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Abstract. In this paper, we study the concepts of α-Is-open sets and α-Is-continuous functions introduced in

[14] and some properties of the functions. Also we introduce notion of α-Is-open and α-Is-closed functions.
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1. INTRODUCTION

In 1965, Njastad [13] introduced α-open sets and studied some of their properties. Later in

1983, Mashhour et al. [12] defined and studied α-continuity and α-openness in topological

spaces. Where as in 2002, Hatir and Noiri [4] have introduced α-I -open sets and α-I -

continuous and obtain decomposition of continuity in ideal topological spaces. Recently we

introduce α-Is-open sets and α-Is-continuous and obtain its decomposition.

In this paper we obtain several characterization of α-Is-open sets and α-Is-continuous func-

tions. Also we introduce α-Is-open and α-Is-closed functions.
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2. PRELIMINARIES

Let (X ,τ) be a topological space with no separation properties assumed. For a subset A

of a topological space (X ,τ), cl(A) and int(A) denote the closure and interior of A in (X ,τ)

respectively.

An ideal I on a topological space (X ,τ) is a nonempty collection of subsets of X which

satisfies: (1) A ∈I and B⊆ A implies B ∈I (2)A ∈I and B ∈I implies A∪B ∈I .

If (X ,τ)is a topological space and I is an ideal on X , then (X ,τ,I ) is called an ideal

topological space or an ideal space.

Let P(X) be the power set of X . Then the operator ()∗ : P(X)→ P(X), called a local function

[9] of A with respect to τ and I , is defined as follows: for A⊆ X , A∗(I ,τ) = {x ∈ X : U ∩A /∈

I for every open set U containing x}. We simply write A∗ instead of A∗(I ,τ) in case there

is no confusion. For every ideal topological space (X ,τ,I ) there exists topology τ∗ finer than

τ, generated by β (I ,τ) = {U \ J : U ∈ τ and J ∈ I } but in general β (I ,τ) is not always a

topology. Additionally cl∗(A) = A∪A∗ defines Kuratowski closure operator for a topology τ∗

finer than τ . Throughout this paper X denotes the ideal topological space (X ,τ,I ) and also

int∗(A) denotes the interior of A with respect to τ∗.

Definition 2.1. Let (X ,τ) be a topological space. A subset A of X is said to be semi-open [10]

if there exists an open set U in X such that U ⊆ A ⊆ cl(U). The complement of a semi-open

set is said to be semi-closed. The collection of all semi-open (resp. semi-closed) sets in X is

denoted by SO(X) (resp. SC(X)). The semi-closure of A in (X ,τ) is denoted by the intersection

of all semi-closed sets containing A and is denoted by scl(A).

Definition 2.2. For A ⊆ X ,A∗(I ,τ) = { x ∈ X/U ∩A /∈I for every U ∈ SO(X)} is called the

semi-local function [7] of A with respect to I and τ , where SO(X ,x) = {U ∈ SO(X) : x ∈U}.

We simply write A instead of A∗(I ,τ) in case there is no ambiguity.

It is given in [2] that τ∗s(I ) is a topology on X, generated by the sub basis {U −E : U ∈

SO(X) and E ∈ I} or equivalently τ∗sI = {U ⊆X : cl∗s(X−U)=X−U}. The closure operator

cl∗s for a topology τ∗s(I ) is defined as follows: for A ⊆ X ,cl∗s(A) = A∪A∗ and int∗s denotes

the interior of the set A in (X ,τ∗s,I ). It is known that τ ⊆ τ∗(I ) ⊆ τ∗s(I ). A subset A of
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(X ,τ,I ) is called semi-∗-perfect [8] if A = A∗. A ⊆ (X ,τ,I ) is called ∗-semi dense in-itself

[8](resp. semi-∗-closed [8]) if A⊂ A∗ (resp. A∗ ⊆ A)

Lemma 2.3. [7] Let (X ,τ,I ) be an ideal topological space and A, B subsets of X. Then for the

semi-local function the following properties hold:

(1) If A⊆ B then A∗ ⊆ B∗.

(2) If U ∈ τ then U ∩A∗ ⊆ (U ∩A)∗

(3) A∗ = scl(A∗)⊆ scl(A) and A∗ is semi-closed in X.

