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Abstract: A simple graph G(V,E)  has vertex set V and edge set E  then matching means a subset S of the edge set E 

such that no two edges of S are adjacent in E. If S is matching, the two end points of each edge of S are said to be 

matched under S, and each vertex incident with an edge of S is said to be covered by S. The matching S with 

maximum number of edges is called maximum matching. In this paper we present a polynomial time algorithm to 

find maximum matching for complete graph and complete bipartite graph using incidence matrix approach. 
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1. Introduction 

Since computers can process graph effectively in form of matrix rather than picture 

format it has been standard practice to specify the graph in matrix form either adjacency matrix 

or incidence matrix. In this work, graph is represented in the form of incidence matrix.  Consider 

undirected graph G, G has vertex set V and edge set E then edge independent set  is a subset S of 

the edge set E such that the edges in set S does not have common vertex in graph G. The edge 

independent set of G is also called as matching of G. A matching is called as maximum when the 

subset S covers maximum vertices of G and the cardinality of maximum matching is denoted by 

𝛼′(G). A matching is called as perfect matching if subset S covers all the vertices of G [1]. A 

covering of a graph G is a subset of K of V such that every edge of G has at least one end in K. A 

covering K* is minimum covering if G has no covering K with |K|<|K*|. The number of vertices 

in minimum covering is called as covering number of G denoted by β(G). Given vertex v the 

number of edges incident on the vertex v in graph G is called Degree of the graph denoted by 

dG(v). The maximum degree of the graph G is denoted by ∆(G) and minimum degree denoted by 

δ(G) [1]. 

The graph G can be represented as incidence matrix which is denoted by A(G)[4]. Let 𝐺 

be a graph with 𝑛 vertices, 𝑚 edges and no self loops. The incidence matrix representation of a 

graph G consists of 𝑛 × 𝑚 matrix 𝐴(𝐺) = [𝑎𝑖𝑗] where n rows are 𝑛 vertices and 𝑚 columns are 

𝑚 edges  

The matrix is 

𝑎𝑖𝑗  = {
 1
 0

  
𝑖𝑓 𝑗𝑡ℎ 𝑒𝑑𝑔𝑒 𝑚𝑗  𝑖𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑣𝑒𝑟𝑡𝑒𝑥;

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Available online at http://scik.org

J. Math. Comput. Sci. 6 (2016), No. 2, 272-280

ISSN: 1927-5307



273                                              ISHWAR BAIDARI, VIJAYKUMAR GURANI 

Example: 

Consider the graph G given below 

 

The incidence matrix A (G) is  

 

                            𝑒1  𝑒2  𝑒3 

  A (G) =    

𝑣1

𝑣2

𝑣3

  [
1 0 1
1 1 0
0 1 1

] 

 

The matrix is 𝑛 × 𝑚 = 3 × 3 i.e.  𝑛 = 3 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑚 = 3 𝑒𝑑𝑔𝑒𝑠  

 

From the incidence matrix it can be observed that if there exists an edge between 2 

vertices then the edge column contains exactly two 1’s. If there is no edge then the edge column 

contains all 0’s without 1’s . 

 

2. Problem Statement and preliminaries: 

Definition: A Complete graph is simple graph G with n vertices that has edge to every other 

vertex (n-1) denoted by Kn. Let M be a matching in graph G. An alternating path or cycle in G is 

alternate edges from S and E \ M. An M-alternating path might or might not start or end with 

edges of M. If neither start nor end of path is covered by M then such path is called as M-

augmenting path. The following theorem can be found in [1]  

Theorem 1[1]: (BERGE’S)  

A matching M in graph G is a maximum matching if and only if G contains no augmenting path.   

Proof: Let M be a matching of G and G contains M-augmenting path P. Then M′:=M ∆ E(P) is 

matching in G and   |M′|:=|M| + 1 

Thus M is not a maximum matching. 

Conversely, suppose that M is not a maximum matching, and let M* be a maximum matching in 

G, so that |M*|>|M|. Set H := G[M∆M*]. Each vertex of H has a degree one or two in H, for it 

can be incident with at most one edge of M and one edge M*. Consequently, each component of 

H is either an even cycle with edges alternately in M and M*, or else a path with edges 

alternately in M and M*. 

Because |M*|>|M|, the sub graph H contains more edges of M* than of M, and therefore some 

path-component P of H must start and end with edges of M*. The path P is thus an M-

augmenting path in G. 

