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Abstract. In this paper, we develop a block method using Chebyshev polynomial basis function and use it to

produce discrete methods which are simultaneously applied as numerical integrators by assembling them into a

block method. The paper further investigates the properties of the block method and found it to be zero-stable,

consistent and convergent. We also tested the efficiency of the method on some sampled oscillatory problems and

found out that the method performed better than some existing ones with which we compared our results.
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1. Introduction

In this paper, we consider the approximate solution of first order Initial Value Problems (IVP-

s) with oscillating solutions of the form,

(1) y′ = f (x,y), y(x0) = y0, x ∈ [a,b],
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where f : ℜ×ℜm → ℜm, y,y0 ∈ ℜm, f satisfies Lipchitz condition which guarantees the

existence and uniqueness of solution of (1). Some of the set of challenging problems being

encountered nowadays are the oscillatory differential equations. They are differential equations

whose solutions are composed of smooth varying and of a ‘nearly periodic’ functions, i.e. they

are oscillations whose wave form and period varies slowly with time (relative to the period),

and where the solution is sought over a very large number of cycles (Stetter, 1994). Oscillatory

problems have some of their Eigen values near the imaginary axis, and their solutions are os-

cillation processes with slowly varying amplitudes. The difficulty of solving such problems is

explained by the necessity to ensure correct values of the amplitude and phase angle over many

periods. To efficiently solve oscillatory problems, implicit methods are suitable (Skvortsov,

2011).

Oscillatory IVPs frequently arise in areas such as classical mechanics, celestial mechanics,

quantum mechanics and biological sciences (Ngwane et al., 2014). Several numerical methods

based on power series polynomial basis functions have been developed for solving this class

of important problems. See James et al. (2013a,2013b), Yakubu et al. 2013, Adesanya et al.

2014, among others. Other methods based on exponential fitting techniques which take advan-

tage of the special properties of the solution that may be known in advance have been proposed

(Fang et al. (2009), Jator et al. (2013), Ngwane et al. (2013)). The motivation governing the

exponentially-fitted methods is inherent to the fact that if the frequency or a reasonable esti-

mate of it is known in advance, these methods will be more advantageous than the polynomial

based methods (Ngwane et al., 2014 ). Recently, other authors developed a class of numerical

inetgrators using a basis function that comprises of the combination of power series and expo-

nential functions. These block integrators performed reasonably well on both oscillatory and

stiff problems of the form (1). These authors include Sunday et al. (2013a,2013b), Sunday et

al. (2014a,2014b), among others.

Definition 1.1 (Chebyshev Polynomial) The Chebyshev polynomial of the first kind Tn(x) is a

polynomial of degree n defined for x ∈ [−1,1] by

(2) Tn(x) = cos(arccosx), n = 0,1,2, ...,
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where −1≤ Tn ≤ 1. By setting x = cosz, we have

(3) Tn = cosnz

from which it is easy to deduce the expressions for the recursive relation of Chebyshev polyno-

mials as, T0 = 1, T1 = cosz = x, T2 = cos2z = 2cos2 z− 1 = 2x2− 1, ..., Tn+1 = 2xTn−Tn−1,

n≥ 1. The Tn is a polynomial of degree n with leading coefficient 2n−1 for n≥ 1.

Definition 1.2 (Oscillatory Differential Equation) A differential equation (1) is oscillatory if all

the nontrivial solution of (1) have an infinite number of zeros on x0 ≤ x < ∞.

Theorem 1.3. (Roots of Chebyshev Polynomials) The roots of Tn(x) of degree n ≥ 1 has n

simple zeros in [−1,1] at xk = cos
(2k−1

2n π
)
, for each k = 1,2, ...,n. Moreover, Tn(x) assumes its

absolute extrema at x′k = cos
(2k

n

)
, with Tn

(
x′k
)
= (−1)k, for each k = 0,1, ...,n.

The Chebyshev polynomial possess the following properties.