(4) (A∗)∗ ⊆ A∗.

(5) (A∪B)∗ = A∗∪B∗.

(6) If I = {φ}, then A∗ = scl(A).

Definition 2.4. A subset A of a topological space X is said to be

(1) α-open [13]if A⊆ int(cl(int(A))),

(2) pre-open [11] if A⊆ int(cl(A)),

(3) β -open [1] if A⊆ cl(int(cl(A))).

Definition 2.5. A subset A of an ideal topological space (X ,τ,I ) is said to be

(1) α-I -open [4]if A⊆ int(cl∗(int(A))),

(2) pre-I -open [3] if A⊆ int(cl∗(A)),

(3) semi-I -open [4] ifA⊆ cl∗(int(A)).

Definition 2.6. A subset A of an ideal topological space (X ,τ,I ) is said to be

(1) α-Is-open [14]if A⊆ int(cl∗s(int(A))),

(2) pre-Is-open [14] if A⊆ int(cl∗s(A)),

(3) semi-Is-open [14] if A⊆ cl∗s(int(A)).

Lemma 2.7. [8] Let (X ,τ,I ) be an ideal space and A ⊆ Y ⊆ X , where Y is an α-open in X.

Then A∗(IY ,τ|Y ) = A∗(I ,τ)∩Y.

The family of all α-Is-open(resp. semi -Is-open, pre -Is-open) sets in an ideal topological

space (X ,τ,I ) is denoted by αISO(X)(resp. SISO(X), PISO(X)).
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3. α -Is-OPEN SETS

Lemma 3.1. Let (X ,τ,I ) be an ideal topological space. A subset A of X is α-Is-open if and

only if it is semi-Is-open and pre-Is- open.

Proof. Necessity: This is obvious.

Sufficiency: Let A be semi-Is-open and pre-Is- open. Then we have A ⊆ int(cl∗s(A)) ⊆

int(cl∗s(cl∗s(int(A)))) = int(cl∗s(int(A))). This shows that A is α-Is-open.

Lemma 3.2. Let (X ,τ,I ) be an ideal topological space and A be a subset of X. Then the

following properties hold.

(1) If U is open in (X, τ, I ), then U ∩ cl∗s(A)⊆ cl∗s(U ∩A).

(2) If A⊆ X◦ ⊆ X , then cl∗sX◦(A) = cl∗s(A)∩X◦.

Proof. (1) By Lemma 2.3, if U ∈ τ then U ∩A∗ ⊆ (U ∩A)∗ for any subset A of X. Thus we

have U ∩ cl∗s(A) =U ∩ (A∗∪A) = (U ∩A∗)∪ (U ∩A)⊆ (U ∩A)∗∪ (U ∩A) = cl∗s(U ∩A).

(2) By Lemma 2.7 that A∗(IY ,τ|Y ) = A∗(I ,τ)∩Y. Thus we have cl∗sX◦(A) = A∗(IX◦,τ|X◦)∪

A = (A∗(I ,τ)∩X◦)∪A = (A∗∪A)∩ (X◦∪A) = cl∗s(A)∩X◦.

Proposition 3.3. Let (X ,τ,I ) be an ideal topological space

(1) If V ∈ SISO(X) and A ∈ αISO(X), then V ∩A ∈ SISO(X).

(2) If V ∈ PISO(X) and A ∈ αISO(X), then V ∩A ∈ PISO(X).

Proof. (1) Let V ∈ SISO(X) and A ∈ αISO(X). By using Lemma 3.2

V ∩A⊆ cl∗s(int(V ))∩ int(cl∗s(int(A)))⊆ cl∗s(int(V )∩ int(cl∗s(int(A))))

⊆ cl∗s(int(V )∩ cl∗s(int(A)))⊆ cl∗s(cl∗s(int(V )∩ int(A)))⊆ cl∗s(int(V )).

This shows that V ∩A ∈ SISO(X).

(2) Let V ∈ PISO(X) and A ∈ αISO(X). Then V ∩A ⊆ int(cl∗s(V ))∩ int(cl∗s(int(A))) =

int[cl∗s(V ) ∩ cl∗s(int(A))] ⊆ int[cl∗s((cl∗s(V )) ∩ int(A))] ⊆ int[cl∗s(cl∗s(V ∩ int(A)))]

⊆ int(cl∗s(V ∩A)). This shows that V ∩A ∈ PISO(X).

