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Abstract. The study of SIS epidemic model mainly concerns global asymptotic stability and it is one of the most 

basic and most important model in decreasing the spread of many disease. In this paper, an SIS epidemic model with 

treatment and without treatment is studied. The incidence rate of the model, which can include the standard 

incidence rate 
𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
, is a nonlinear incidence rate. The global stability of the disease-free equilibrium, and the 

existence and global stability of the endemic equilibrium are proved and then we can understand the effect of the 

capacity for treatment.  According to different recovery rates, we use differential stability theory and qualitative 

theory to analyze the various kinds of endemic equilibria and disease-free equilibrium.  
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1. Introduction:  

The study of SIS epidemic model mainly concerns global asymptotic stability and it is one of the 

most basic and most important model in decreasing the spread of many disease. In 1927 

Kermack and Mckerdick [3] proposed a simple SIS model with infective immigrants. Gao and 

Hethcote (1995) [2] considered the SIS model with a standard disease incidence and density – 

Pendant demographics. In [5] Li and Ma study the SIS model with vaccination and Temporary 

immunity. Zhou and Liu [14] considered an SIS model with pule vaccination. Treatment 

including isolation or quarantine is an important method to prevent and control the spread of 

various infectious diseases. Many mathematicians ([1,4,6-13]) have begun to investigate the rule 
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of treatment function in epidemiological models. In classical epidemic models, the treatment 

function of the invectives individuals is assumed to be proportional to the number of the 

infective individual. Because of every community should have a maximal capacity for the 

treatment of a disease and the resources for treatment should be every large. In (2004) Wany and 

Ruan [7] considered the maximal treatment capacity to cure infective individuals so that the 

disease can be eradicated. Recently, saturated treatment function has been widely applied in 

many epidemic models. For example [9] Zhang and Liu took a continuous and differentiable 

saturated treatment function 𝑇(𝐼) =
𝑟𝐼

1+𝛼𝐼
 where 𝛼 ≥ 0 , 𝑟 > 0 , Further, a piecewise linear 

treatment function was considered, that is,  

𝑇(𝐼) = {
𝐾𝐼                         0 ≤ 𝐼 ≤ 𝐼0

𝑚                                 𝐼 > 𝐼0
 

Where 𝑚 = 𝐾𝐼0 and 𝐾 and 𝐼0 are positive constants. This means that the treatment function is 

proportional to the number of the infective individuals when the capacity of treatment has not 

been reached; otherwise it takes the maximal capacity of treatment 𝐾𝐼0. The treatment function 

has been used by some other researchers. For example Zhang and Liu [9] studied a model with a 

general incidence 𝜆𝑆𝐼(𝐼 + 𝑆)𝑛−1  (0 ≤ 𝑛 ≤ 1)  and the treatment function. Hu et al. [8] 

considered an epidemic model with standard incidence rate 
𝛽𝑆𝐼

𝑁
  and the treatment function. Li et 

al. [12] studied an epidemic model with nonlinear incidence rate (
𝛽𝐼

1+𝛼𝐼
)  with the treatment 

function and analyzed the stability and bifurcation of the system. In this paper we introduce the 

global dynamics of SIS model with saturated incidence 
𝛽𝑆𝐼

1+𝑎𝑆+𝑏𝐼
 and saturated treatment function. 

Sufficient condition for the existence of equation points is obtained and the dynamical behavior 

of the model is saturated. Also, the global asymptotic stability of the disease – free and endemic 

equilibria is studied.     

2. Model formulation: 

In this section, we study an SIS epidemic model with saturated incidence rate 
𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
 and 

treatment, an SIS epidemic model with consists of the susceptible individuals 𝑆(𝑡), the infectious 

individuals 𝐼(𝑡) and the total population 𝑁(𝑡)  at time t, which represented in the block diagram 

given by Figure (1) can be represented by the following system of non-linear ordinary 

differential equations. 
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 Α 
𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
 

   

  (𝑑 + 𝜇)𝐼 

 𝛾𝐼 

 𝜇𝑆 

 𝑇(𝐼) 

Figure (1) 

𝑑𝑆

𝑑𝑡
= 𝛢 − 𝜇𝑆 −

𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
+ 𝛾𝐼 + 𝑇(𝐼)

