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Abstract. Management and measurement of risk is an important issue in almost all areas that require decisions to be 

made under uncertain information. Chance constrained programming (CCP) has been used for modeling and 

analysis of risks in a number of application domains. This paper presents a deterministic reduction of linear and 

nonlinear chance constraint programming problem using geometric inequality, assuming the coefficients of the 

decision variables in the chance constraints as Pareto random variables. After implicative reduction of the proposed 

chance constraint programming problem into a deterministic problem, which is usually nonlinear, standard generic 

package is used to find the compromise solution. Then MATLAB programming code is used to verify the validity of 

solution as well as that of the reduced model. This method leads to an efficient reduced model as well as an optimal 

compromise solution. 
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1.   Introduction 

Addressing data uncertainty in mathematical programming models has been a central 

problem in optimization for a long time. There are two principal methods that have been 

proposed to address data uncertainty over the years: (a) Stochastic Programming (SP) [11, 8, 1], 

and (b) Robust Optimization (RO) [2,22]. SP models yield plans that are better able to hedge 
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against losses and catastrophic failures. Such models have been developed for a variety of 

applications, including electric power generation [10], financial planning [23,7,24], 

telecommunication network planning [31,4], supply chain management [32], oil industry [25], 

vehicle manufacturers [12], electricity suppliers [20,33], environment [5], transportation [13,34], 

construction, energy, chemical processing [26], aerospace, and military systems [21]. 

 

Also several other models have been presented in the field of SP [16]. Contini [6] 

developed an algorithm for stochastic goal programming when the random variables are 

normally distributed with known means and variances. He transformed the stochastic problem 

into an equivalent deterministic quadratic programming problem, where the objective functions 

consisted of maximizing the probability of a vector of goals lying in the confidence region of a 

predefined size. Sullivan and Fitzsimmoms [30] suggested an algorithm using probabilistic goals 

based on the concept of chance constraints of Charnes and Cooper [ 1 ] where the goals can be 

stated in terms of probability of satisfying the aspiration levels. Teghem et al. [17] and Leclercq 

[19] have presented interactive methods in stochastic programming. Two major approaches to 

stochastic programming [3, 27] are recognized as: 

1. Chance constrained programming, 

2. Two-stage programming. 

 

The CCP technique is one which can be used to solve problems involving constraints 

having finite probability of being violated. The CCP was originally developed by Charnes and 

Cooper [1] and has now in recent years been generalized in several directions and has various 

applications. This technique converts the chance constraint problem into a deterministic problem. 

Sarkar et al. [37] reduced the probabilistic constraints to deterministic constraints through 

implicative relationship using geometric inequality. 

 

In this paper, we consider single-objective chance constraint programming problems with 

parameters as Pareto random variables in the chance constraints. The parameters considered as 

Pareto random variables because the Pareto distribution has a wide application [36] in various 

fields. The Pareto distribution was originally developed to describe the distribution of income 

and the allocation of wealth among individuals. Also applications of the Pareto distribution 
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include insurance where it is used to model claims. In climatology it used to describe the 

occurrence of extreme weather.  The Pareto distribution has been proposed a model for the oil 

and gas discoveries. The following examples [36] are sometimes seen as approximately Pareto-

distributed: 

 File size distribution of Internet traffic which uses the TCP protocol  

 Hard disk drive error rates 

 Clusters of Bose–Einstein condensate near absolute zero 

 The values of oil reserves in oil fields  

 The length distribution in jobs assigned supercomputers  

 The standardized price returns on individual stocks  

 Fitted cumulative Pareto distribution to maximum one-day rainfalls 

 Sizes of sand particles  

 Sizes of meteorites 

 Numbers of species per genus 

 Areas burnt in forest fires 

 In hydrology the Pareto distribution is applied to extreme events such as annually 

maximum one-day rainfalls and river discharges. 

 

Here we used some mathematical tools to convert the probabilistic model in to deterministic 

model. After converting into a deterministic model, which usually nonlinear, standard generic 

package is used to find the compromise solution. Then MATLAB programming code has been 

used to verify the validity of solution. This method leads to an efficient reduced model as well as 

an optimal compromise solution. 

 

2: Mathematical model with linear constraints 

2.1: Mathematical model with linear probabilistic constraints: 

Let us consider an optimization problem having linear probabilistic constraints that can 

be modeled as follows: 

To find 1 2 3( , , ,.............., )nX x x x x so as to, 

Maximize / Minimize ( )f X        (2.1)  
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subject to chance constraints, 

 
1

Pr ob[ ] 1 , 1,2,3,..........,
n

ij j i i

j

a x b p i m


    ,    (2.2) 

 0, 1,2,3,..............., .jx j n         (2.3) 

where 0 1ip  and 0ib   for 1,2,3,..........,i m , are given constants and 'ija s are         

independently distributed Pareto random variables with parameters ( 0), ( 0)ij ij   , which 

are  respectively shape parameter and scale parameter for 1,2,3,..........,i m  and 

1,2,3,..............., .j n . 