Proposition 3.4. Let (X ,τ,I ) be an ideal topological space
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(1) If A,B ∈ αISO(X), then A∩B ∈ αISO(X).

(2) If Aα ∈ αISO(X) for each α ∈ ∆, then
⋃

α∈∆ Aα ∈ αISO(X).

Proof. (1) Let A,B ∈ αISO(X). By Lemma 3.1 A abd B are semi-Is-open and pre-Is-open

and by Proposition 3.3, A∩B is semi-Is-open and pre-Is-open. Therefore, by Lemma 3.1

A∩B ∈ αISO(X).

(2) Let Aα ∈ αISO(X) for each α ∈ ∆. Then we have

Aα ⊆ int(cl∗s(int(Aα)))⊆ int

(
cl∗s

(
int

(⋃
α∈∆

Aα

)))
and hence ⋃

α∈∆

Aα ⊆ int

(
cl∗s

(
int

(⋃
α∈∆

Aα

)))
.

This shows that
⋃

α∈∆

Aα ∈ αISO(X).

Corollary 3.5. Let (X ,τ,I ) be an ideal topological space. Then the family αISO(X) is a

topology for X such that τ ⊆ αISO(X)⊆ τα , where τα denotes the family of α-open sets of X.

Proof. Since φ ,X ∈ αISO(X), this is an immediate consequence of Proposition 3.4 and [[14]

Proposition 3.2].

Theorem 3.6. Let (X ,τ,I ) be an ideal topological space. If A ∈ αISO(X) and A ⊆ X◦ ∈

αISO(X), then A ∈ αISO(X◦).

Proof. By using Lemma 3.2 we obtain,

A⊆ int(cl∗s(int(A∩X◦)))∩X◦ = intX◦[int(cl∗s(int(A∩X◦)))∩X◦]

⊆ intX◦ [cl∗s(int(A∩X◦))∩X◦] = intX◦ [cl∗sX◦(int(A)∩ int(X◦))]

⊆ intX◦[cl∗sX◦(int(A)∩X◦)] = intX◦[cl∗sX◦(intX◦(int(A)∩X◦))]

⊆ intX◦(cl∗sX◦(intX◦(A))).

This shows that A ∈ αISO(X◦).

Theorem 3.7. Let (X ,τ,I ) be an ideal topological space. If X◦ ∈αISO(X) and A∈αISO(X◦),

then A ∈ αISO(X).
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Proof. Since A ∈ αISO(X◦), A ⊆ intX◦(cl∗sX◦(intX◦(A))) = X◦ ∩U for some U ∈ τ. Since X◦ ∈

αISO(X), by Lemma 3.2,

A⊆ X◦∩U ⊆U ∩ int(cl∗s(int(X◦)))⊆ int(cl∗s(int(U ∩X◦)))

= int(cl∗s(int(intX◦(cl∗sX◦(intX◦(A))))))⊆ int(cl∗s(int((cl∗s(intX◦(A))∩X◦)))

⊆ int(cl∗s(int(cl∗s(intX◦(A)))))⊆ int(cl∗s((intX◦(A)))).

Since intX◦(A) =V ∩X◦, for some V ∈ τ. Therefore we have

A⊆ int(cl∗s(V ∩X◦))⊆ int(cl∗s(V ∩ int(cl∗s(int(X◦)))))

⊆ int(cl∗s(int(cl∗s(int(V ∩X◦)))))⊆ int(cl∗s(int(A))).

This shows that A ∈ αISO(X).

4. α -Is-CONTINUOUS FUNCTIONS

Definition 4.1. [14] A function f : (X ,τ,I )→ (Y,σ) is called α-Is-continuous(resp. se-

mi -Is-continuous, pre -Is-continuous) if the inverse image of each open set of Y is α-Is-

open(resp. semi-Is-open, pre -Is-open).

Theorem 4.2. Let f : (X ,τ,I )→ (Y,σ) be a function.Then the following statements are equiv-

alent.