𝑑𝐼

𝑑𝑡
=

𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
− (𝑑 + 𝜇 + 𝛾)𝐼 − 𝑇(𝐼)

                                                                              (1) 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) 

where  

𝑇(𝐼) = {
𝛿𝐼               𝑖𝑓 0 ≤ 𝐼 ≤ 𝐼0

𝐾               𝑖𝑓           𝐼 > 𝐼0
 

(K=𝛿𝐼0 ) is the rate at which infected individuals are treated, Α is the recruitment rate of 

individuals (including newborns and immigrants) into the susceptible population, 𝜇 is the natural 

death rate in each class, 𝛾 is the nature recovery rate of  infected individuals, 𝑑 is the disease-

related death rate, 𝛽 is the infection coefficient. Α, 𝜇, 𝛾, 𝑑, 𝛽, 𝑎, and b are all positive numbers. If 

0 ≤ 𝐼 ≤ 𝐼0, then model (1) implies: 

𝑑𝑆

𝑑𝑡
= 𝛢 − 𝜇𝑆 −

𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
+ (𝛾 + 𝛿)𝐼

𝑑𝐼

𝑑𝑡
=

𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
− (𝑑 + 𝜇 + 𝛾 + 𝛿)𝐼.   

                                                                              (2) 

 

If 𝐼 > 𝐼0, then model (1) implies: 

𝑑𝑆

𝑑𝑡
= 𝛢 − 𝜇𝑆 −

𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
+ 𝛾𝐼 + K      

𝑑𝑆

𝑑𝐼
=

𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
− (𝑑 + 𝜇 + 𝛾)𝐼 − 𝐾.

                                                                             (3) 

Obviously, due to the biological meaning of the components 𝑆(𝑡) and 𝐼(𝑡) we focus on the 

model in the domain 𝑅+
2 = {(𝑆, 𝐼) ∈ 𝑅2: 𝑆 ≥ 0, 𝐼 ≥ 0} which is positively invariant for system 

(1).  

Theorem (2.1): All solutions of system (1) which initiate in 𝑅+
2  are uniformly bounded.  

Proof: Let(𝑆(𝑡), 𝐼(𝑡)) be any solution of system (1) with non-negative condition (𝑆(0), 𝐼(0)) . 

Consider the function𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡), time derivative of 𝑁(𝑡) along the trajectory of system 

Infective Susceptible 
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(1) gives the following differential equation: 

𝑑𝑁

𝑑𝑡
+ 𝜇𝑁(𝑡) ≤ 𝛢. 

Now, by solving the above linear differential equation, we get that the total population is 

asymptotically constant by: 

𝑁(𝑡) =
𝛢

𝜇
. 

Hence all solutions of system (1) that initiate in the region 𝑅+
2  are eventually confined in the 

region 

𝐵 = {(𝑆, 𝐼) ∈ 𝑅+
2 ∶ 𝑁 =

𝛢

𝜇
+ 𝜖, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜖 > 0}.  

3. Stability analysis of SIS epidemic model without treatment 

In this section we study the dynamics of SIS epidemic model (1) without treatment, system (1) 

can be rewritten in the following form: 

𝑑𝑆

𝑑𝑡
= 𝛢 − 𝜇𝑆 −

𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
+ 𝛾𝐼       

𝑑𝐼

𝑑𝑡
=

𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
− (𝑑 + 𝜇 + 𝛾)𝐼.     

                                                                                   (4) 

Existence of equilibrium points and Stability analysisof system (4) 

 The disease free equilibrium point 𝐸 (
𝛢

𝜇
, 0) always exist and it is locally asymptotically stable 

provided that the following condition holds:
𝛽𝛢

𝜇+𝑎𝛢
< (𝑑 + 𝜇 + 𝛾). 

 The endemic equilibrium point �̌�(�̌�, 𝐼) exist in the region 𝐼𝑛𝑡𝑅+
2 , 

where �̌� =
(𝑑+𝜇+𝛾)(1+𝑏𝐼)

𝛽−𝑎(𝑑+𝜇+𝛾)
   ,    𝐼 =

𝛢−𝑃0

𝑏𝑃0+𝑑+𝜇
, and 𝑃0 =

𝜇(𝑑+𝜇+𝛾)

𝛽−𝑎(𝑑+𝜇+𝛾)
 provided that the following 

condition holds 𝛽 > 𝑎(𝑑 + 𝜇 + 𝛾)    𝑎𝑛𝑑  𝛢 > 𝑃0and it is always locally asymptotically stable. 

