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Abstract. In this article, we present an application of optimal control theory to assess the effectiveness of control

measures on the dynamics of YF. We formulate and analyse a deterministic mathematical model with personal

protection, educational campaign and spray of insecticides as control variables using optimal control theory and

Pontryagins Maximum Principle. The optimal controls are characterized in terms of optimality system, and solved

numerically for several scenarios. The results show that multiple optimal control measures is most effective strat-

egy to bring a stable disease-free situation compared to a single control. However, spray of insecticides alone was

seen as not effective without personal protection, and optimal use of personal protection alone might be beneficial

to minimize transmission of the infection to the community.
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1. Introduction

Outbreaks of vector borne diseases like malaria, yellow fever (YF) and dengue that are trans-

mitted to humans by blood-sucker mosquito have devastated several countries around the world

[17]. Thus, modelling their dynamics and control has gained enormous attention.

Most infectious diseases could be eradicated, if adequate and timely steps (for example vac-

cination, treatment, educational and enlightenment campaign) are taken in the course of the

epidemic. However, many of these diseases eventually become endemic in our societies due to

lack of adequate policies and timely interventions to mitigate the spread of them.

YF, in particular, is a viral haemorrhagic fever caused by yellow fever virus (YFV) and is

transmitted through the bite of an infected female yellow fever mosquito [25]. Humans and

primates are the principle reservoirs for YF virus and the vector, female YF mosquito (Aedes

aegypti) is the only transmitting agent of this virus.

The study of optimal control strategies in epidemiological models have been of much interest

for informed decision-making. Over years, mathematical models of the spread of infectious

diseases have been used to provide important insights into disease behaviour and optimal control

strategies. For some diseases, medical treatments can be given to patients to cure the infection

but there may not be vaccine to immunize susceptible individuals (e.g. in the case of Malaria).

For a few other diseases, there is no cure but individuals can be vaccinated against getting

infection (e.g. Polio, YF).

Optimal control theory have been applied to number of studies in mathematical models of

vector-borne diseases like malaria [1],[22], chikungunya [18], dengue [26], rift valley fever [20],

among others. Regarding to YF few studies have been done to address transmission dynamics

like in [19],[2],[10], [27], but not addressing control strategies of the infection. In these studies

theoretical and statistical models have been used.

Recently, [12] use a mathematical model in addressing YF transmission dynamics between

primates and human being, into which model parameters and factors affecting diseases trans-

mission were discussed. Nothing has been done to address control strategies of YF.

Thus, in this study we formulate an optimal control model for YF aiming at deriving opti-

mal control strategies with minimum implementation cost. We extend the current model [12]
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by introducing time-dependent control efforts on prevention or personal protection, educational

campaign and spray of insecticides efforts as controls to curtail the spread of YF. We use Pon-

tryagins Maximum Principle in deriving the optimal control and Fleming and Rishel [7] and

Lukes [15] in proving the existence of an optimal control.

2. Materials and Methods

2.1 Model Formulation

Control terms are added to the existing deterministic mathematical model for YF transmission

dynamics by [12] as shown in Figure 1.

2.2 Model Flow Diagram and Description

FIGURE 1. Model flow diagram for transmission dynamics of YF under control measures.

Three populations are considered in the model (humans, vector and primates) with the total

population sizes at time t given by Nh(t), Nv(t) and Np(t) respectively. The populations are fur-

ther compartmentalized into epidemiological classes whereby human population is divided into
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5 classes: susceptible, Sh , vaccinated, Vh, exposed, Eh, infectious, Ih and recovered (immune),

Rh.

Vector and primates population are divided into 3 classes each: susceptible, exposed, and

infectious. They do not include the immune class as they never recover from the infection, that

is their infective period ends with their death due to their relatively short life cycle compared to

human.

We consider three control efforts, prevention or personal protection to human host, educa-

tional campaign to susceptible and infectious human hosts and spray of insecticides against

the vector. We use the control mechanisms ui(t) in human host and vector populations, where

1− ui(t) is the failure probability of the control mechanism ui(t) for i = 1; 2; 3. In the model

the control mechanism u1(t) represents prevention or personal protection to human host, u2(t)

represents educational campaign to susceptible and infectious human hosts and u3(t) represents

spray of insecticides against the vector.