2.2: Deterministic reduction of the model: 

Here we shall reduce the probabilistic liner constraints (2.2) to deterministic non-linear 

constraints as follows: 

Let us consider the event , 1,2,3,.........., ij j ia x b i m . 

Now applying geometric inequality (G.I.) to the L.H.S. of the above event, we get 

1

11

( ) ( ) , 1,2,3,........, .
n nn

ij j ij j

jj

n a x a x i m


   

Therefore, 

1

1

( ) , 1,2,3,........, ,
n n

ij j i

j

n a x b i m


   

i.e. 
1

( ) , 1,2,3,........, ,

nn
i

ij j

j

b
a x i m

n

 
  
 

  

i.e. 
1

{( )( )} , 1,2,3,........, .

nn
ij i

ij j

j ij

a b
x i m

n




 
  
 

  

Now taking natural logarithm both sides of the above expression, we have 

1 1

ln( ) ln( ) ln , 1,2,3,........, .
n n

ij i
ij j

j jij

a b
x n i m

n


 

 
   

 
   

Thus (2.2) becomes,   

1 1

Prob[ ln( ) ln ln( )] 1 , 1,2,3,........,
n n

ij i
ij j i

j jij

a b
n x p i m

n


 

 
     

 
                  (2.4) 
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where, ln( ) exponential ( ), ,
ij

ij

ij

a
i j


 . 

Let ' ln( )
ij

ij ij

ij

a
a 


 , so it follows exponential distribution with parameter 1, ,i j .      

Therefore (2.2) can be written as  

'

1 11

Prob[ ( ){ ln ln( )}] 1 , 1,2,3,........, .max
nn n

i
ij ij j i

j jj

b
a n x p i mij n


 

 
     

 
         (2.5) 

Now, '

1

2
n

ij

j

a


 follows 2

2n . 

Also, if Pr ob[ ] 1i i iA t p   , where, iA  follows 2

2n , then 2

2 (1 ), 1,2,3,.......,i n it p i m   . 

Therefore from (2.5), the deterministic form of (2.2) is 

2

2

1

1

1
[ ln ln( )] (1 ), 1,2,3,...........,

2*max

n
i

ij j n in
j

j

b
n x p i m

n

ij

 





 
    

 
 .   (2.6) 

Thus the probabilistic model (2.1) - (2.3) reduced to the following deterministic form: 

To find 1 2 3( , , ,.............., )nX x x x x so as to, 

Maximize / Minimize ( )f X        (2.7)  

subject to chance constraints, 

 2

2

1

1

1
[ ln ln( )] (1 ), 1,2,3,..........., ,

2*max

n
i

ij j n in
j

j

b
n x p i m

n

ij

 





 
    

 
   (2.8) 

 0, 1,2,3,..............., .jx j n         (2.9) 

 

3: Mathematical model with nonlinear constraints 

3.1: Mathematical model with nonlinear probabilistic constraints: 

Let us consider an optimization problem having nonlinear probabilistic constraints that 

can be modeled as follows: 

To find 1 2 3( , , ,.............., )nX x x x x , where 1 2max( , )n n n , so as to, 

Maximize / Minimize ( )f X        (3.1)  
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subject to chance constraints, 

 
1 2

1 1

Pr ob[ ] 1 , 1,2,3,..........,
n n

kij i j k k

i j

a x x b p k m
 

    ,   (3.2) 

 1 20, 1,2,3,..............., max( , )lx l n n n        (3.3) 

where 0 1kp  and 0kb  for 1,2,3,..........,k m , are given constants and 'kija s are         

independently distributed Pareto random variables with parameters ( 0), ( 0)kij kij   for 

11,2,3,..........,i n  , 21,2,3,..........,j n  and 1,2,3,...............,k m . 