(1) f is α-Is-continuous,

(2) For each x ∈ X and each open set V ⊆ Y containing f (x), there exists W ∈ αISO(X)

such that x ∈W, f (W )⊆V,

(3) The inverse image of each closed set in Y is α-Is-closed,

(4) cl(int∗s(cl( f−1(B))))⊆ f−1(cl(B)) for each B⊆ Y,

(5) f (cl(int∗s(cl(A))))⊆ cl( f (A)) for each A⊆ X .

Proof. (1)⇒ (2) Let x ∈ X and V be any open set of Y containing f (x). Set W = f−1(V ), then

by Definition 4.1, W is an α-Is-open set containing x and f (W )⊆V.
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(2)⇒ (3) Let F be a closed set of Y. Set V = Y −F , then V is open in Y. Let x ∈ f−1(V ), by

(2)there exists an α-Is-open set W of X containing x such that f (W )⊆V. Thus we obtain x ∈

W ⊆ int(cl∗s(int(W ))) ⊆ int(cl∗s(int( f−1(V )))) and hence f−1(V ) ⊆ int(cl∗s(int( f−1(V )))).

This shows that f−1(V ) is α-Is-open in X. Hence f−1(F) = X− f−1(Y −F) = X− f−1(V ) is

α-Is-closed in X.

(3)⇒ (4) Let B be any subset of Y. Since cl(B) is closed in Y, by(3) f−1(cl(B)) is α-Is-

closed and X − f−1(cl(B)) is α-Is-open. Thus X − f−1(cl(B)) ⊆ int(cl∗s(int(X − f−1(cl(B)

)))) = X− cl(int∗s(cl( f−1(cl(B))))). Hence we obtain cl(int∗s(cl( f−1(B))))⊆ f−1(cl(B)).

(4)⇒ (5) Let A be a subset of X. By(4) we have cl(int∗s(cl(A)))⊆ cl(int∗s(cl( f−1( f (A)))))

⊆ f−1(cl( f (A))) and hence f (cl(int∗s(cl(A))))⊆ cl( f (A)).

(5)⇒ (1) Let V be any open set of Y . Then by(5), f (cl(int∗s(cl( f−1(Y −V )))))⊆ cl( f ( f−1

(Y −V )))⊆ cl(Y −V ) =Y −V. Therefore we have cl(int∗s(cl( f−1(Y −V ))))⊆ f−1(Y −V )⊆

X − f−1(V ). consequently we obtain that f−1(V ) ⊆ int(cl∗s(int( f−1(V )))). This shows that

f−1(V ) is α-Is-open. Thus f is α-Is-continuous.

Corollary 4.3. Let f : (X ,τ,I )→ (Y,σ) be α-Is-continuous. Then

(1) f (cl∗s(U))⊆ cl( f (U)) for each U ∈ PISO(X),

(2) cl∗s( f−1(V ))⊆ f−1(cl(V )) for each V ∈ PISO(Y ).

Proof. (1) Let U ∈ PISO(X). Then U ⊆ int(cl∗s(U)). Therefore by Theorem 4.2, we have

f (cl∗s(U))⊆ f (cl(U))⊆ f (cl(int(cl∗s(U))))⊆ f (cl(int∗s(cl(U))))⊆ cl( f (U)).

(2) Let V ∈ PISO(Y ). By Theorem 4.2, cl∗s( f−1(V ))⊆ cl( f−1(V ))⊆ cl( f−1(int(cl∗s(V ))))

⊆ cl(int(cl∗s(int[ f−1(int(cl∗s(V )))])))⊆ cl(int∗s(cl[ f−1(int(cl∗s(V )))]))⊆ f−1(cl(int(cl∗s(V )

)))⊆ f−1(cl(V )).

Theorem 4.4. A function f : (X ,τ,I )→ (Y,σ) is α-Is-continuous if and only if semi-Is-

continuous and pre-Is-continuous.

Proof. This is an immediate consequence of Lemma 3.1.

Theorem 4.5. A function f : (X ,τ,I )→ (Y,σ) is α-Is-continuous if and only if f : (X ,αISO(X))→

(Y,σ) is continuous.
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Proof. This is an immediate consequence of Corollary 3.5.