In the human population, prevention or personal protection includes, the use of mosquito

treated bed-nets, use of mosquito coils, indoor residual spraying and the use of mosquito repel-

lents. All these things are done in order to minimize or eliminate vector-human contacts. Thus,

the associated force of infection to human from vector and vice versa is reduced by a factor of

1−u1.

Educational campaign is done to the human populations in such a way that upon its suc-

cessful efforts, more susceptible human individuals will be motivated to vaccination before the

occurrence of the disease making the vaccination rate, ε , to be increased by a factor 1+ u2.

Also, infectious human individuals will be encouraged and motivated to find treatment of the

infections and use. That is to say a large number of infectious humans will be treated and hence

the recovery rate, γ , will also be increased by a factor 1+u2.

Spray of insecticides against the vector is done to larvacide and adultcide and applied to those

places where vector bleeding occurs in order to control vector population. It is assumed that

application of insecticides will reduce the reproduction (birth) rate, bvNv, of the vector [3] by a

factor 1−u3 and also will increase the death rate of vectors in each compartment at a rate pro-

portional to u3(t). We take these rates to be µv(t)u3(t)Sv(t), µv(t)u3(t)Ev(t) and µv(t)u3(t)Iv(t)
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for susceptible, exposed and infectious vector respectively. That is to say mortality rate of

mosquito population, µv, is increased by a factor 1+u3. Thus, we construct the optimal model

equations as follows:

2.3 Model Equations

Human:

(1)

dSh(t)
dt

= bhNh +(1−ρ)Λ+ω(Vh +Rh)−λvh(1−u1)− ε(1+u2)Sh−µhSh,

dVh(t)
dt

= ρΛ+ ε(1+u2)Sh−ωVh−µhVh,

dEh(t)
dt

= λvh(1−u1)−δhEh−µhEh,

dIh(t)
dt

= δhEh− (µh +α)Ih− γIh(1+u2),

dRh(t)
dt

= γIh(1+u2)−ωRh−µhRh,

Vector:

(2)

dSV (t)
dt

= bvNV (1−u3)−λhv(1−u1)−λpv−µvSV (1+u3),

dEV (t)
dt

= λhv(1−u1)+λpv−δvEV −µvEV (1+u3),

dIV (t)
dt

= δvEV −µvIV (1+u3),

Primates:

(3)

dSp(t)
dt

= bpNp−λvp−µpSp,

dEp(t)
dt

= λvp−δpEp−µpEp,

dIp(t)
dt

= δpEP−µpIp.

where; λvh =
aβ1ShIv

Nv
, λhv =

aβ2SvIh

Nh
, λpv =

aβ3SvIp

Np
and λvp =

aβ4SpIp

Np
.

In the model the term λvh =
aβ1ShIv

Nv
denotes the rate at which susceptible human hosts Sh

get infected by the infected vector Iv (force of infection from vector to human), λhv =
aβ2SvIh

Nh
denotes the rate at which susceptible vector Sv get infected from the infected human host Ih

(infection force from human host to vector), λpv =
aβ3SvIp

Np
denotes the rate at which the sus-

ceptible vector Sv get infected from the infected primate Ip (force of infection from primate to
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vector) and the term λvp =
aβ4SpIv

Nv
denotes the rate at which the susceptible primates Sp get

infected from the infected vector Iv.

Thus, we define the total population sizes Nh(t), Nv(t) and Np(t) for human host, vector and

primates respectively as:

(4)

Nh(t) = Sh(t)+Vh(t)+Eh(t)+ Ih(t)+Rh(t),

Nv(t) = Sv(t)+Ev(t)+ Iv(t),

Np(t) = Sp(t)+Ep(t)+ Ip(t).

Model systems (1), (2), (3) can be written together to form a single system of differential equa-

tions (5).

(5)

dSh

dt
= bhNh +(1−ρ)Λ+ω(Vh +Rh)−

aβ1ShIv

Nv
(1−u1)− ε(1+u2)Sh−µhSh,

dVh

dt
= ρΛ+ ε(1+u2)Sh−ωVh−µhVh,

dEh

dt
=

aβ1ShIv

Nv
(1−u1)−δhEh−µhEh,

dIh

dt
= δhEh− (µh +α)Ih− γ(1+u2)Ih,

dRh

dt
= γ(1+u2)Ih−ωRh−µhRh,

dSv

dt
= bvNv(1−u3)−

aβ2SvIh

Nh
(1−u1)−

aβ3SvIp

Np
−µvSv(1+u3),

dEv

dt
=

aβ2SvIh

Nh
(1−u1)+

aβ3SvIp

Np
−δvEv−µvEv(1+u3),

dIv

dt
= δvEv−µvIv(1+u3),

dSp

dt
= bpNp−

aβ4SpIv

Nv
−µpSp,

dEp

dt
=

aβ4SpIv

Nv
−δpEp−µpEp,

dIp

dt
= δpEp−µpIp.

