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Abstract. This paper examines the HCV infectiology in a community with inflow of infected immigrants. A 

nonlinear mathematical model for the problem is proposed and analysed qualitatively using the stability theory of 

the differential equations. The results show that the disease free equilibrium is locally stable at threshold parameter 

less than unity and unstable at threshold parameter greater than unity. The disease free produced stable equilibrium 

for the threshold parameter less than unity ( 10 R ), while the backward bifurcation for endemic equilibrium is 

unstable and the forward bifurcation for endemic equilibrium at 10 R  is stable. A recovered individual loses 

immunity and become immediately susceptible again. However the disease becomes more endemic due to the 

presence of infected immigrants in the community. Numerical simulation of the model is implemented to investigate 

the sensitivity of certain key parameters on the HCV infectiology in a community with inflow of infected 

immigrants. 

Keywords:  HCV disease, infected immigrants, stability, sensitivity index, Lyapunov method, basic reproductive 

number. 
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1. Introduction 

 Mathematical modelling of the spread of infectious diseases continues to provide important 

insights into diseases behaviour and control. Over the years it has also become an important tool 
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in understanding the dynamics of diseases and in decision making processes regarding 

intervention programs for controlling diseases in many countries [13].  An estimated 170 million 

people worldwide (3% of the world's population) are now thought to be HCV chronic carriers 

[18].  [10] made an analysis on the immigration status, race and language barriers on chronic 

hepatitis virus infection management and treatment outcomes. [5] conducted a study on disease 

progression of acute HCV. [1] found that chronic HCV is a progressive condition that accounts 

for at least one quarter of all cases of chronic liver diseases. [19] made an analysis on the effects 

of a HCV educational intervention or a motivational intervention on alcohol use and sexual risk 

behaviours among injection drug users. [7] discovered that chronic HCV complications are 

increasing, especially among people older than 60 years. [3] investigated the dynamic behaviour 

of an SEI (Susceptible- Exposed- Infective) model with acute and chronic stages. However, in all 

the above studies, none of them incorporated the infectiology and inflow of infected immigrants 

to the population. In this paper, it is intended to examine the HCV infectiology in a community 

with inflow of infected immigrants. 

 

2.  Model Formulation 

The model sub-divides the total human population at time t , denoted by  tN , into sub-

populations of susceptible individuals   tS , exposed individuals (infected but not infectious) 

  tE , individuals with acute infection (initially infected)   tA , chronic infected individuals 

(infectious individuals)   tC  and recovered individuals   tR . Total population at time  is 

given by 

             tRtCtAtEtStN  .              (1) 

The interaction between the classes will be assumed as follows: Exposed  ,E  acute infected 

 A  and chronic infected  C  immigrants enter into the population with the rates ,3 ,2 ,1    

respectively. Susceptible individuals contacts with acute and chronic infected individuals at rates 

 2,1ii  respectively. Infected individuals move to the exposed group at a rate 
 

N

C2βA1β 
. 

The exposed individuals develop to acute infected group at a rate   while acute infective 

develop to chronic group at a rate 1k  and exposed individuals move to chronic class at the  rate

1k . The infectious individuals recovered at a rate ρ , and recovered individual loses immunity 

t
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and become immediately susceptible again at a rate  . Acute and chronic infected individuals 

undergo death due to the disease at the rate a  and d  respectively. 

It is assumed that the rate of contact of susceptibles with chronic individuals is much less than 

acute infectives  12    because on chronic stage people become aware of their infection and 

may choose to use control measures and change their behaviour and thus may contribute little in 

spreading the infection. 

Taking into account the above considerations, we have the following schematic flow diagram: 

 

 

 Figure 1.   Model Flow Chart 

 

Thus, from the above flow chart and with the force of infection 

 where  is the total population size. 

