κss

κ
)s + κκs.

(20)

The general solution to this system is given by

κ(u, s) = −c5sech(c1u+ c2s+ c3) + c5 tanh(c1u+ c2s+ c3)

τ(u, s) =
−c1
c2

sech2(c1u+ c2s+ c3)−
c1
c2

tanh(c1u+ c2s+ c3)sech(c2s+ c1u+ c3) + c4,

(21)
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where c1, c2, c3, c4 are arbitrary real constants. If we take c1 = 1, c2 = 1, c3 = 0, c4 =

1, c5 = 3 in Eq. (21), then for s → ∞, κ → −3, τ → 1. Thus for a large value of s the

curve collapses into helix at the end. On the other hand, for s → ∞, κ → 3, τ → 1, thus

for a large value of s the curve collapses into helix at the end as shown in Fig. 5.

(a) u=-1 (b) u=0 (c) u=1

Figure 5. space curves corresponding to model(4).

3.5 Model (5)

For a curve moving in space by the velocities,

(22) {α, β, γ} = {τ, 0, τ
2

κ
}.

The evolution equations for curvature and torsion are given from Eqs. (6) as follows,

κu = τs,

τu = (
τ 2

κ
)s.

(23)

The general solution to this system is given by

κ(u, s) =
c2
c1
[c7 tanh

3(c1u+ c2s+ c3) + c6 tanh
2(c1u+ c2s+ c3) + c5 tanh(c1u+ c2s+ c3) + c4],

τ(u, s) = c7 tanh
3(c1u+ c2s+ c3) + c6 tanh

2(c1u+ c2s+ c3) + c5 tanh(c1u+ c2s+ c3) + c4.

(24)

where ci, (i = 1, ..., 7) are arbitrary real constants. If we take c1 = 1, c2 = 3, c3 = 0, c4 =

0, c5 = 1, c6 = 1, c7 = 1 in Eq. (24) then for s → ∞, κ → 9, τ → 3, thus for a large value of

s the curve collapses into helix at the end. On the other hand, s → −∞, κ → −3, τ → −1

thus, for a large value of s the curve collapses into helix at the end as shown in Fig. 6.
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(a) u=-1 (b) u=0 (c) u=1

Figure 6. space curves corresponding to model(5).

4. Reduction of time-evolution equations from 3D to 2D

In this section, we reduce the time–evolution equations that we derived in section ??

to lower dimensional cases. In order to reduce the time–evolution equations (6) to those

that describe time evolution of a curve in a tow–dimensional Euclidean space, we set

(25) τ = β = γ = 0.

Then, (6) yields

(26) κu = αs.

For a given α, Eq. (26) determines the motion of curves in tow–dimensional Euclidean

space. The authors in [6] considered a curve moving in the plane under the velocity

(27) rt = Un+W t,

thus the dynamical equation for the curvature becomes

(28) κt = Uss + κ2U + κsW,

where (U,W ) are the normal and tangent projections of the velocity. For a given (U,W ),

the motion of of the curve is determined from equation (28).

4.1 Geometrical models for the motion of plane curve

4.1.1 Model (1)
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If we take α = κs, then the dynamical equation for the curvature becomes

(29) κu = κss,

which is precisely the Heat or diffusion equation and has a general solution in the following

form

(30) κ(u, s) = exp(−u/c21)(c2 cos(s/c3) + c3 sin(s/c3)),

where c1, c2, c3 are arbitrary real constants. If we take c1 = c2 = c3 = 1 ,then κ(u, s) =

exp(−u)(cos(s) + sin(s)) ,we see that κ → 0 as u → ∞. Thus the curve converts to

straight line. On the other hand, κ → ∞ as u → −∞. Thus more loop generates as in

Fig.7
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Figure 7. κ(u, s) = exp(−u)(cos(s) + sin(s)).

4.1.2 Model (2)

If we take α = κ, then the evolution equation of the curvature of the evolving curve is

(31) κu = κs,
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which has a general solution in the form

(32) κ(u, s) = ϕ(u+ s),

where ϕ(u + s) is an arbitrary function, so we can take the solutions of equation (31) in

the forms

κ1(u, s) = s+ u,

κ2(u, s) = sin(s+ u).

The geometric visualization of the curves corresponding to these solutions are given in

Fig. (8) and Fig. (9), respectively
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Figure 8. κ = sin(s+ u).

The curve in th case κ = sin(s + u) repeats on intervals of length 2π because of the

periodic function sin(s+ u).
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Figure 9. κ = s+ u.
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Conclusion

In this paper we have presented geometrical models for the motion of space and plane

curves other than mkdv, sin−Gordan equations which were known before and different

from those in [1]. For each geometrical model, we display the rich variety of moving curves

associated with the CNLPDEs and Heat equation solutions via numerical integration of

Frenet−Seret equations.
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