Firstly, |Tn(x)| ≤ 1, x ∈ [−1,1]. Secondly, Tn(x) is a polynomial of degree n. If n is even,

Tn(x) is an even polynomial and if n is odd, Tn(x) is an odd polynomial. Thirdly, Tn(x) as-

sumes extreme values at n+ 1 points xk = cos(kπ/n) , k = 0,1, ...,n and extreme value at xk

is (−1)k. Fourthly, Tn(x) is orthogonal with respect to the weight function W (x) = 1√
1−x2 and

∫ 1
−1

Tm(x)Tn(x)√
1−x2 dx =


0, m 6= n

π

2 , m = n 6= 0

π, m = n = 0

 .

In this paper, we derive a block method using the Chebyshev polynomial as our basis func-

tion. This method has the advantages of permitting easy change of step-size, does not require

a starting value, it simultaneously generates more than one solution at a time, easy to program

and less expensive in terms of the number of function evaluation per step.

2. Methodology: derivation of the block method

We consider the first five terms of the basis function (3) as our approximate solution. This is

given by

(4) y(x) = T0(x)+T1(x)+
3

∑
n=1

(2xTn(x)−Tn−1(x)) .
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We seek the solution of (1) on the partition πN : a = x0 < x1 < x2 < ... < xn < xn+1 < ...xN = b,

of the integration interval [a,b] with a constant step-size h , given by, h = xn+1 − xn,n =

0,1,2, ...,N. Interpolating (4) at point xn+s,s = 0 and collocating its first derivative at points

xn+r,r = 0(1)3 (where s and r are the number of interpolation and collocation points respec-

tively), leads to the following system of equations,

(5) XA =U,

where

A = [a0 a1 a2 a3 a4]
T ,

U = [yn fn fn+1 fn+2 fn+3]
T ,

and

X =



1 −2xn −6x2
n 4x3

n 8x4
n

0 −2 −12xn 12x2
n 32x3

n

0 −2 −12xn+1 12x2
n+1 32x3

n+1

0 −2 −12xn+2 12x2
n+2 32x3

n+2

0 −2 −12xn+3 12x2
n+3 32x3

n+3


.

Solving (5), for a′js, j = 0(1)4 and substituting back into (4) gives a continuous linear multistep

method of the form,

(6) y(x) = α0(x)yn +h
3

∑
j=0

β j(x) fn+ j,

where

(7)



α0 = 1

β0 =− 1
24(t

4−8t3 +22t2−24t)

β1 =
1
24(3t4−20t3 +36t2)

β2 =− 1
24(3t4−16t3 +18t2)

β3 =
1

24(t
4−4t3 +4t2)


,

where t = x−xn
h . Evaluating (6) at t = 1(1)3 gives a discrete block method of the form,

(8) A(0)Ym = Eyn +hdf(yn)+hbF(Ym),
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where

Ym = [yn+1 yn+2 yn+3]
T , yn = [yn−2 yn−1 yn]

T

F(Ym) = [ fn+1 fn+2 fn+3]
T , f(yn) = [ fn−2 fn−1 fn]

T

A =


1 0 0

0 1 0

0 0 1

 , E =


0 0 1

0 0 1

0 0 1



d =


0 0 9

24

0 0 1
3

0 0 9
24

 , b =


19
24

−5
24

1
24

4
3

1
3 0

27
24

27
24

9
24



3. Analysis of basic properties of the block method

3.1. Order of the block method

Let the linear operator L{y(x);h} associated with the block method (8) be defined as

(9) L{y(x);h}= A(0)Ym−Eyn−h(df(yn)+bF(Ym))

expanding using Taylor series and comparing the coefficients of h gives,

(10) L{y(x);h}= c0y(x)+ c1hy′(x)+ c2h2y′′(x)+ ...+ cphpyp(x)+ cp+1hp+1yp+1(x)+ ...