 

Theorem (3.1): Assume that the disease free-equilibrium point 𝐸(
𝛢

𝜇
, 0) of the system (4) is 

locally asymptotically stable in the 𝐼𝑛𝑡𝑅+
2  of the SI- plane with 

𝛢𝛽

𝜇(1 + 𝑎𝑆 + 𝑏𝐼)
< (𝑑 + 𝜇).                                                                                          (5) 

Then 𝐸 is globally asymptotically stable in 𝐼𝑛𝑡𝑅+
2  of the SI- plane. 

Proof:  Consider the following positive definite function about 𝐸(
𝛢

𝜇
, 0) 

𝑉(𝑆, 𝐼) = 𝑆 +
𝛢

𝜇
−

𝛢

𝜇
ln

𝜇𝑆

𝛢
+ 𝐼. 
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By differentiating V with respect to t along the solution of the system (4) we get: 

𝑑𝑉

𝑑𝑡
=

(𝑆 −
𝛢

𝜇
)

𝑆

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
 

𝑑𝑉

𝑑𝑡
< −

𝜇

𝑆
(𝑆 −

𝛢

𝜇
)

2

− (𝑑 + 𝜇 −
𝛢𝛽

𝜇(1 + 𝑎𝑆 + 𝑏𝐼)
) 𝐼 < 0. 

Hence 
𝑑𝑉

𝑑𝑡
  is negative definite under the condition (5), and then V is Lyapunov function with 

respect to𝐸(
𝛢

𝜇
, 0). 

Hence 𝐸 is globally asymptotically stable in  𝐼𝑛𝑡𝑅+
2  of SI- plane.  

Theorem (3.2): Assume that the endemic equilibrium point �̌�(�̌�, 𝐼) of the system (4) is locally 

asymptotically stable in the𝐼𝑛𝑡𝑅+
2of the SI- plane with 

𝑏 > 𝑎                                                                                                                     (6) 

Then �̌� is globally asymptotically stable in𝐼𝑛𝑡𝑅+
2  of the SI- plane. 

Proof: Consider a Dulac function D =
1

SI
 and assume that: 

𝑑𝑆

𝑑𝑡
= 𝛢 − 𝜇𝑆 −

𝛽𝐼𝑆

1 + 𝑎𝑆 + 𝑏𝐼
+ 𝛾𝐼 

𝑑𝐼

𝑑𝑡
=

𝛽𝐼𝑆

1 + 𝑎𝑆 + 𝑏𝐼
− (𝑑 + 𝜇 + 𝛾)𝐼. 

Hence  

∆(𝑆, 𝐼) =
𝜕(𝐷

𝑑𝑆

𝑑𝑇
)

𝜕𝑆
+

𝜕(𝐷
𝑑𝐼

𝑑𝑡
)

𝜕𝐼
= −

1

𝑆2
(

𝛢

𝐼
+ 𝛾) −

𝛽(𝑏 − 𝑎)

(1 + 𝑎𝑆 + 𝑏𝐼)2
. 

Note that ∆(𝑆, 𝐼) dose not change sign and is not identically zero in the 𝐼𝑛𝑡𝑅+ 
2  if 𝑏 > 𝑎. Then 

according to Bendixon-Dulac criterion, there is no periodic solution in 𝐼𝑛𝑡𝑅+
2 . Now since all 

solutions of the system (4) are bounded and �̌�  is a unique positive equilibrium point in 𝐼𝑛𝑡𝑅+
2 , 

hence by using the Pointcare-Bendixon theorem �̌� is globally asymptotically stable.               ■ 

4. Stability analysis of an SIS epidemic model with treatment for system (2) 

In this section the existence of all possible equilibrium points of system (2) and their locally and 

globally stability analysis are discussed. It is obvious that system (2) always has a unique disease 

free equilibrium point  𝐸0(
𝛢

𝜇
 , 0), the endemic equilibrium of system (2) can be obtained by 

solving algebraic equations: 
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𝛢 − 𝜇𝑆 −
𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
+ (𝛾 + 𝛿)𝐼 = 0

𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
− (𝑑 + 𝜇 + 𝛾 + 𝛿)𝐼 = 0.