𝑉1 

𝑉2 

𝑉3 

𝑒1 𝑒2 

𝑒3 

Figure 1: Simple graph G 
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Definition: A graph is bipartite if its vertex set can be partitioned into two subsets X and Y such 

that every edge has one vertex in set X and other vertex in set Y, such partition (X,Y) is 

bipartition which is denoted by G[X,Y]. A complete bipartite graph is bipartite graph G[X,Y] 

where every vertex in set X has edge connected to every vertex of set Y denoted by Kn,m.  

Theorem 2 [1]: (HALL’S)  

A bipartite graph G := G[X,Y] has a matching which covers every vertex in X if and only if 

|N(S)|≥|S| for all S⊆X 

Proof: Let G:=G[X,Y] be a bipartite graph which has a matching M covering every vertex in X. 

Consider a subset S of X. The vertices in S are matched under M with distinct vertices in N(S). 

Therefore |N(S)|≥|S|. 

Conversely, let G:=G[X,Y] be a bipartite graph which has no matching covering every vertex in 

X. Let M* be a maximum matching in G and u a vertex by M*-alternating path. Because M* is a 

maximum matching than u is only vertex in Z not covered by M*. Set R := X∩Z and B:=Y∩Z. 

Set Z is vertices reachable from u by M*-alternating paths. 

Clearly the vertices of R\{u} are matched under M* with the vertices of B. Therefore |B|=|R|-1 

and N(R)⊇B. In fact N(R) = B because every vertex in N(R) is connected to u by an M*-

alternating path. Thus |N(R)|=|B|=|R|-1 and Hall’s condition fails for the set S := R. 

Corollary: A bipartite graph G[X,Y] has a perfect matching if and only if |X|=|Y| and |N(S)| ≥|S| 

for all S ⊆ 𝑋 

Proposition: Let M be a matching and K a covering such that |M|=|K| then M is a maximum 

matching and K is minimum covering. 

 i.e. 𝛼′(G)=β(G) 

 In the following we consider complete graph and complete bipartite graph 𝐺 with 𝑛 vertices and 

𝑚  edges (i.e. 𝑛 × 𝑚  ) to extract the set of edges from graph 𝐺  such that it constitutes for 

maximum matching. Since matrix representation of graph is one way to represent the graph 𝐺 

and set operations like union and intersection can be applied easily to the graph matrix. Taking 

the incidence matrix A(G) as the input to extract the maximum matching, the algorithmic logic 

of set operations on incidence matrix will lead to the output of maximum matching 𝛼′(G).  

Graph 𝐺 =  𝑚𝑎𝑡𝑟𝑖𝑥 𝐴(𝐺) with 𝑛 vertices and 𝑚 edges, represents 𝑛 (𝑟𝑜𝑤𝑠) ×  𝑚 (𝑐𝑜𝑙𝑢𝑚𝑛𝑠). 

 

3. Algorithm to find maximum matching  

In this section we discuss about algorithm to find edge independent set (EIS) taking 

incidence matrix 𝑎[𝑛][𝑚] as input and applying the basic set operations to extract the 𝛼′(G).  We 

consider set variable EIS to store vertex pairs to represent the existence of edge between the two 

vertices. Initially EIS is set to NULL and at the end of procedure execution EIS consists of edge 

set which constitute for maximum matching. 

 |𝑉(𝐺)| is vertex cardinality of graph 𝐺, |𝐸(𝐺)| is the edge cardinality in graph 𝐺. Since 

any single edge other than self loop is held by 2 vertices, algorithm uses two variables 

𝑣𝑒𝑟𝑡𝑒𝑥1, 𝑣𝑒𝑟𝑡𝑒𝑥2 to represent edge during algorithm execution.  
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Algorithm: 

 

1. Input graph 𝐺 as Incidence matrix 𝐴(𝐺) 

2. 𝐴(𝐺) = 𝑎[𝑛][𝑚] 

3. 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑑𝑔𝑒𝑠 

4. 𝐸𝐼𝑆 ← {∅}, flag=0; 

5. 𝑖𝑓(|𝑉(𝐺)| <= 1) 

6. 𝑟𝑒𝑡𝑢𝑟𝑛; 

7. 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑚{  

8.                   𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛    { 

9.                         𝑖𝑓(𝑎[𝑖][𝑗] == 1) 

10.                                           𝑖𝑓(𝑓𝑙𝑎𝑔 == 0) 

11.                                             𝑉𝑒𝑟𝑡𝑒𝑥1 = 𝑖, 𝑓𝑙𝑎𝑔 = 1; 