3. The Optimal Control Problem

In model system (5), we seek to minimize the number of exposed and infectious human with

minimum implementation cost (that is the cost of applying control, u1, u2, u3). Therefore for a
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Parameters as they have been used in this study are described in Table 1:

TABLE 1. Description of parameters of the model system (5)

Symbol Description Value Reference

β1 Transmission probability of vector to human 0.8 [5], [2]

β2 Transmission probability of human to vector 0.8 [21], [26]

β3 Transmission probability of primate to vector 0.5 [12]

β4 Transmission probability of vector to primate 0.9 estimate

δh Progression rate from Eh to Ih 0.95 day−1 [8], [6]

δv Progression rate from Ev to Iv 0.95 day−1 [2], [8]

δp Progression rate from Ep to Ip 0.85 day−1 [12]

bh Daily birth rate of human 0.0003 estimate

bv Daily birth rate of vector 0.002 estimate

bp Daily birth rate of primates 0.00004 estimate

a Daily bitting rate 0.5 [5], [2]

γ Recovery rate 0.005 [23], [4]

α Death rate due to disease for human 0.001 [23], [4]

ω rate of relapse of vaccinated and recovered human 0.05 [8]

ε vaccination rate of susceptible human 0.5 day−1 [12]

ρ proportion of immigrant who are vaccinated 0.02 day−1 [8]

Λ arrival rate of immigrant per individual per time 70 day−1 estimate
1
µh

lifespan of human 60 years [12], [20]

1
µv

lifespan of vector 40 days [18]

1
µp

lifespan of primates 10 years estimate

terminal time t f , the aim is to minimise the cost of objective functional

(6) J(u1,u2,u3) =
∫ t f

0

(
A1Eh +A2Ih +B1u2

1 +B2u2
2 +B3u2

3
)

dt

where, A1 and A2 are positive weight constants of the exposed and infectious humans respec-

tively; and B1, B2, B3 are the positive weight constants for the control mechanisms u1, u2,

u3 respectively. However, with the idea of other researchers from the literature on epidemic

controls ([22],[13],[1],[9],[16],[11]), we choose a quadratic cost function of the controls.

We also define B1u2
1 as the cost of the control mechanism in human associated with preventive

measures like indoor residual spraying, use of mosquito treated bed nets, mosquito coils and
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mosquito repellents so as to minimize the vector human contacts; B2u2
2 is the cost of the control

efforts on educational campaign to susceptible and infected human individuals and B3u2
3 is the

cost of control mechanism in vectors associated with spraying of insecticide against vector to

adulticide and larvacide, and those places where vector breeding occurs.

Thus, we seek to obtain an optimal control (u∗1,u
∗
2,u
∗
3) such that;

(7) J(u∗1,u
∗
2,u
∗
3) = min J(u1,u2,u3|u1,u2,u3 ∈ Γ)

subject to system (5) where the control set is defined as Γ = {u1,u2,u3|ui(t) is a piece wise

continuous functions on [0, t f ] and that ai ≤ ui ≤ bi for i = 1,2,3}. Here ai and bi, are constants

in [0,1].

In order to find an optimal solution, the basic framework of the problem is to state and prove

the existence of optimal control for the model system (5) and then characterize the optimal

control by deriving the optimality system.

3.1 Existence of an Optimal Control Problem

In this part, we state and prove the existence of optimal control using the existence results

from [7] and [15]. We first state the following theorem;

Theorem 3.1.

Consider the optimal control problem with model system (5) as state equations. There exists an

optimal control u∗ = (u∗1,u
∗
2,u
∗
3) ∈ Γ such that

min
(u1,u2,u3)∈Γ

J(u1,u2,u3) = J(u∗1,u
∗
2,u
∗
3)

Proof.