 

From two equations of system (2) we get that: 

�̂� =
𝛢 − (𝑑 + 𝜇)𝐼

𝜇
                                                                                                           (7) 

By substituting Eq.(7) in the second equation of system (2), we obtain the following equations:  

𝛽𝛢 − 𝛽(𝑑 + 𝜇)𝐼 − (𝑑 + 𝜇 + 𝛾 + 𝛿)(𝜇 + 𝑎𝛢 + 𝜇𝑏𝐼 − 𝑎(𝑑 + 𝜇)𝐼) = 0 

which implies that: 

𝐼 =
(𝜇 + 𝑎𝛢)(𝑑 + 𝜇 + 𝛿 + 𝛾)(1 − 𝒯0)

(𝑑 + 𝜇)[−(𝛽 + 𝜇𝑏𝑀) + 𝑎(𝑑 + 𝜇 + 𝛿 + 𝛾)]
, 

where 𝒯0 =
𝛽𝛢

(𝜇+𝑎𝛢)(𝑑+𝜇+𝛿+𝛾)
≠1    , and 𝑀 = 1 +

𝛿+𝛾

𝑑+𝜇
 

If  𝑎(𝑑 + 𝜇 + 𝛿 + 𝛾) > 𝛽 + 𝜇𝑏𝑀   𝑎𝑛𝑑   𝒯0 < 1 

𝐼 =
(𝜇 + 𝑎𝛢)(𝑑 + 𝜇 + 𝛿 + 𝛾)(1 − 𝒯0)

(𝑑 + 𝜇)[−(𝛽 + 𝜇𝑏𝑀) + 𝑎(𝑑 + 𝜇 + 𝛿 + 𝛾)]
> 0. 

If we put 𝐼 in Eq. (7), then we get: 

�̂� = −
𝑏𝛢𝑀 + (𝑑 + 𝜇 + 𝛿 + 𝛾)

𝑎(𝑑 + 𝜇 + 𝛿 + 𝛾) − (𝛽 + 𝜇𝑏𝑀)
< 0. 

So this case must be omitted. 

If      𝑎(𝑑 + 𝜇 + 𝛿 + 𝛾) < 𝛽 + 𝜇𝑏𝑀  and  𝒯0 > 1 holds, then  

𝐼 =
(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)(𝒯0 − 1)

(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝑀 − 𝑎(𝑑 + 𝜇 + 𝛿 + 𝛾)
> 0 

and 

�̂� =
𝑏𝐴𝑀 + (𝑑 + 𝜇 + 𝛿 + 𝛾)

𝛽 + 𝜇𝑏𝑀 − 𝑎(𝑑 + 𝜇 + 𝛿 + 𝛾)
> 0. 

Then we get appositive equilibrium point �̂�(�̂�, 𝐼) ofsystem (2). 

But since 0 < 𝐼 ≤ 𝐼0  , then  

𝒯0 ≤ 1 +
(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝑀 − 𝑎(𝑑 + 𝜇 + 𝛿 + 𝛾)]𝐼0

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
 

1 < 𝒯0 ≤ 1 +
(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝑀 − 𝑎(𝑑 + 𝜇 + 𝛿 + 𝛾)]𝐼0

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

Define  
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𝑁0 = 1 +
(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝑀 − 𝑎(𝑑 + 𝜇 + 𝛿 + 𝛾)]𝐼0

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

So system (1) has an endemic equilibrium point �̂�(�̂�, 𝐼)when  1 < 𝒯0 ≤ 𝑁0. 

Theorem (4.1): If  𝒯0 < 1, then system (2) has only one disease – free equilibrium  𝐸0(
𝐴

𝜇
, 0). 

If 𝒯0 > 1, then system (2) has a unique endemic equilibrium �̂�(�̂�, 𝐼) except the disease – free 

equilibrium 𝐸0(
𝐴

𝜇
, 0).  

Theorem (4.2): The disease – free equilibrium point 𝐸0  of the system (2) is locally 

asymptotically stable point if  𝒯0 < 1 and it is saddle point if  𝒯0 > 1. 

Theorem (4.3): The endemic equilibrium point Ê(Ŝ, Î) of the system (2) is always locally 

asymptotically stable if it is exist.  