The model will be governed by the following system of equations:  

 
dS

S R S
dt

     

  

N

C)βA(β
ν 21 


RCAESN 

μ)Ek(θνSQπ
dt

dE
21 
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                    (2)

  

 μ)R(σCρAρ
dt

dR
21   

Where  

  1 2 31Q       
 
with initial conditions , ,  ,

 and . 

  are the effective contact rate of individuals with acute and chronic hepatitis C 

respectively, 

   are the rates at which exposed , acute  and Chronic infected immigrants enter 

into the population respectively, 

 Q  is the recruitment rate, 

 is the rate of progression to acute infected class from exposed class, 

  are the rates at which acute and exposed infective develop chronic 

respectively, 

 are the rates at which acute and chronic individuals recovered respectively, 

    is the  rate at which infectious humans after recovery become immediately susceptible 

again. 

  a  is the death rate of acute infected group due to the disease, 

 d  is the death rate of chronic infected group due to the disease, 

   is the natural death rate. 

 

3.  Model Analysis 

For the HCV transmission model (2) to be epidemiological meaningful, it is important to prove 

that all solutions with non- negative initial data will remain non-negative for all time. The system 

in equation (2) will be qualitatively analyzed so as to find the conditions for existence and 

stability of a disease free equilibrium points. 

 

μ)Aaρ( kθEQπ
dt

dA
112 

μ)Cd(ρAkEkQπ
dt

dC
2123 

  00 SS    00 EE    00 AA    00 CC 

  00 RR    00 NN 

)2 ,1( ii

)3,2 ,1i(i π



)2 ,1( iki

)2,1(i i
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3.1.  Invariant Region 

Since the model system of equation (2) is HCV model dealing with human population, it is 

assumed that all state variables and parameters of the model are positive at 0t  . The model 

will be analysed in suitable feasible region where all state variables are positive. 

Theorem 1: The solutions of the system (2) are feasible for all 0t   if they enter the invariant 

region   . 

Proof : 

Let    5RRC,A,E,S,Ω  be solution of the system (2) with non-negative initial conditions. 

From equation (2), in the absence of the disease 0d  , 0a  , system (2) becomes, 

 μNQ
.

N   

  QμN
.

N  . 

The integrating factor is (IF) = μte
μdt

e 
. 

Then 

 μtQeμtμNeNμte   

  μtQe
μt

Ne
dt

d








  

Integrating on both sides gives 

 . 

where c is a constant of integration. Therefore 

 . 

Using the initial conditions that when , then  

 c
μ

Q
N0 

 

 .

               (3) 

cμte
μ

QμtNe 

μt-ce
μ

Q
N 

  0N0N 0,t 

μt-e
μ

Q
N

μ

Q
N 0 














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As t  in (3), the population size,
μ

Q
N  , which implies that 

μ

Q
N0  . Thus, the feasible 

solutions set if (1) enter and remain in the region 

  












 
μ

Q
N  0,R  0,C  0,A  0,E  0, SRR  C,  A,  E,  S,Ω 5   

In this case, whenever
μ

Q
N  , then 0

.
N which means the population decreases asymptotically 

to the carrying capacity and whenever 
μ

Q
N  , every solution with initial condition in   remains 

in that region for 0t  , so the model is well posed in  . Thus, the region is positively invariant 

(i.e. solutions remain positive for all times, t ). Therefore, the basic model is well posed 

epidemiologically and mathematically. Hence, it is sufficient to study the dynamics of the basic 

model in . 

3.2.  Positivity of solutions 

Lemma1: Let the initial data be             5R0R  ,0C  ,0A  ,0E  ,0S 0  

Then, the solution set           tR  ,tC  ,tA  ,tE  ,tS  of the system (2) is positive for all 0t    

Proof : 

Using the first equation of the model system (2), 

   μSσRνSπππ1Q
dt

dS
321   

    1 2 31
dS

μ S Q π π π R
dt

        

 The Integration factor is  
  0

t s μ ds
B t e

 
 , multiplying both sides by the 

integration factor and integrating leads to 

       1 2 31
d

SB t B t Q R
dt

        

  
  

    1 2 3

0

0 1 0

t

t
s ds

B t e Q R B s ds C

    
        

  
                           (4) 
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Equations for        and E t ,A t ,C t    R t  can be similarly be obtained. Thus 

         and S t ,E t ,A t ,C t    R t are positive 0t   

3.3.  The Disease Free Equilibrium Point (DFE) 

In absence of the disease, this implies that  0R  0,C  0,A0,E 0,πππ 321    . Therefore 

the above system reduces to 

 0μSQ   

Solving, we get 

 
μ

Q
S0   

Hence, 

  













 0 ,0 ,0 ,0 ,0

μ

Q
R,,CA,E,S 00000                                                                            (5)

 

 

 

This represents the state in which there is no infection and is known as the disease-free 

equilibrium point. 