We note that the existence of an optimal control pair can be proved by using results from Flem-

ing and Rishel [7] theorem 4.1 we first need to check the following properties:

1. The set of controls and corresponding state variables is non-empty.

2. The control set Γ is convex and closed.

3. The right hand side of the state system is bounded by a linear function in the state and

control variables.
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4. The integrand of the objective functional is convex.

5. There exist constants c1,c2 > 0, and α > 1 such that the integrand of the objective

functional is bounded below by c1
(
|u1|2 + |u2|2 + |u3|2

)α

2 − c2.

Condition 1, is verified using results from Fleming and Rishel [7] Chapter III page 60, from

them existence is assured by the state equations and control variables; which can also be seen

in our ODE’s model system (5). The control set Γ is bounded by definition; hence condition 2

is also satisfied. The RHS of the state system (5) satisfies condition 3 since the state solutions

are bounded.

The integrand of our objective functional is

A1Eh +A2Ih +B1u2
1 +B2u2

2 +B3u2
3

It is clearly convex on control set Γ, which gives condition 4.

Finally, there are constants c1,c2 > 0 and α > 1 satisfying

c1
(
|u1|2 + |u2|2 + |u3|2

)α

2 − c2

because the state variables are bounded, which shows the existence of an optimal control solu-

tion.

Hence, we conclude that there exists an optimal control (u∗1,u
∗
2,u
∗
3) that minimizes the objective

functional J(u1,u2,u3) which follows from the existence results by [9].

3.2 Characterization of Optimal Control

With the existence of optimal control pair established, we now present the optimality system

and derive the necessary conditions using the Pontryagin Maximum Principle [24]. The aim of

this principle is to minimize the objective function. To accomplish this, we begin by defining a

Lagrangian of our optimal control problem which is the Hamiltonian augmented with penalty

multipliers for the control constraints. Thus, we define the Hamiltonian (H) for the control

problem (5)-(6) as:

(8) H = L (Eh, Ih,u1,u2,u3)+∑
K

λK fK
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where K is the set of state variables, that is Sh,Vh, ..., Ip; λK,(K = 1,2, ...,11) is the adjoint

functions of the Kth state variable, and fK is the right hand side of the differential equation of

the Kth state variable. This can be written as:

H = A1Eh +A2Ih +B1u2
1 +B2u2

2 +B3u2
3 +λ1

dSh

dt
+λ2

dVh

dt
+λ3

dEh

dt
+λ4

dIh

dt

+λ5
dRh

dt
+λ6

dSv

dt
+λ7

dEv

dt
+λ8

dIv

dt
+λ9

dSp

dt
+λ10

dEp

dt
+λ11

dIp

dt
.(9)

Let Γ be set of controls, and Π be the set of adjoint variables, we define in more compact form

the Lagrangian (augmented Hamiltonian) for our optimal problem as:

(10) L (K,Γ,Π) = H−
3

∑
i=1

wi j(ui(t)−ai)−
3

∑
i=1

wi j(bi−ui(t)) for j = 1,2.

where wi j(t)≥ 0 are the penalty multipliers satisfying the following conditions

w11(t)(u1(t)−a1) = w12(t)(b1−u1(t)) = 0 at optimal control u∗1,

w21(t)(u2(t)−a2) = w22(t)(b2−u2(t)) = 0 at optimal control u∗2,

w31(t)(u3(t)−a3) = w32(t)(b3−u3(t)) = 0 at optimal control u∗3.
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The Lagrangian can be extended as;

L (K,Γ,Π) = A1Eh +A2Ih +B1u2
1 +B2u2

2 +B3u2
3

+λ1[bhNh +(1−ρ)Λ+ω(Vh +Rh)−
aβ1ShIv

Nv
(1−u1)− ε(1+u2)Sh−µhSh]

+λ2[ρΛ+ ε(1+u2)Sh−ωVh−µhVh]

+λ3[
aβ1ShIv

Nv
(1−u1)−δhEh−µhEh]

+λ4[δhEh− (µh +α)Ih− γ(1+u2)Ih]

+λ5[γ(1+u2)Ih−ωRh−µhRh]

+λ6[bvNv(1−u3)−
aβ2SvIh

Nh
(1−u1)−

aβ3SvIp

Np
−µvSv(1+u3)]

+λ7[
aβ2SvIh

Nh
(1−u1)+

aβ3SvIp

Np
−δvEv−µvEv(1+u3)]