 

3.2: Reduction of the probabilistic model to deterministic form: 

Let us consider the event, 

1 2

1 1

n n

kij i j k

i j

a x x b
 

  , 1,2,3,..............., .k m      (3.4) 

Now applying geometric inequality (G.I.) on the left hand side of the above expression, we have 
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2
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1 12
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1
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n
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Therefore,    
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2

1

2
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( ( ) ) .
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n

kij i j kij i j

i j i j

a x x n a x x k
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     

Again applying G.I. on the right hand side of the above expression, we get 

 

21 2 1

2

1 2

2 1

1

2

1 1 1 1

1 1

1 2

1 1

( ( ) )

( ( ) ) , .

nn n n
n

kij i j kij i j
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n n
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a x x n a x x
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   

 



 

  

 

 

            (3.5) 

Thus from (3.4) and (3.5), we have 

1 2

2 1

1 1

1 2

1 1

( ( ) ) , .
n n

n n

k kij i j

i j

b n n a x x k
 

    
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i.e.,   

1 2
1 2

1 1 1 2

( ) ,

n n
n n

k
kij i j

i j

b
a x x k

n n 

 
  
 

  

i.e.,   

1 2
1 2 1 2

1 1 1 1 1 2

( ) ( ) ,

n n
n n n n

k
kij i j

i j i j

b
a x x k

n n   

 
  
 

   

i.e.,   

1 2
1 2 1 2

2 1

1 1 1 1 1 2

( ) ( ) ( ) ,

n n
n n n n

n n k
kij i j

i j i j

b
a x x k

n n   

 
  
 

    

i.e.,   

1 2

1 2

1 2

2 1

1 2

1 1

1 1

( ) , .

( ) ( )

n n

k

n n

kij n n
n ni j

i j

i j

b

n n
a k

x x 

 

 
 
  

 
 

Now dividing both sides of the above expression by  0,   , ,kij for all k i j  , we have 

   

1 2

1 2

1 2 1 2

2 1

1 2

1 1

1 1 1 1

( ) ,

( ) ( ) ( )

n n

k

n n
kij

n n n n
n ni j kij

i j kij

i j i j

b

a n n
k

x x


 

   

 
 
  

  
. 

Taking natural logarithm of both sides, we have from the above expression, 

1 2 1 2 1 2

1 2 1 2 2 1

1 1 1 1 1 1

ln( ) (ln( ) ln( )) ln( ) ln( ) ln( ) ,
n n n n n n

kij

k i j kij

i j i j i jkij

a
n n b n n n x n x k

     

           (3.6) 

where,  ln( )
kij

kij

a


follows exponential ( ), , ,kij k i j  . 

So,  
' ( ) ln( )

kij

kij kij

kij

a
a 


 follows exponential distribution with parameter one, for all i, j, k.  

Thus from (3.6), we get, 

1 2

1 2 1 2

1 1

1 2 1 2 2 1
,

1 1 1 1

( ln( ))

max{ }[ (ln( ) ln( )) ln( ) ln( ) ln( ) ] ,




 

 

   

     



  

n n
kij

kij

i j kij

n n n n

kij k i j kij
i j

i j i j

a

n n b n n n x n x k
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i.e., 

1 2 1 2 1 2

'

1 2 1 2 2 1
,

1 1 1 1 1 1

max{ }[ (ln( ) ln( )) ln( ) ln( ) ln( ) ] ,
n n n n n n

kij kij k i j kij
i j

i j i j i j

a n n b n n n x n x k 
     

         . 

            (3.7) 

Using (3.7), we have from (3.2), 

1 2

1 2 1 2

'

1 1

1 2 1 2 2 1
,

1 1 1 1

Pr [

max{ }{ (ln( ) ln( )) ln( ) ln( ) ln( )}] 1 , 

 

   

       



  

n n

kij

i j

n n n n

kij k i j kij k
i j

i j i j

ob a

n n b n n n x n x p k

 

            (3.8) 

Now, 

1 2

'

1 1

n n

kij

i j

a
 

 follows
1 2

2

2
,

n n
k  . 

Also if Pr ( ) 1-k k kob A t p  , where kA  follows
1 2

2

2
,

n n
k  , then

1 2

2

2
(1 ),k kn n

t p k   . 

Therefore, from (3.8) the transformed deterministic form of (3.2) is 

 

1 2 1 2

1 2

2

1 2 1 2 2 1 2
1 1 1 1

,

1
(ln( ) ln( )) ln( ) ln( ) ln( ) (1 ),

2max{ }

n n n n

k i j kij kn n
i j i j kij

i j

n n b n n n x n x p



   

       

 

1,2,3,....., .k m            (3.9) 

Thus the transformed deterministic form of the probabilistic model (3.1) - (3.3) is as 

follows: 

To find 1 2 3( , , ,.............., )nX x x x x , where 1 2max( , )n n n , so as to, 

Maximize / Minimize ( )f X        (3.10)  

subject to chance constraints, 

1 2 1 2

1 2

2

1 2 1 2 2 1 2
1 1 1 1

,

1
(ln( ) ln( )) ln( ) ln( ) ln( ) (1 ),

2max{ }

n n n n

k i j kij kn n
i j i j kij

i j

n n b n n n x n x p



   

       

 

1,2,3,....., .k m            (3.11) 
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 1 20, 1,2,3,..............., max( , ).lx l n n n        (3.12) 

 

4: Solution 

The optimal solution for transformed deterministic form of both linear and nonlinear 

probabilistic model can be found using mathematical software LINGO 10 and then we can verify, 

using MATLAB 7.6, that whether this solution is also an optimal solution for the original 

probabilistic model. 