3.4.   Local Stability of Disease Free Equilibrium (DFE) 

The basic reproduction number, 0R  is calculated by using the next generation operator approach 

[17]. It is given by  

              (6) 

Local stability of disease free equilibrium 0 , can be determined by the variational matrix 
0M  of the 

model system (2) corresponding to 0 . The Jacobian matrix is computed by differentiating each 

equation in the system (2) with respect to the state variables R    C  A,  E,  S, and . The system is re-

defined as; 

    μSσRνSπππ1QH 321   

 μ)Ek(θνSQπG 21   

 μ)Aaρ(kθEQπK 112                                                                                                     

 μ)Cd(ρAkEkQπY 2123   

 1 2P ρ A ρ C (σ μ)R     

  
 

   C2A11E2

A22122112

A11E2

1

μdρμaρkμkθ

μkakρkkkθkβ

μaρkμkθ

θβ
R







0
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It follows that 

 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
0

0 0 0 0 0

0 0 0 0 0

H(€ ) H(€ ) H(€ ) H(€ ) H(€ )

S E A C R

G(€ ) G(€ ) G(€ ) G(€ ) G(€ )

S E A C R

K(€ ) K(€ ) K(€ ) K(€ ) K(€ )

S E A C R

Y(€ ) Y(€ ) Y(€ ) Y(€ ) Y(€ )

S E A C R

P(€ ) P(€ ) P(€ ) P(€ ) P(€

S E A C

    

    

    

    

    


    

    

    

    

   

Μ

)

R

 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                      (7) 

Hence the variational matrix of the model system (2)  at steady states is given by 

 

 

 

 
   

1 2

2 1 2

1 10

2 1 2

1 2

μ 0 -β -β 0

0 θ k μ β β 0

0 θ k ρ a μ 0 0

0 k k ρ d μ 0

0 0 ρ ρ δ μa



 
 

   
    
 

   
   

M                                       (8) 

The local stability analysis of the matrix (8) of the system (2) can be done by the trace/determinant 

method. Where by matrix  0M  is locally asymptotically stable if and only if the trace of matrix 

 0M  is strictly negative and its determinant is strictly positive. Whose trace and determinant are 

given by 

          Trace 0
2 1 1 2

μ - θ k μ k ρ a μ ρ d μ δ μ             0M                   (9) 

and                                                                                                                                      

   1 2 3 4 1 3 4 1 2 4 2 2 2 4det rr r r r r k r k r r      0M                                                                (10) 

where  1 2r k   ,   2 1 1r k a    ,   3 2r d    ,  4r   . 

Hence  det 00M  if 1 3 4 1 2 4 2 2 2 4 1 2 3 4r r k r k r r r r r r       

That is equivalent to 

 
 1 3 4 1 2 4 2 2 2 4

1 2 3 4

1
r r k r k r r

r r r r

    
  

since  
 1 3 4 1 2 4 2 2 2 4

0
1 2 3 4

r r k r k r r
R

r r r r

    
  
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Thus, 0M is locally asymptotically stable if and only if 0 1R  . These results are summarized 

with the following theorem. 

Theorem 2: The disease free equilibrium of the model system (2) is locally asymptotically stable 

if 10 R  and unstable If 10 R . 