+λ8[δvEv−µvIv(1+u3)]

+λ9[bpNp−
aβ4SpIv

Nv
−µpSp]

+λ10[
aβ4SpIv

Nv
−δpEp−µpEp)]

+λ11[δpEp−µpIp]

−w11(t)(u1(t)−a1)−w12(t)(b1−u1(t))−w21(t)(u2(t)−a2)

−w22(t)(b2−u2(t))−w31(t)(u3(t)−a3)−w32(t)(b3−u3(t)).

where λ1,λ2, ...λ11 = λK (for K = sh,vh, ..., ip) are the adjoint variables or co-state variables.

We seek for the minimal value of Lagrangian.

Theorem 3.2.

Given u∗i , (i = 1,2,3) be the set of optimal control, and K∗ be the corresponding set of solutions

of the state system that minimizes J over Γ then there exists adjoint variables λK such that

(11)
dλK

dt
=− ∂L

∂K
(adjoint condition) and

(12) λK(t f ) = 0 (transversality/final time condition) f urthermore

(13)
∂L
∂u

= 0 at (u1,u2,u3 = 0) (optimality condition)

Proof.

We differentiate partially the Lagrangian (Hamiltonian augmented with penalty multiplier) with
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respect to states variables to obtain the adjoint system. Thus, we have;

(14)

dλ1

dt
=− ∂L

∂Sh
= λ1

[
aβ1Iv

Nv
(1−u1)+ ε(1+u2)+µh

]
−λ2ε(1+u2)−λ3

aβ1Iv

Nv
(1−u1),

dλ2

dt
=− ∂L

∂Vh
= λ2(ω +µh)−λ1ω,

dλ3

dt
=− ∂L

∂Eh
=−A1 +λ3(δh +µh)−λ4δh,

dλ4

dt
=− ∂L

∂ Ih
=−A2 +(λ6−λ7)

aβ2Sv

Nh
(1−u1)−λ5γ(1+u2)+λ4[µh +α + γ(1+u2)]

dλ5

dt
=− ∂L

∂Rh
= λ5(µh +ω)−λ1ω,

dλ6

dt
=− ∂L

∂Sv
= (λ6−λ7)

[
aβ2Ih

Nh
(1−u1)+

aβ3Ip

Np

]
+λ6µv(1+u3),

dλ7

dt
=− ∂L

∂Ev
= λ7(δv +µv)−λ8δv,

dλ8

dt
=− ∂L

∂ Iv
= (λ1−λ3)

aβ1Sh

Nv
(1−u1)+λ8µv(1+u3)+(λ9−λ10)

aβ4Sp

Nv
,

dλ9

dt
=− ∂L

∂Sp
= (λ9−λ10)

aβ4Iv

Nv
+λ9µp,

dλ10

dt
=− ∂L

∂Ep
= λ10(δp +µp)+λ11δp,

dλ11

dt
=− ∂L

∂ ip
= (λ6−λ7)

aβ3Sv

Np
+λ11µp.

Now, to obtain the optimal control solution ui,(i = 1,2,3), of our Lagrangian we differentiate

partially the Lagrangian L, with respect to u1,u2,u3 and set it to zero as follows:

(15)

∂L
∂u1

= 2B1u1 +(λ1−λ3)
aβ1ShIv

Nv
+(λ6−λ7)

aβ2SvIh

Nh
−w11 +w12

∂L
∂u2

= 2B2u2 +(λ2−λ1)εSh +(λ5−λ4)γIh−w21 +w22

∂L
∂u3

= 2B3u3−λ6[bvNv +µvSv]−λ7µvEv−λ8µvIv−w31 +w32

Setting
∂L
∂ui

= 0 for i = 1,2,3 and solving for the optimal control ui, we obtain

(16)

u∗1(t) =
1

2B1

[
(λ3−λ1)

aβ1ShIv

Nv
+(λ7−λ6)

aβ2SvIh

Nh
+w11−w12

]
u∗2(t) =

1
2B2

[(λ1−λ2)εSh +(λ4−λ5)γIh +w21−w22]

u∗3(t) =
1

2B3
[λ6(bvNv +µvSv)+λ7µvEv +λ8µvIv +w31−w32]