Theorem 4.6. A function f : (X ,τ,I )→ (Y,σ) is α-Is-continuous if and only if the graph

function g : X → X×Y, defined by g(x) = (x, f (x)) for each x ∈ X , is α-Is-continuous.

Proof. Necessity. Suppose that f is α-Is-continuous. Let x ∈ X and W be any open set of

X ×Y containing g(x). Then there exists a basic open set U ×V such that g(x) = (x, f (x)) ∈

U ×V ⊆W. Since f is α-Is-continuous, there exists an α-Is-open set U◦ of X containing x

such that f (U◦) ⊆ V. By Proposition 3.4 U◦ ∩U ∈ αISO(X ,τ) and g(U◦ ∩U) ⊆U ×V ⊆W.

This shows that g is α-Is-continuous.

Sufficiency Suppose that g is α-Is-continuous. Let x ∈ X and V be any open set of Y

containing f (x). Then X ×V is open in X ×Y and by α-Is-continuity of g,there exists U ∈

αISO(X ,τ) containing x such that g(U)⊆ X ×V. Therefore, we obtain f (U)⊆V. This shows

that f is α-Is-continuous.

Theorem 4.7. If f : (X ,τ,I )→ (Y,σ) is an α-Is-continuous function and X◦ ∈ αISO(X),

then the restriction f |X◦ : (X◦,τ|X◦,IX◦)→ (Y,σ) is α-Is-continuous.

Proof. Let V be any open set of (Y,σ). Since f is α-Is-continuous, f−1(V ) is α-Is-open in

(X ,τ,I ) and by Proposition 3.4 f−1(V )∩X◦ = ( f |X◦)−1(V ) ∈ αISO(X). Moreover by Theo-

rem 3.6 we have ( f |X◦)−1(V ) ∈ αISO(X◦). This shows that f |X◦ is α-Is-continuous.

Theorem 4.8. Let (X ,τ,I ) be an ideal topological space and {Vα/α ∈ ∆} a cover of X by

α-Is-open sets of (X ,τ,I ). A function f : (X ,τ,I )→ (Y,σ) is α-Is-continuous if and only

if the restriction f |Vα
: (Vα ,τ|Vα

,IVα
)→ (Y,σ) is α-Is-continuous for each α ∈ ∆.

Proof. Necessity. Let f be α-Is-continuous. Then by Theorem 4.7 f |Vα
is α-Is-continuous

for each α ∈ ∆.

Sufficiency. Let f |Vα
be α-Is-continuous for each α ∈ ∆. For any open set V of (Y,σ),

( f |Vα
)−1(V ) ∈ αISO(Vα) for each α ∈ ∆ and hence f−1(V ) =

⋃{(
f |Vα

)−1
(V )
/

α ∈ ∆

}
∈

αISO(X). By Proposition 3.4 and Theorem 3.7. This shows that f is α-Is-continuous.
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5. α -Is-OPEN FUNCTIONS

Definition 5.1. A function f : (X ,τ)→ (Y,σ ,J ) is called α-Is-open(resp. semi-Is-open,

pre-Is-open) if the image of each open set in X is an α-Is-open (resp. semi-Is-open, pre-Is-

open) set of Y.

Definition 5.2. A function f : (X ,τ)→ (Y,σ ,J ) is called α-Is-closed(resp. semi-Is-closed,

pre-Is-closed) if the image of each closed set in X is an α-Is-closed (resp. semi-Is-closed,

pre-Is-closed) set of Y.

Remark 5.3. (1) Every α-Is-open (resp. α-Is-closed) function is semi-Is-open (resp.

semi-Is-closed) and the converses are false in general.

(2) Every α-Is-open (resp. α-Is-closed) function is pre-Is-open (resp. pre-Is-closed)

and the converses are false in general.

(3) Every open function is α-Is-open but the converse is not true in general.

Example 5.4. Let X = {a, b, c, d}, τ = {φ ,X ,{a,b,c}},σ = {φ ,X ,{c},{a,b},{a,b,c}} and

J = {φ ,{a}}. Define a function f : (X ,τ)→ (X ,σ ,J ) as follows f (a) = a, f (b) = b, f (c) =

d, f (d) = c. Then f is semi-Is-open, but it is not α-Is-open.