3.5. Existence of Endemic Equilibrium Point  

The endemic equilibrium of the model system (2) is given by 






  R,C,A,E,S  

It is obtained by setting the right hand side of each equation of the model system (2) equal to 

zero which exists for 10  .  R   ,C,A,E,S and  satisfy the following relations: 

 
 

  1301211

08

rARrr

ARrrr
S 109




  

 
θ

μaρk )A(
E 11 2Q



                                                                                        (11) 

 321 rArr )0(RC 

 

 76504 rArrr )-RR 

 
where, 

 

  
θβ

μaρkμkθ
r

2

112
1


 ,  

2

2
β

r 1 ,    
 




μd

k-Q
r

2

23
3

3Q
,    

μσ

ρ
r 1
4


 ,    

 
μσ

rρ
r 12
5


 ,    

μσ

rρ
r 22
6


   ,    

μσ

r
r 3
7


 ,    718 δrQ-QNr  32 QQ ,   

  N-N 649 δrδrr  ,
 

N510 δrr  , 2r2β-1β11r  , 
 

1r2β12r  ,
    

μNrr 313 2β   

   Nμaρkμkθr 11214  ,  μkθr 2Qπ15  2 ,    Nrμkθr 1316 2Qπ  2  , 

 131417 rrr   

and A is the solution of the quadratic polynomial 

 0 





















 KAHAGAf
2

            (12)  

where 

       1009221201009114121114 rRrrβrβRrRrβθrrrrG 0R 

 
      θrrrrβrrrβrrrrH 102212β0R881121111715121511 0R932β0RrrθNQπr0NRN  

 


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16131832 rNrQπθrrβK   

Thus, the following results from the quadratic equation (12). 

Theorem 3:  

(a) If  0H , then the model  (2) has forward bifurcation at 1.R 0  

(b) If  0H ,  then the model  (2) undergoes  backward bifurcation at 1.R 0  

Since the model parameters are non-negative, it is clear that 0G . However it is important to 

note that H  is positive only if 1R 0  and  

       17812β0R881121111015121511 rθrθrrrβrrrrrrrrr 2r2βθ0RθNQπ0R932β0NRN    

and K is positive only if 0 16131832 rNrQπθrrβ .  

3.6.  Local Stability of the Endemic Equilibrium Point  

The local asymptotic stability of endemic equilibrium point will be analysed by using the Centre 

Manifold Theory according to [4]. The existence and stability of endemic equilibrium is 

determined through the investigation of the possibility of existence of the backward or forward 

bifurcation. This is demonstrated graphically in Fig. 2 (the figure shows a backward bifurcation). 

 

           Figure 2:   The Backward Bifurcation. 

The DFE produced stable equilibrium for the 10 R , while the backward bifurcation for Endemic 

Equilibrium (EE) is unstable and the forward bifurcation for EE at 10 R  is stable. The implication 

of the occurrence of backward bifurcation in the model (2) is that for the disease to be eradicated, it 

is no longer enough that the basic reproductive number 0R  is less than one. In fact, to achieve 

eradication, additional efforts and costs are required to bring 0R  bellow a critical value 10 R .  
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3.7.  Global Stability of the Endemic Equilibrium Point   

The global stability of the endemic equilibrium   is analysed using the following constructed 

Lyapunov function by [3] 

Theorem 4:  If 10R , the endemic equilibrium   of the model (2) is globally asymptotically 

stable. 

 Proof: To establish the global stability of the endemic equilibrium , we construct the 

following Lyapunov function:  

 

                                     















 


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


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










 




E

E
logEEE

s

s
logSSSR,C,A,E,SV
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



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By direct calculating the derivative of V  along the solution of (2) we have; 
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Thus if QP  then 0
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



   where   is the endemic equilibrium of the system (2). By LaSalle's invariant principle, it 

implies that   is globally asymptotically stable in Ω  if QP .  

 

4.   Numerical Sensitivity Analysis  

In determining how best to reduce human mortality and morbidity due to HCV, we calculate the 

sensitivity indices of the basic reproduction number, 0R  to the parameters in the model using 

approach of [6]. Sensitivity analysis determines parameters that have a high impact on 0R  and 

should be targeted by intervention strategies. Sensitivity indices allow us to measure the relative 

change in a state variable when a parameter changes [6]. The normalized forward sensitivity 

index of a variable to a parameter is a ratio of the relative change in the variable to the relative 

change in the parameter. When a variable is a differentiable function of the parameter, the 

sensitivity index may be alternatively defined using partial derivatives. 
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Table 1: Numerical values of sensitivity indices of  

Parameter Symbol Sensitivity Index 

 -0.2515 

 0.6658 

 -0.5202 

 0.3341 

 -0.1006 

 -0.1040 

 0.0521 

 -0.0304 

 0.0281 

 -0.07341 

 