To determine explicit expression for an optimal control without w11,w12,w21,

w22,w31,w32 we use a standard optimality technique involving the bounds of control. The

following are three cases to be considered in each part.
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Solving for u∗1(t)

• On the set {t|a1 < u∗1 < b1}, we have

w11(u∗1−a1) = w12(b1−u∗1) = 0 =⇒ w11 = w12 = 0

Hence the optimal control is

u∗1(t) =
1

2B1

[
(λ3−λ1)

aβ1ShIv

Nv
+(λ7−λ6)

aβ2SvIh

Nh

]
• On the set {t|u∗1 = b1}, we have

w11(u∗1−a1) = w12(b1−u∗1) = 0 =⇒ w11 = 0

Hence the optimal control is

b1 = u∗1(t) =
1

2B1

[
(λ3−λ1)

aβ1ShIv

Nv
+(λ7−λ6)

aβ2SvIh

Nh
−w12

]
since w12(t)> 0, therefore

1
2B1

[
(λ3−λ1)

aβ1ShIv

Nv
+(λ7−λ6)

aβ2SvIh

Nh

]
≥ b1

• On the set {t|u∗1 = a1}, we have

w11(u∗1−a1) = w12(b1−u∗1) = 0 =⇒ w12 = 0

Thus, the optimal control is

a1 = u∗1(t) =
1

2B1

[
(λ3−λ1)

aβ1ShIv

Nv
+(λ7−λ6)

aβ2SvIh

Nh
+w11

]
Again since w11(t)> 0, it shows that

a1 ≥
1

2B1

[
(λ3−λ1)

aβ1ShIv

Nv
+(λ7−λ6)

aβ2SvIh

Nh

]
We now represent u∗1(t) in compact form as

(17) u∗1(t) = min{b1, max{a1,
1

2B1

[
(λ3−λ1)

aβ1ShIv

Nv
+(λ7−λ6)

aβ2SvIh

Nh

]
}}
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Solving for u∗2(t)

• On the set {t|a2 < u∗2 < b2}, we have

w21(u∗2−a2) = w22(b2−u∗2) = 0 =⇒ w21 = w22 = 0

Hence the optimal control is

u∗2(t) =
1

2B2
[(λ1−λ2)εSh +(λ4−λ5)γIh]

• On the set {t|u∗2 = b2}, we have

w21(u∗2−a2) = w22(b2−u∗2) = 0 =⇒ w21 = 0

Hence the optimal control is

b2 = u∗2(t) =
1

2B2
[(λ1−λ2)εSh +(λ4−λ5)γIh−w22]

Since w22(t)> 0, therefore

1
2B2

[(λ1−λ2)εSh +(λ4−λ5)γIh]≥ b2

• On the set {t|u∗2 = a2}, we have

w21(u∗2−a2) = w22(b2−u∗2) = 0 =⇒ w22 = 0

Thus, the optimal control is

a2 = u∗2(t) =
1

2B2
[(λ1−λ2)εSh +(λ4−λ5)γIh +w21]

Again since w21(t)> 0, therefore

a2 ≥
1

2B2
[(λ1−λ2)εSh +(λ4−λ5)γIh]

In compact form, we represent u2(t) as:

(18) u∗2(t) = min{b2, max{a2,
1

2B2
[(λ1−λ2)εSh +(λ4−λ5)γIh]}}
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Solving for u∗3(t)

• On the set {t|a3 < u∗3 < b3}, we have

w31(u∗3−a3) = w32(b3−u∗3) = 0 =⇒ w31 = w32 = 0

Hence the optimal control is

u∗3(t) =
1

2B3
[λ6(bvNv +µvSv)+λ7µvEv +λ8µvIv]

• On the set {t|u∗3 = b3}, we have

w31(u∗3−a3) = w32(b3−u∗3) = 0 =⇒ w31 = 0

Hence the optimal control is

b3 = u∗3(t) =
1

2B3
[λ6(bvNv +µvSv)+λ7µvEv +λ8µvIv−w32]

Since w32(t)> 0, it shows that

1
2B3

[λ6(bvNv +µvSv)+λ7µvEv +λ8µvIv]≥ b3

• On the set {t|u∗3 = a3}, we have

w31(u∗3−a3) = w32(b3−u∗3) = 0 =⇒ w32 = 0

thus, the optimal control is

a3 = u∗3(t) =
1

2B3
[λ6(bvNv +µvSv)+λ7µvEv +λ8µvIv +w31]