Theorem (4.4): Assume that the disease free-equilibrium point E(
Α

μ
, 0) of the system (2) is 

locally asymptotically stable in IntR+
2  with 

Αβ

μ(1+aS+bI)
< (d + μ) . Then E  is globally 

asymptotically stable in IntR+
2  of the SI- plane. 

Theorem (4.5): If the endemic equilibrium point Ê = (Ŝ, Î)  of the system (2) exists in 

the IntR+
2 , then it is globally asymptotically stable in  IntR+

2 of the SI- plane. 

Proof: Consider a Dulac function D =
1

I
 and  

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝜇𝑆 −

𝛽𝐼𝑆

1 + 𝑎𝑆 + 𝑏𝐼
+ (𝛾 + 𝛿)𝐼 

𝑑𝐼

𝑑𝑡
=

𝛽𝐼𝑆

1 + 𝑎𝑆 + 𝑏𝐼
− (𝑑 + 𝜇 + 𝛾 + 𝛿)𝐼. 

Hence  

∆(𝑆, 𝐼) =
𝜕(𝐷

𝑑𝑆

𝑑𝑡
)

𝜕𝑆
+

𝜕(𝐷
𝑑𝐼

𝑑𝑡
)

𝜕𝐼
= −

𝜇

𝐼
−

𝛽(1 + 𝑏𝑆 + 𝑏𝐼)

(1 + 𝑎𝑆 + 𝑏𝐼)2
< 0. 

Note that ∆(𝑆, 𝐼) dose not change sign and is not identically zero in the 𝐼𝑛𝑡𝑅+ 
2 . 

Then according to Bendixon-Dulac criterion, there is no periodic solution in the 𝐼𝑛𝑡𝑅+
2 . Now 

since all solutions of the system (2) are bounded and �̂�  is a unique positive equilibrium point in 

the𝐼𝑛𝑡𝑅+
2  , hence by using the Pointcare-Bendixon theorem�̂� is globally asymptotically stable.  

5. Stability analysis of an SIS epidemic model with treatment for system (3) 

The main goal of this section is study dynamics of endemic equilibrium of system (3) where it 
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can be obtained by solving algebraic equations: 

𝛢 − 𝜇𝑆 −
𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
+ 𝛾𝐼 + K = 0      

𝛽𝐼𝑆

1+𝑎𝑆+𝑏𝐼
− (𝑑 + 𝜇 + 𝛾)𝐼 − 𝐾 = 0.        

 

By substituting Eq.(7) in to the second equation of the system (3), we obtain the following 

equation: 

𝑅2𝐼2 + 𝑅1𝐼 + 𝑅0 = 0                                                                                           (8) 

where  

𝑅2 = (𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)] 

𝑅1 = (𝑑 + 𝜇 + 𝛾)(𝜇 + 𝑎𝐴) + 𝜇𝑏𝐾 − 𝛽𝐴 − 𝑎𝐾(𝑑 + 𝜇) 

𝑅0 = 𝐾(𝜇 + 𝑎𝐴) 

𝐻 = 1 +
𝛾

𝑑 + 𝜇
. 

We study Eq.(8) as follows: 

If  𝛽 + 𝜇𝑏𝐻 = 𝑎(𝑑 + 𝜇 + 𝛾), then Eq.(8) has a positive root if  𝑅1 < 0, then 

𝐼 =
𝐾(𝜇 + 𝑎𝐴)

𝑎𝐾(𝑑 + 𝜇) − 𝜇𝑏(𝐻𝐴 + 𝐾) − 𝜇(𝑑 + 𝜇 + 𝛾)
> 0 

�̆� = −
𝑏𝐴(𝐻𝐴 + 𝐾) + 𝐴(𝑑 + 𝜇 + 𝛾) + 𝐾(𝑑 + 𝜇)

𝑎𝐾(𝑑 + 𝜇) − 𝜇𝑏(𝐻𝐴 + 𝐾) − 𝜇(𝑑 + 𝜇 + 𝛾)
< 0. 

So this case must be omitted. 