12.                                             𝑒𝑙𝑠𝑒 

13.                                            𝑉𝑒𝑟𝑡𝑒𝑥2 = 𝑖; break; 

14.                  } 

15.                𝑖𝑓( (𝐸𝐼𝑆  ∩ 𝑣𝑒𝑟𝑡𝑒𝑥1) ==  ∅ 𝑎𝑛𝑑 (𝐸𝐼𝑆  ∩ 𝑣𝑒𝑟𝑡𝑒𝑥2) == ∅ )                𝑡ℎ𝑒𝑛 

16.                 𝐸𝐼𝑆 ← 𝐸𝐼𝑆 ∪ {𝑣𝑒𝑟𝑡𝑒𝑥1, 𝑣𝑒𝑟𝑡𝑒𝑥2} 

17.   𝑓𝑙𝑎𝑔 = 0;  

18. } 

19. 𝑜𝑢𝑡𝑝𝑢𝑡  𝐸𝐼𝑆 

 

4.  Working of algorithm 

The procedure edge independent set can be explained as follows: 

In a given procedure, line 1-3 takes the graph 𝐺 input in the form of incidence matrix. In line 

4 the EIS is initialized to null set. Line 5-6 checks for given graph 𝐺 if there exists at least one 

edge. If the graph 𝐺  contains more than one vertex the procedure continues further, else 

terminates the procedure. Line 7 reads the incidence matrix horizontally from the left to right. 

Line 8 reads the incidence matrix vertically from top to down. Line 9-13 checks the existence of 

edge between the vertices if there exists an edge then two vertices of graph are assigned to 

variable 𝑣𝑒𝑟𝑡𝑒𝑥1 and 𝑣𝑒𝑟𝑡𝑒𝑥2. When 𝑣𝑒𝑟𝑡𝑒𝑥2 is assigned 𝑖  value the inner 𝑓𝑜𝑟  loop breaks. 

This means that vertex pair corresponding to edge is read from the matrix and further reading of 

matrix has no significance.  

 

We consider flag to distinguish between first vertex and second vertex from incidence matrix. 

Line 15-17 checks non-existence of edge (𝑣𝑒𝑟𝑡𝑒𝑥1, 𝑣𝑒𝑟𝑡𝑒𝑥2) in EIS. If EIS already contains 

edge (vertex pair) which has one of the vertexes as common then such edge is discarded from 

adding in to set EIS. If EIS has no common vertex from the vertex pair (𝑣𝑒𝑟𝑡𝑒𝑥1, 𝑣𝑒𝑟𝑡𝑒𝑥2) then 

that edge is added to the set EIS. The flag is reset every time when next column is read from 

incidence matrix. After all edges are read from the incidence matrix the edge set in variable EIS 

contains edges which constitutes to edge independent set. 
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5. Performance analysis of Algorithm; 

Referring to above given algorithm, line 1-6 is executed only once and its time complexity is 

O(1). Line 7-8 has nested for loop where outer loop is executed m times and inner loop n times 

therefore complexity is O(n*m). Line 9-13 is covered by inner for loop and gets executed once 

for each iteration with time complexity O(1). Line 15-17is covered by outer for loop and gets 

executed with time complexity O(n). Line 19 prints the results of variable EIS with complexity 

O(1). Thus for proposed algorithm the total complexity is 𝑂(𝑛 × 𝑚); to generalize it’s going to 

be O(n2) 

 

6.  Algorithm applied for class of graph: 

In this section we apply the proposed algorithm on complete graph and complete bipartite 

graph without parallel edges and loop-less graph. The result of algorithm execution is stored in 

set variable EIS.  

Theorem 3: For complete graph Kn maximum matching cardinality |𝛼′(G)|= ⌊
𝑛

2
⌋ . 