Again since w31(t)> 0, we have

a3 ≥
1

2B3
[λ6(bvNv +µvSv)+λ7µvEv +λ8µvIv]

Also we represent u∗3(t) in compact form as:

(19) u∗3(t) = min{b3, max{a3,
1

2B3
[λ6(bvNv +µvSv)+λ7µvEv +λ8µvIv]}}

Thus, the optimality system comprise of the state system with adjoint system, the transversality

(final time) and initial conditions as well as optimality conditions.
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4. Numerical Results and Discussions

In this section, we present numerically the results of an optimal control strategies for the YF

model. In order to obtain the optimal control, we solve the optimality system, consisting of

model equations, adjoint equations and control mechanism variables by using iterative scheme

of fourth order Runge-Kutta technique.

By using the initial conditions Sh(0)= 3500, Vh(0)= 2500, Eh(0)= 1500, Ih(0)= 1500, Rh(0)=

1000, Sv(0) = 2500, Ev(0) = 1500, Iv(0) = 1500, Sp(0) = 2500, Ep(0) = 1500, Ip(0) = 1500;

we begin to solve the state system (model equations) using forward time Runge-Kutta method.

The adjoint equations are solved by a backward in time fourth order Runge-Kutta scheme

using the current iterations solutions of the state equation and terminal conditions λK(t f ) = 0

where t f = 365 days. By referring to [14], the process is repeated and iterations stopped if the

values of the unknowns at the previous iterations are very very close to the ones at the present

iterations.

We start by initial guess values of the weights in the objective function as A1 =A2 = 1000; B1 =

0.0001, B2 = 1000 and B3 = 0.01. Again, we consider the controls to be bounded in the in-

terval of [0,1]. In simulation we use values of parameters described in Table 1 and various

combinations of the three controls at a time to investigate and compare their numerical results.

To illustrate the effect of different optimal control strategies on the spread of YF in a population,

we have considered the spread of YF in an endemic population and the entire time period T =

365 days.

4.1 Using Personal Protection Only

Personal protection u1 is used to optimize the objective function J while we set educational

campaign, u2, and spray of insecticides against vector, u3, to zero. As it is seen in Fig. 2 (A and

B), due to personal protection the number of exposed and infectious humans hosts decreases to

zero at time t = 139 days, while population of exposed and infectious human hosts increases

for uncontrolled case.

The control profile shows that from t = 0 to t = 139 days there was no change observed with

respect to control strategy may be individuals were thinking on how they can start implementing
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FIGURE 2. Simulations of YF model showing the effect of personal protection on the spread of YF.

the strategy, but after using preventive measures like indoor residual spraying, use of mosquito

treated bed nets, mosquito coils and mosquito repellents; the exposed and infectious individuals

reduces rapidly to zero.

This means that an effective use of personal protection can be beneficial to disease eradication

even without the use of educational campaign and insecticides.

4.2 Using Educational Campaign Only

With this strategy, we optimize the objective function J using educational campaign, u2, only

while personal protection, u1, and spray of insecticides, u3, is set to zero. Fig. 3 (A and B)

shows that there is a slight difference in the number of exposed and infectious human host

with and without control although the exposed and infecteds are not reduced directly to zero.

Thus, this strategy alone is not as good as the previous one, since we will have the exposed and

infecteds in a years time.

4.3 Using Spray of Insecticides Only

The use of spray of insecticides against the vector, u3, is used to optimize the objective

function J while we set personal protection, u1, and educational campaign, u2, to zero, we
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FIGURE 3. Simulations of YF model showing the effect of educational campaign on the spread of YF.

observe in Fig. 4 that there is no difference in the number of exposed and infectious individuals

with and without control. This numerical results indicate that this strategy leaves more infecteds

than it is in the first two strategies, hence, suggesting that optimal use of spray of insecticides

alone is not effective for disease reduction as some of vectors will remain unaffected and cause

the infection to both hosts.

4.4 Using Personal Protection and Educational Campaign

In this strategy, we use two controls personal protection, u1, and educational campaign, u2,

to optimize the objective function J; while we set spray of insecticides, u3, to zero. We observe

in Fig. 5 (A and B) that due to combination of these two control strategies, there is a significant

difference in the number of exposed and infecteds with and without control. However, the

control u1 is zero from t = 0 to t = 149 days, while the control u2 is at its upper bound from

t = 0 to t = 190 days before it drops to zero until its final time. The numerical results indicates

that combination of these two strategies is good compared to using single strategy since the

infecteds reduces to zero from time t = 149 to final time.