Example 5.5. Let X = {a, b, c, d}, τ = {φ ,X ,{a},{a,b}},σ = {φ ,X ,{c},{a,b},{a,b,c}} and

J = {φ ,{a}}. Define a function f : (X ,τ)→ (X ,σ ,J ) as follows f (a) = c, f (b) = b, f (c) =

d, f (d) = a. Then f is pre-Is-open, but it is not α-Is-open.

Example 5.6. Let X = {a, b, c}, τ = {φ ,X ,{a},{a,c}},σ = {φ ,X ,{a},{a,c}} and J =

{φ ,{c}}. The identity function f : (X ,τ)→ (X ,σ ,J ) is α-Isopen, but it is not open.

Theorem 5.7. A function f : (X ,τ)→ (Y,σ ,J ) is called α-Is-open if and only if it is semi-

Is-open and pre-Is-open.

Proof. This is an immediate consequence of Lemma 3.1.

Theorem 5.8. A function f : (X ,τ)→ (Y,σ ,J ) is called α-Is-open if and only if for each

subset W ⊆ Y and each closed set F of X containing f−1(W ), there exists a α-Is-closed set

H ⊆ Y containing W such that f−1(H)⊆ F.
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Proof: Necessity. Let H =Y− f (X−F). Since f−1(W )⊆F, we have f (X−F)⊆Y−W. Since

f is α-Is-open, then H is α-Is-closed and f−1(H) = X− f−1( f (X−F))⊆ X− (X−F) = F.

Sufficiency. Let U be any open set of X and W =Y − f (U). Then f−1(W ) = X− f−1( f (U))

⊆ X −U and X −U is closed. By the hypothesis, there exists an α-Is-closed set H of Y

containing W such that f−1(H) ⊆ X −U. Then we have f−1(H)∩U = φ and H ∩ f (U) = φ .

Therefore we obtain Y − f (U)⊇ H ⊇W = Y − f (U) and f (U) is α-Is-open in Y. This shows

that f is α-Is-open.

Corollary 5.9. If f : (X ,τ)→ (Y,σ ,J ) is α-Is-open then the following properties hold.

(1) f−1(cl(int∗s(cl(B))))⊆ cl( f−1(B)) for each set B⊆ Y,

(2) f−1(cl∗s(V ))⊆ cl( f−1(V )) for each pre-open set V of Y.

Proof. (1) Let B be any subset of Y. Then cl( f−1(B)) is closed in X. By Theorem 5.8,

there exists an α-Is-closed set H ⊆ Y containing B such that f−1(H) ⊆ cl( f−1(B)). Since

Y −H is α-Is-open, f−1(Y −H) ⊆ f−1(int(cl∗s(int(Y −H)))) and X − f−1(H) ⊆ f−1(Y −

(cl(int∗s(cl(H))))) = X − f−1(cl(int∗s(cl(H)))). Thus we obtain that f−1(cl(int∗s(cl(B)))) ⊆

f−1(cl(int∗s(cl(H)))) ⊆ f−1(H) ⊆ cl( f−1(B)). Therefore we have f−1(cl(int∗s(cl(B)))) ⊆

cl( f−1(B)).

(2) Let V be any pre-open set of Y. By (1) we obtain f−1(cl∗s(V )) ⊆ f−1(cl(V )) ⊆

f−1(cl(int(cl(V ))))⊆ f−1(cl(int∗s(cl(V ))))⊆ cl( f−1(V )).

Theorem 5.10. A function f : (X ,τ)→ (Y,σ ,J ) is called pre-Is-open(resp. semi-Is-open)

if and only if for each subset W ⊆Y and each closed set F of X containing f−1(W ), there exists

a pre-Is-closed(resp. semi-Is-closed) set H ⊆ Y containing W such that f−1(H)⊆ F.

Proof. The Proof is similar to Theorem 5.8.

Corollary 5.11. Let f : (X ,τ)→ (Y,σ ,J ) be a function

(1) If f is pre-Is-open, then f−1(cl(int∗s(B)))⊆ cl( f−1(B)) for any subset B of Y.

(2) If f is semi-Is-open, then f−1(int∗s(cl(B)))⊆ cl( f−1(B)) for any subset B of Y.

Proof. The Proof is similar to Corollary 5.9.
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