First Proof: Let G is complete graph with n vertices denoted by Kn, then edge cardinality of Kn 

is 

 |E(Kn)|= (n-1) + (n-2) + (n-3) … (n-n)=n(n-1)/2 

In complete graph, nth vertex has edges to (n-1) vertices. Cardinality of edges incident at nth 

vertex is (n-1). For nth and (n-1)th vertex the cardinality of edges is (n-1)+(n-2). Similarly for nth, 

(n-1)th, (n-2)th vertex it is (n-1)+(n-2)+(n-3) and so on.  Therefore the edge cardinality of 

complete graph Kn is  |E(Kn)|=∑ (n − i)𝑛
𝑖=1  

For simple loop-less graph to have single edge at least 2 vertices are required. In complete graph 

every vertex is adjacent to each other and if single edge is selected from Kn to matching set S 

then |E(Kn)|=∑ (n − i)𝑛−2
𝑖=1   

Every edge need 2 vertices and therefore for n vertices the maximum edge independent set is n/2 

if n is even and ⌊
𝑛

2
⌋ if n is odd. To generalize maximum matching for n vertices is |𝛼′(G)|= ⌊

𝑛

2
⌋ 

Second proof: consider |𝛼′(G)| = ⌊
𝑛

2
⌋    Eq-1, from [2] we have 

|α(G)| + |β(G)| = 𝑛    Eq-2; 

|𝛼′(G)| + |𝛽′(G)| = 𝑛   Eq-3;  

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  |𝛼′(𝐺)| = 𝑛 − |𝛽′(𝐺)|;  Eq-4 

From Eq-1  |𝛼′(𝐺)| =
𝑛

2
 ;   2|𝛼′(𝐺)| = 𝑛 ; 

2(𝑛 − |𝛽′(𝐺)|) = 𝑛   (𝑓𝑟𝑜𝑚 𝐸𝑞 − 4);  

 2𝑛 − 2|𝛽′(𝐺)| = 𝑛;  2𝑛 − 𝑛 = 2|𝛽′(𝐺)| 

 𝑛 = 2|𝛽′(𝐺)|   Eq-5 

Add Eq-5 in Eq-3 

 |𝛼′(𝐺)| + |𝛽′(𝐺)| = 2|𝛽′(𝐺)|;    |𝛼′(𝐺)|= 2|𝛽′(𝐺)| − |𝛽′(𝐺)| ;  

 |𝛼′(𝐺)| = |𝛽′(𝐺)|   Eq-6 

Adding Eq-6 in Eq-3 

 |𝛼′(𝐺)| + |𝛽′(𝐺)| = 𝑛;  
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 | 𝛼′(𝐺)| + |𝛼′(𝐺)| = 𝑛;  

2|𝛼′(𝐺)| = 𝑛;  

Therefore |𝛼′(𝐺)| = 𝑛/2 for even vertices and ⌊
𝑛

2
⌋ for odd vertices 

 

Complete graph K4 

 

 

Incidence matrix 𝐴(𝐾4)  = 

 

            

E 

V 

𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 𝒆𝟔 

𝒂 1 0 0 1 1 0 

𝒃 1 1 0 0 0 1 

𝒄 0 1 1 0 1 0 

𝒅 0 0 1 1 0 1 

 

V(G) vertex set and E(G) is edge set of  complete graph [1] Maximum matching generated 

from proposed algorithm for given complete graph K4  EIS = { e1, e3}; |𝛼′(G)|=2 

 

Theorem 4: For complete bipartite graph Kn,m if n<m then |𝛼′(G)|= n  

First Proof: Consider a complete bipartite graph G[X,Y] where |X|<|Y| and every vertex of X is 

having edge to every vertex of Y. By induction method consider 

Basis step if |X|=1 then |𝛼′(G)|= 1 and if |X|=2 then |𝛼′(G)|= 2 

Inductive hypothesis: if |X|=n then |𝛼′(G)|= n 

Then for |X|=n+1 we have |X|=|𝛼′(G)|+1 and |X|=|X|+1 (by inductive hypothesis) 

Therefore for Kn,m if n<m then |𝛼′(G)|= n 

Second proof: From Theorem 3 we know that any edge needs two vertices. In bipartite graph 

there exits an edge such that one vertex is in set X and other vertex in set Y. Therefore for Kn,m 

with n<m it is possible to have n vertices as part of matching set but for m-n vertices present in 

set Y we don’t have vertices in set X to include in matching set. Therefore |𝛼′(G)|= n. 

Lemma 1: Given a complete graph the number of 1’s in vertex row v∈ 𝑉  of incidence matrix = 

dG(v)  

e6 

 

e5 

 

𝑎 𝑏 

𝑐 
𝑑 

𝑒4 

𝑒3 

𝑒2 

𝑒1 

Figure 2: complete graph  
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Proof: By the property of incidence matrix each row represents the vertices of graph and column 

represents the edges incident on these vertices if the edge column contains 1 to corresponding 

vertex. And hence the number of 1’s in row of vertex v∈ 𝑉gives the total edges incident on that 

vertex. Therefore the degree of vertex v= dG(v),  is the number of 1’s in that row. In same of 

complete graph all vertex has same degree i.e. every row of incidence matrix has same number 

of 1’s. 