With this strategy, the control profiles suggests that control on personal protection, u1, should

be at its upper bound from t = 149 till the end of the intervention, while educational campaign,
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FIGURE 4. Simulations of YF model showing the effect of spray of insecticides on the spread of YF.

u2, drops gradually from the upper bound to zero after t = 190 days. Hence, suggesting that

optimal use of personal protection together with educational campaign is effective for reduction

of disease transmission.

FIGURE 5. The effect of personal protection and educational campaign on the spread of YF.
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4.5 Using Personal Protection and Spray of Insecticides

Combination of Personal protection, u1, and spray of insecticides, u3, is used to optimize the

objective function J, while we set educational campaign, u2 to zero. We observe in Fig. 6 (A

and B) that no change has been effected from t = 0 to t = 85 days, meaning that the number of

exposed and infected human were increasing to both cases with and without control. However,

from t = 88 to t = 312 days the control u3 is implemented with high cost which results to the

decrease of the exposed and infecteds to zero, while the control u1 is at its upper bound from

t = 88 until the final time before it drops rapidly to zero. The numerical results indicates that

combination of u1 and u3 is most effective compared to combination of u1 and u2.

This means that an effective and optimal use of personal protection and spray of insecticides

against the vector may be beneficial even without the use of educational campaign, since the

exposed and infecteds drops rapidly to zero earlier from t = 88 days till the final time.

FIGURE 6. The effect of personal protection and spray of insecticides on the spread of YF.

4.6 Using Educational Campaign and Spray of Insecticides

With this strategy, the control educational campaign, u2 to exposed and infectious human, and

spray of insecticides on vector, u3, are together used to optimise the objective function J; while

personal protection, u1, is set to zero. Fig. 7 (A and B) shows that the control u3 is at its upper
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bound throughout the time before it rapidly fall down to zero at final time, while, the control

u2 is zero throughout the time. The numerical results indicates that using this strategy the

infecteds and exposed individuals are not reduced directly to zero although there is a significant

difference on using the control and without using the control. This result suggests that effective

and optimal use of educational campaign and spray of insecticides could not be beneficial to

disease transmission reduction without personal protection.

FIGURE 7. The effect of educational campaign and spray of insecticides on the spread of YF.

4.7 Personal Protection, Educational Campaign and Spray of Insecticides

Combination of all controls personal protection, u1, educational campaign u2 and spray of

insecticides, u3, is used to optimize the objective function J. We observe in Fig. 8 (A and B)

that the control u1 is at its upper bound from t = 82 days to final time before it fall rapidly to

zero, the control u2 is at its upper bound form t = 0 to t = 124 days before dropping gradually

until the final time while the control u3 is at its upper bound from t = 80 to t = 298 before

dropping gradually to zero until the final time. Numerical results indicates that combination

of all strategies u1, u2 and u3 is most beneficial and effective compared to combination of two

controls since the infected and exposed reduced to zero very early at t = 80 until the final time.
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Also there is a strong significant difference on the number of infected and exposed with and

without control.

FIGURE 8. The effect of all controls on the spread of YF.

5. Conclusion

In this paper, we aimed at determining the control measures for eradicating the infection

from the population. We derived and analyzed the necessary conditions for the optimal control

model of YF disease in the presence of prevention or personal protection to human host which

includes the use of mosquito treated bed-nets, use of mosquito coils, indoor residual spraying,

use of mosquito repellents etc, educational campaign to susceptible and infectious human hosts

and spray of insecticides against the vector.

We have identified optimal control strategies for several scenarios. The results show that

using multiple optimal control measures is most effective strategy to bring a stable disease-free

situation compared to a single control. However, spray of insecticides alone was seen as not

effective without personal protection, and optimal use of personal protection alone might be

beneficial to minimize transmission of the infection to the community.

Moreover, combination of three control measures was seen to be the most effective com-

pared to combination of two control measures and single control. Thus control programs that
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follow three control strategies (personal protection, educational campaign and spray of insecti-

cides) can effectively reduce the number of latent and infectious individuals and hence disease

reduction.
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