If 𝛽 + 𝜇𝑏𝐻 < 𝑎(𝑑 + 𝜇 + 𝛾), it follows from Eq.(8) that: 

(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]𝐼2 + [𝛽𝐴 + 𝑎𝐾(𝑑 + 𝜇) − (𝑑 + 𝜇 + 𝛾)(𝜇 + 𝑎𝐴) − 𝜇𝑏𝐾]𝐼

− 𝐾(𝜇 + 𝑎𝐴) = 0                                                                        (9) 

Then 

𝜉1 = [𝛽𝐴 + 𝑎𝐾(𝑑 + 𝜇) − (𝑑 + 𝜇 + 𝛾)(𝜇 + 𝑎𝐴) − 𝜇𝑏𝐾]2

+ 4𝐾(𝜇 + 𝑎𝐴)(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)] > 0 

Denoting two roots of Eq. (9) by 𝐼1 and 𝐼2 we have: 

𝐼1,2 =
−[𝛽𝐴 + 𝑎𝐾(𝑑 + 𝜇) − (𝑑 + 𝜇 + 𝛾)(𝜇 + 𝑎𝐴) − 𝜇𝑏𝐾] ∓ √𝜉1

2(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]
 

𝐼1 + 𝐼2 = −
𝛽𝐴 + 𝑎𝐾(𝑑 + 𝜇) − (𝑑 + 𝜇 + 𝛾)(𝜇 + 𝑎𝐴) − 𝜇𝑏𝐾

(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]
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𝐼1 ∗ 𝐼2 =
−𝐾(𝜇 + 𝑎𝐴)

(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]
 

So Eq.(9) has only one positive root denoted by 𝐼1 and the other is negative root. 

𝐼1 =
𝑅1 + √𝜉1

2(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]
 

𝑆1 =
1

2𝜇
[
(𝑑 + 𝜇 + 𝛾)(𝑎𝐴 − 𝜇) + 𝑎𝐾(𝑑 + 𝜇) − 𝛽𝐴 − 𝜇𝑏(2𝐻𝐴 + 𝐾) − √𝜉1

𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)
] 

Then 𝑆1 > 0 holds only if  

𝒯0 <
(𝑑 + 𝜇 + 𝛾)(𝑎𝐴 − 𝜇) + 𝑎𝐾(𝑑 + 𝜇) − 𝜇𝑏(2𝐻𝐴 + 𝐾) − √𝜉1

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

Define  

𝑁1 =
(𝑑 + 𝜇 + 𝛾)(𝑎𝐴 − 𝜇) + 𝑎𝐾(𝑑 + 𝜇) − 𝜇𝑏(2𝐻𝐴 + 𝐾) − √𝜉1

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

The point 𝐸1(𝑆1, 𝐼1) satisfies the system (3), that is,𝐼1 > 𝐼0 

𝑅1 + √𝜉1

2(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]
> 𝐼0. 

We have  

√𝜉1 > −𝑅1 + 2(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]𝐼0.                            (10)     

If  

−𝑅1 + 2(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]𝐼0 < 0, then 

𝒯0 < 1 −
𝛿(𝜇 + 𝑎𝐴) + 𝑎𝐾(𝑑 + 𝜇)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)

−
2(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]𝐼0

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

Define  

𝑁2 = 1 −
𝛿(𝜇 + 𝑎𝐴) + 𝑎𝐾(𝑑 + 𝜇)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)

−
2(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]𝐼0

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
 

Then Eq.(10) holds only, if  

{
−𝑅2 + 2(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]𝐼0 > 0                                     

𝜉1 ≥ [−𝑅2 + 2(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]𝐼0]2.
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Hence  

𝑁2 < 𝑇0 ≤ 1 −
𝛿(𝜇 + 𝑎𝐴) + 𝑎𝐾(𝑑 + 𝜇)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝐾

(𝑑 + 𝜇 + 𝛿 + 𝛾)𝐼0

−
(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]𝐼0

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

Define  

𝑁3 = 1 −
𝛿(𝜇 + 𝑎𝐴) + 𝑎𝐾(𝑑 + 𝜇)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝐾

(𝑑 + 𝜇 + 𝛿 + 𝛾)𝐼0

−
(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]𝐼0

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

So, if 𝒯0 ≤ 𝑁3 and  𝒯0 < 𝑁1 , then 𝐸1(𝑆1, 𝐼1) is endemic equilibrium, where 

𝐼1 =
𝑅1 + √𝜉1

2(𝑑 + 𝜇)[𝑎(𝑑 + 𝜇 + 𝛾) − (𝛽 + 𝜇𝑏𝐻)]
     𝑎𝑛𝑑 𝑆1 =

1

𝜇
[𝐴 − (𝑑 + 𝜇)𝐼1]. 