Definition 1: The normalised forward sensitivity index of a variable ‘ p ’ that depends 

differentiable on a parameter ‘ q ’ is defined as: 
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were obtained following the same method and tabulated as follows:   

From Table (1), it shows that when the parameters 2β , 1β , 2k  and 1k   are increased keeping 

other parameters constant they increase the value of 0R  implying that they increase the 

endemicity of the disease as they have positive indices. While the parameters a , 
2

ρ , 
1

ρ d , θ

0R

a

2β

2
ρ

1β

1
ρ

d

2k

θ

1k

μ
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and μ  decrease the value of 0R  when they are increased while keeping the other parameters 

constant, implying that they decrease the endemicity of the disease as they have negative indices. 

The specific interpretation of each parameter shows that, the most sensitive parameter is the 

effective contact rate of individuals with chronic disease 2β , followed by recovered rate of 

chronic individuals due to treatment 
2

ρ ,  effective contact rate of individuals with acute 1β , 

followed by recovery rate naturally from acute a , death rate of chronic infected d , recovered 

rate of acute individuals due to treatment 
1

ρ , natural mortality rate μ ,  rate at which exposed 

develop chronic 2k , the rate at which acute infective are detected by a screening method from 

exposed group θ ,  the rate at which screened develop to chronic 1k , which is the least sensitive 

parameter. 

 

5.  Numerical  Simulations  

In order to verify the theoretical predictions of the model, the numerical simulations of the model 

(2) are carried out using the following set of estimated parameter values: = 0.8, =0.3, 

θ =0.5, =0.5, =0.34, =0.3, =0.1, 3 =0.05, =0.13-0.5, =0.034, =0.5. 

Figures. 3-4 show the proportion of exposed population, HCV infective populations (acute and 

chronic infectives) and recovered group, plotted against the proportion of susceptible population. 

This shows the dynamic behaviour of the endemic equilibrium of the model (2) using the above 

parameter values. 

 

1 2

1k 2k 1 2  a d
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 Fig. 3:  Phase portrait of the dynamics of susceptibles and the infected population. 

 

Fig. 4:  Phase portrait of the dynamics of susceptibles and recovered population. 

The phase portrait in Figures. 3 and 4 show that for any initial starting point or initial value, the 

solution curves tend to the endemic equilibrium point  . Hence, we infer that the system (2) is 

globally stable about the endemic equilibrium point   for the set of parameters above. 
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Figures 5 and 6 show the variation of exposed and infected population for different values of 

infected immigrants 

 

Fig.5: Variation of exposed population for different values of infected immigrants 

 

                                        (a)                                                                           (b) 

 

Fig. 6: Variation of infected population for different values of infected immigrants 
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Figures 5 and 6 show the variation of exposed individuals, acute and chronic infected 

populations respectively. It is observed that as the infected immigrant increases in the 

community, the exposed population increases with time (see Fig. 5). The exposed individuals 

shifted to acute class at the rate θ  which results to the increase of the number of acute infective. 

Then, the exposed and acute infected individuals shifted to chronic population at the rate 2k  and

1k , respectively, leading to the increase of the number of chronic infected population (see Fig. 

6).  

 

6.  Discussions and Conclusions 

In this paper, a mathematical model of HCV showing the HCV infectiology in a community with 

inflow of infected immigrants has been established and analysed. Both qualitative and numerical 

analysis of the model was performed. The model incorporates the assumption that infected 

immigrants enter in the community. It was shown that there exists a feasible region where the 

model is well posed in which a unique disease free equilibrium point exists. The disease free and 

endemic equilibrium points were obtained and their stabilities investigated. Sensitivity analysis 

and numerical study of the model has been performed to see the effect of certain key parameters 

on the spread of the disease. It was observed that the disease become more endemic due to the 

presence of infected immigrants in the community. As the infected immigrants increase, the 

exposed, acute and chronic infective individuals also increase in the population. The national 

health cares to HCV should therefore seek to ensure that all people at risk or that have been at 

risk in the past, have access to and are supported in the use of HCV education, health care and 

prevention services, regardless of their social and economic status. 
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