Definition 3.1. The linear operator L and the associated continuous linear multistep method

(6) are said to be of order p if c0 = c1 = c2 = ... = cp = 0 and cp+1 6= 0. The order is also

defined as the largest positive real number that quantifies the rate of convergence of a numerical

approximation of a differential equation to that of the exact solution. cp+1 is called the error

constant (i.e. the accumulated error when the order of a method has been computed) and the

local truncation error is given by

(11) tn+k = cp+1h(p+1)y(p+1)(xn)+©(hp+2).
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For our method,

(12) L{y(x);h}=




1 0 0

0 1 0

0 0 1




yn+1

yn+2

yn+3

−


0 0 1

0 0 1

0 0 1




yn−2

yn−1

yn



−h


9
24

19
24 − 5

24
1

24
1
3

4
3

1
3 0

9
24

27
24

27
24

9
24




fn

fn+1

fn+2

fn+3




.

Expanding (12) in Taylor series gives,

(13)


∑

∞
j−0

(h) j

j! y j
n− yn− 9h

24y′n−∑
∞
j=0

h j+1

j! y j+1
n
{19

24(1)
j− 5

24(2)
j + 1

24(3)
j}

∑
∞
j−0

(2h) j

j! y j
n− yn− h

3y′n−∑
∞
j=0

h j+1

j! y j+1
n
{4

3(1)
j + 1

3(2)
j +0

}
∑

∞
j−0

(3h) j

j! y j
n− yn− 3h

8 y′n−∑
∞
j=0

h j+1

j! y j+1
n
{9

8(1)
j + 9

8(2)
j + 3

8(3)
j}

=



0

0

0


.

Hence, c0 = c1 = c2 = c3 = c4 = 0, c5 = [−2.64(−02) −1.11(−02) 3.75(−02)]T . There-

fore, the block method is of accurate fourth order.

3.2. Consistency

The block method (8) is consistent since it has order p = 4 ≥ 1. It is important to note that

consistency controls the magnitude of the local truncation error committed at each stage of the

computation (Fatunla, 1988).

3.3. Zero stability

Definition 3.3.1. The block method (8) is said to be zero-stable, if the roots zs,s = 1,2, ...,k

of the first characteristic polynomial ρ(z) defined by ρ(z) = det(zA(0)−E) satisfies |zs| ≤ 1

and every root satisfying |zs| = 1 have multiplicity not exceeding the order of the differential

equation. Moreover, as h→ 0,ρ(z) = zr−µ(z− 1)µ , where µ is the order of the differential

equation, r is the order of the matrices A(0) and E (see Awoyemi et al. (2007) for details). The
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main consequence of zero-stability is to control the propagation of the error as the integration

proceeds (Fatunla, 1988).

For our method,

(14) ρ(z) =

∣∣∣∣∣∣∣∣∣z


1 0 0

0 1 0

0 0 1

−


0 0 1

0 0 1

0 0 1


∣∣∣∣∣∣∣∣∣= 0

ρ(z) = z2(z−1) = 0 =⇒ z1 = z2 = 0,z3 = 1. Thus, the block method is zero-stable.

3.4. Convergence

The block method is convergent by consequence of Dahlquist theorem stated below.

Theorem 3.4.1 (Dahlquist, 1956) The necessary and sufficient conditions that a continuous

LMM be convergent are that it be consistent and zero-stable.

3.5. Region of absolute stability

Definition 3.5.1 (Yan, 2011) Region of absolute stability is a region in the complex z plane,

where z=λh . It is defined as those values of zsuch that the numerical solutions of y′ = −λy

satisfy y j→ 0 as j→ ∞ for any initial condition.

To determine the absolute stability region of the block method, we adopt the boundary locus

method. This is achieved by substituting the test equation,

(15) y′ =−λy

into the block formula (8). This gives

(16) A(0)Ym(w) = Eyn(w)−hλDyn(w)−hλBYm(w).

Thus,

(17) h(w) =−

(
A(0)Ym(w)−Eyn(w)
Dyn(w)+BYm(w)

)
.