If   (𝛽 + 𝜇𝑏𝐻) > 𝑎(𝑑 + 𝛾 + 𝜇), then it is easy to see that Eq.(8) has no positive root if 𝑅1 ≥ 0. 

If 𝑅1 < 0, then 

𝜉2 = 𝑅1
2 − 4𝐾(𝜇 + 𝑎𝐴)(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)] 

and  

𝑅1 = (𝑑 + 𝜇 + 𝛾)(𝜇 + 𝑎𝐴) + 𝜇𝑏𝐾 − 𝛽𝐴 − 𝑎𝐾(𝑑 + 𝜇) 

𝑅1 = −𝒯0(𝑑 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾) + (𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾) − 𝛿(𝜇 + 𝑎𝐴) + 𝜇𝑏𝐾

− 𝑎𝐾(𝑑 + 𝜇). 

Thus 𝜉2 ≥ 0 implies 𝑅1
2 ≥ 4𝐾(𝜇 + 𝑎𝐴)(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)], and we get that: 

𝒯0 ≤ 1 −
𝑎𝐾(𝑑 + 𝜇) + 𝛿(𝜇 + 𝑎𝐴)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)

−
2√𝐾(𝜇 + 𝑎𝐴)(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
 

or 

𝒯0 ≥ 1 −
𝑎𝐾(𝑑 + 𝜇) + 𝛿(𝜇 + 𝑎𝐴)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)

+
2√𝐾(𝜇 + 𝑎𝐴)(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

Define  
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𝑁4 = 1 −
𝑎𝐾(𝑑 + 𝜇) + 𝛿(𝜇 + 𝑎𝐴)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)

−
2√𝐾(𝜇 + 𝑎𝐴)(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
 

𝑁5 = 1 −
𝑎𝐾(𝑑 + 𝜇) + 𝛿(𝜇 + 𝑎𝐴)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)

+
2√𝐾(𝜇 + 𝑎𝐴)(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

At the same time, 𝑅1 < 0 holds if and only if  

𝒯0 > 1 −
𝑎𝐾(𝑑 + 𝜇) + 𝛿(𝜇 + 𝑎𝐴)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

Define  

𝑁6 = 1 −
𝑎𝐾(𝑑 + 𝜇) + 𝛿(𝜇 + 𝑎𝐴)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
 

Therefore, if 𝒯0 ≥ 𝑁5 , we have 𝑅1 < 0  and  𝜉2 ≥ 0 , then Eq.(8) has two positive roots 𝐼2,

𝐼3; where: 

𝐼2 =
−𝑅1 − √𝜉2

2(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]
    ,   𝐼3 =

−𝑅1 + √𝜉2

2(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]
. 

Then 𝑆𝑖 =
1

𝜇
[𝐴 − (𝑑 + 𝜇)𝐼𝑖] > 0     , (𝑖 = 2,3) holds if  

𝒯0 < 1 −
𝛿(𝜇 + 𝑎𝐴) + 𝑎𝐾(𝑑 + 𝜇)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)

+
2𝐴[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)] + √𝜉2

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
 

and 

𝒯0 < 1 −
𝛿(𝜇 + 𝑎𝐴) + 𝑎𝐾(𝑑 + 𝜇) + √𝜉2

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)

+
2𝐴[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

Define 
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𝑁7 = 1 −
𝛿(𝜇 + 𝑎𝐴) + 𝑎𝐾(𝑑 + 𝜇)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)

+
2𝐴[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)] + √𝜉2

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
 

𝑁8 = 1 −
𝛿(𝜇 + 𝑎𝐴) + 𝑎𝐾(𝑑 + 𝜇) + √𝜉2

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)

+
2𝐴[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

It is easy to see that 𝑁8 < 𝑁7. 

Which implies that Eq.(8) has two positive equilibrium points 𝐸2(𝑆2, 𝐼2), 𝐸3(𝑆3, 𝐼3) if 𝒯0 < 𝑁8, 

then Eq.(8) has no positive equilibrium point if  𝒯0 ≥ 𝑁7 , and Eq.(8) has only one positive 

equilibrium point 𝐸2(𝑆2, 𝐼2) if 𝑁8 < 𝒯0 < 𝑁7. 