Lemma 2: Given a complete graph sum of entries in each column of incidence matrix are equal. 

Proof: referring to lemma 1 proof it’s known that every column has same number of 1s and 

therefore result of adding all 1’s are same in every column of the incidence matrix. 

Lemma 3: If G is complete graph then its induced sub graph H is also complete i.e. clique  

Proof: For given complete G with n vertices denoted by Kn has edges to all the n-1 vertices. 

Induced subgraph H of G with m vertices denoted by Hm has edges to m-1 vertices because by 

the concept of induced subgraph if m vertices are present in H then all the edges incident on 

vertices of H must be present therefore the lemma holds. 

Corollary: If H is induced sub graph of complete graph G then |𝛼′(H)|≤ |𝛼′(G)| 

 

Complete bipartite graph K2,3 

 G[X, Y] 

 

 

Incidence matrix 𝐴(𝐾2,3)  = 

 

            

E 

V 

𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 𝒆𝟔 

𝒙1 1 1 1 0 0 0 

𝒚1 1 0 0 1 0 0 

𝒚2 0 1 0 0 1 0 

𝒚3 0 0 1 0 0 1 

𝒙2 0 0 0 1 1 1 

 

For given bipartite graph |X|=2 and |Y|=3, Maximum matching for given complete bipartite 

graph K2,3  EIS = { e1, e5}; |𝛼′ˈ(𝐺)| = 2. 

 

Figure 3: complete bipartite graph  

𝑒1 

𝑒2 
𝑒3 

𝑒4 𝑒5 

𝑒6 

𝑋  𝑌  

𝑥1 

𝑥2 

𝑦1 

𝑦2 

𝑦3 
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Lemma 5: Given complete bipartite graph G as incidence matrix then ∆(G) = row with 

maximum number of 1’s and δ(G)= row with minimum number of 1’s  

Proof:  lemma 5 proof is similar to lemma1; here degree is not same for all vertices, the number 

of 1’s in matrix row gives the edges incident on particular vertex of that row. In case of bipartite 

graph the minimum number of 1’s in row represents the minimum degree of graph and 

maximum number of 1’s in row represents the maximum degree of graph.   

Lemma 6: If G is complete bipartite graph Kn,m  where n=m then 𝛼′(G) is perfect matching 

Proof: By theorem4 it is known that for complete bipartite graph Kn,m  when n<m then |𝛼′(G)|=n. 

If n=m then every vertex in set X is matched with every vertex in set Y therefore the matching 

set has all vertex of graph being covered therefore 𝛼′(G) is perfect matching. 

 

7. Theorem 5 (correctness of algorithm) 

Let G be complete graph or complete bipartite graph and A(G) is incidence matrix for the 

graph. When proposed algorithm is run on G then algorithm reads the incidence matrix column 

wise and extracts the edges in the form of vertex pairs to set variable EIS. When the procedure is 

terminated the set variable EIS contains edges which is maximum edge independent set 

Proof: Algorithm uses set variable EIS which is initialized to NULL and flag variable to help in 

assigning the vertex pair to temporary variables vertex1 and vertex2. Algorithm selects vertex 

from graph and adds the pair to EIS if either of vertex is not present in EIS. Algorithm terminates 

once the entire matrix column is being read. After termination of algorithm set EIS contains 

maximum edge independent set. 

 Assume that variable EIS does not contain maximum edge independent set then from 

theorem1 we should have augmenting path in graph G, if G is complete graph then proposed 

algorithm selects vertex pair such that either of vertex is not part of set EIS. Since in complete 

graph every vertex has edge of every other vertex the start vertex and end vertex should be part 

of set EIS or the neighbor vertex should be part of EIS and therefore there is no augmenting path. 

Set EIS has maximum edge independent set.  From theorem 2 and 4 it is proved that EIS has 

maximum edge independent set for complete bipartite graph G 

 

8. Conclusion 

From the proposed algorithm we have proved that with simple set operations on incidence 

matrix it is possible to find maximum edge independent set in polynomial time for complete 

graph and complete bipartite graph without constructing the graphical representation of graph. 

Computing task on graph in matrix form is simple. It would be interesting to extend this work to 

any graph. It is also interesting to explore the graph property by considering the graph in matrix 

form. 
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