CHEBYSHEVIAN BASIS FUNCTION-TYPE BLOCK METHOD 469

Since h is given by h = λh and w = eiθ . Equation (17) is our characteristic or stability polyno-

mial. For our method, equation (17) is given by

(18) h(w) =−h3
(

1
4

w3 +
1
4

w2
)
−h2

(
11
12

w2− 11
12

w3
)
−h
(

3
2

w3 +
3
2

w2
)
+w3−w2.

This gives the stability region of the block method shown in fig.1 below.

Figure 1

Lambert (1973) showed that the stability region for L-stable methods must encroach into the

positive half of the complex plane. Thus, the block method developed is said to be L-stable by

virtue of fig. 1.

4. Numerical experiments

We shall apply the block method developed on two sampled oscillatory ODEs and compare

our results with those of some existing methods. We shall use the following notations in the

tables below;

ERR- Exact Solution-Computed Solution

EAU- Error in Adeboye and Umar (2013)

ESJ- Error in Sunday et al. (2013)

Problem 4.1. Consider the oscillatory ODE

(19) y′ =−sinx−200(y− cosx), y(0) = 0
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with the exact solution

(20) y(x) = cosx− e−200x.

Problem 4.2. Consider the Prothero-Robinson oscillatory ODE

(21) y′ = Ly+ cosx−Lsinx, L =−1, y(0) = 0,

which has the exact solution

(22) y(x) = sinx

Table 1: Showing the result for oscillatory problem 1.
x Exact Solution Computed Solution ERR ESJ Time/s

0.0010 0.1812687469220599 0.1812687472945497 3.724898e−010 6.581226e−006 0.0163
0.0020 0.3296779539650273 0.3296779544867199 5.216926e−010 2.937887e−006 0.0178
0.0030 0.4511838639093485 0.4511838645880447 6.786962e−010 9.396094e−006 0.0195
0.0040 0.5506630358934450 0.5506630366535412 7.600962e−010 1.130466e−005 0.0213
0.0050 0.6321080588545993 0.6321080595958538 7.412545e−010 7.910709e−006 0.0229
0.0060 0.6987877881417979 0.6987877888867506 7.449528e−010 1.031328e−005 0.0247
0.0070 0.7533785361584351 0.7533785368805425 7.221074e−010 1.042596e−005 0.0265
0.0080 0.7980714821760109 0.7980714828324983 6.564874e−010 7.798045e−006 0.0281
0.0090 0.8346606120517877 0.8346606126650458 6.132581e−010 8.490002e−006 0.0297
0.0100 0.8646147171800526 0.8646147177437180 5.636654e−010 8.038839e−006 0.0315

Table 2: Showing the result for oscillatory problem 2
x Exact Solution Computed Solution ERR EAU Time/s

0.1000 0.0998334166468281 0.0998334166602505 1.342236e−011 2.0e−11 0.1618
0.2000 0.1986693307950612 0.1986693308165252 2.146397e−011 3.0e−11 0.1633
0.3000 0.2955202066613396 0.2955202066936986 3.235895e−011 1.0e−10 0.1647
0.4000 0.3894183423086506 0.3894183423505273 4.187661e−011 2.0e−10 0.1664
0.5000 0.4794255386042032 0.4794255386505803 4.637712e−011 1.0e−10 0.1679
0.6000 0.5646424733950356 0.5646424734484032 5.336764e−011 2.0e−10 0.1693
0.7000 0.6442176872376914 0.6442176872966270 5.893563e−011 1.0e−10 0.1713
0.8000 0.7173560908995231 0.7173560909597445 6.022138e−011 2.0e−10 0.1728
0.9000 0.7833269096274838 0.7833269096908259 6.334211e−011 3.0e−10 0.1743
1.0000 0.8414709848078968 0.8414709848729562 6.505940e−011 3.0e−10 0.1760

5. Conclusion

A block method for the solution of first-order ODEs with oscillating solutions have been
developed using the Chebyshev polynomial as a basis function.The block method developed
was found to be zero-stable, consistent and convergent. The method was also found to perform
better than some existing ones with which we compared our results with.
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