Now, we consider the conditions for 𝐼𝑖 > 𝐼0,   (𝑖 = 2,3) 

𝐼2 > 𝐼0 →  −𝑅1 − √𝜉2 > 2(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎|(𝑑 + 𝜇 + 𝛾)]𝐼0 

If  𝑅1 + 2(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]𝐼0 < 0, then 

𝒯0 > 1 −
𝛿(𝜇 + 𝑎𝐴) + 𝑎𝐾(𝑑 + 𝜇)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)

+
2(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)𝐼0)]

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

Define  

𝑁9 = 1 −
𝛿(𝜇 + 𝑎𝐴) + 𝑎𝐾(𝑑 + 𝜇)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)

+
2(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)𝐼0)]

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

Furthermore, if 𝑅1 + 2(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]𝐼0 > 0, then 

{ 𝑅1 + 2(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]𝐼0}2 > 𝜉2 

i.e. 

𝒯0 < 1 −
𝛿(𝜇 + 𝑎𝐴) + 𝑎𝐾(𝑑 + 𝜇)

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝜇𝑏𝐾

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
+

𝐾

(𝑑 + 𝜇 + 𝛿 + 𝛾)𝐼0

+
(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]𝐼0

(𝜇 + 𝑎𝐴)(𝑑 + 𝜇 + 𝛿 + 𝛾)
. 

Therefore, if 𝑁9 < 𝒯0 < 𝑁3, then 𝐼2 > 𝐼0 holds  
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Similarly, if 𝐼3 > 𝐼0 

𝑅1 + 2(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]𝐼0 < 0 

Or 

{
𝑅1 + 2(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]𝐼0 > 0                                   

𝜉2 > {𝑅1 + 2(𝑑 + 𝜇)[𝛽 + 𝜇𝑏𝐻 − 𝑎(𝑑 + 𝜇 + 𝛾)]𝐼0}2.
 

Thus we get that 𝒯0 < 𝑁9 or 𝒯0 > max (𝑁3, 𝑁9). 

Theorem (5.1): From the above discussion, we get the following conclusions: 

A. If 𝛽 + 𝜇𝑏𝐻 < 𝑎(𝑑 + 𝜇 + 𝛾), then 𝐸1(𝑆1, 𝐼1) is a unique endemic equilibrium of model (3) 

if  𝒯0 < 𝑁1 and 𝐸1(𝑆1, 𝐼1) is a unique endemic equilibrium of model (1) if 𝒯0 < 𝑁1 and  𝒯0 <

𝑁3.  

B. If  𝛽 + 𝜇𝑏𝐻 > 𝑎(𝑑 + 𝜇 + 𝛾) , then model (3) has two positive equilibrium points 

𝐸2(𝑆2, 𝐼2), 𝐸3(𝑆3, 𝐼3)  if 𝒯0 < 𝑁8 ; model (3) has only one positive equilibrium point 

𝐸2(𝑆2, 𝐼2) ,if  𝑁8 < 𝒯0 < 𝑁7 ; model (3) has no positive equilibrium point if 𝒯0 ≥ 𝑁7 ; and 

𝐸2(𝑆2, 𝐼2)  is an endemic equilibrium of model (1) if 𝑁9 < 𝒯0 < 𝑁3 and 𝐸3(𝑆3, 𝐼3)  is an 

endemic equilibrium point of model (1) if 𝒯0 < 𝑁9 or 𝒯0 > max (𝑁3, 𝑁9). 

C. If 𝛽 + 𝜇𝑏𝐻 = 𝑎(𝑑 + 𝜇 + 𝛾), then model (3) has no endemic equilibrium point. 

Theorem (5.2): Assume that the endemic equilibrium point 𝐸1(𝑆1, 𝐼1) of the system (3) is 

locally asymptotically stable in the 𝐼𝑛𝑡𝑅+
2 , then it is globally asymptotically stable in 𝐼𝑛𝑡𝑅+

2  

if 𝛿 < 𝜇.                                                                               (11) . 

Theorem (5.3): The endemic equilibrium points 𝐸2  and 𝐸3  of system (3) are locally 

asymptotically stable under the condition (11) by replacing 𝐸1 by 𝐸2, 𝐸3. 
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