 

5: Numerical Examples 

5.1: Numerical example for the model having linear probabilistic constraints 

Let us consider the following example for illustration. 

To find 1 2 3, ,x x x so as to  

Minimize 1 2 32 3z x x x                              (5.1) 

 

subject to the chance constraints, 

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

31 1 32 2 33 3 3 3

( ) 1

( ) 1

( ) 1

Pr a x a x a x b p

Pr a x a x a x b p

Pr a x a x a x b p

    

    

    

  (5.2) 

  0, 1,2,3ix i  ,        (5.3) 

where, ija follows ( , ) ; , 1,2,3ij ijPareto i j    . Here 'ij s and 'ij s are given in the following 

matrix: 

'ij s       'ij s  

1 2 3

1 0.7 0.1 0.2

2 0.3 0.5 0.6

3 0.2 0.8 0.03

j

i

   

1 2 3

1 0.4 0.3 0.2

2 0.3 0.3 0.6

3 0.2 0.8 0.03

j

i

 

Also given that, 1 2 32, 7, 1b b b    and 1 2 30.01, 0.05, 0.1p p p   . 

5.1.1: Solution of the above problem 

Using (2.7) – (2.9), the reduced implicative deterministic form of the given problem (5.1) 

– (5.3) can be written as follows: 
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To find 
1 2 3, ,x x x so as to  

Minimize 1 2 32 3z x x x           (5.4) 

subject to the constraints,  

2

1 2 3 6

2

1 2 3 6

2

1 2 3 6

2 1
[3 ln (ln(0.4* ) ln(0.3* ) ln(0.2* ))] (0.99)

3 2*0.7

7 1
[3 ln (ln(0.3* ) ln(0.3* ) ln(0.6* ))] (0.95)

3 2*0.6

1 1
[3 ln (ln(0.2* ) ln(0.8* ) ln(0.03* ))] (0.90)

3 2*0.8

x x x

x x x

x x x







 
    

 

 
    

 

 
    

 

  (5.5) 

0, 1,2,3ix i  .          (5.6) 

From the statistical table, we have 2 2

6 6(0.99) 0.872, (0.95) 1.635   ,  

2

6 (0.90) 2.204   

Now using generic package LINGO 10.0 to solve (5.4) – (5.6), we get the following solution: 

6 7 7

1 20.2217644 x 10 , 0.3696073x 10 , 0.2464049 x 10 ,    z x x . 

7

3 0.7392147 x 10  x  

After getting the above solution, using MATLAB 7.6, we can verify that, these solutions 

satisfy the given probabilistic constraints of the original problem (5.1) – (5.3) and thus may be 

considered as optimal solutions for the original probabilistic problem. 

 

5.2: Numerical example for the model having nonlinear probabilistic constraints 

Let us consider the following example for illustration. 

To find 1 2 3, ,x x x so as to  

Minimize 2 2 2

1 2 3z x x x           (5.7) 

subject to the chance constraints, 

 

111 1 1 112 1 2 121 2 1 122 2 2 131 3 1 132 3 2 1 1

211 1 1 212 1 2 221 2 1 222 2 2 231 3 1 231 3 2 2 2

311 1 1 312 1 2 321 2 1 322 2 2 331 3 1 332 3 2 3 3

( ) 1

( ) 1

( ) 1

Pr a x x a x x a x x a x x a x x a x x b p

Pr a x x a x x a x x a x x a x x a x x b p

Pr a x x a x x a x x a x x a x x a x x b p

       

       

       

 (5.8) 

  0, 1,2,3ix i          (5.9) 
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where kija follows ( , ) ; , 1,2,3 1,2kij kijPareto i k and j    . Here 'kij s and 'kij s are given in 

the following matrix: 

 

For 1k   

'kij s       'kij s  

1 2

1 0.7 0.1

2 0.3 0.5

3 0.2 0.8

j

i

   

1 2

1 0.4 0.3

2 0.3 0.3

3 0.2 0.8

j

i

 

 

For 2k   

'kij s       'kij s  

1 2

1 0.6 0.4

2 0.5 0.5

3 0.9 0.8

j

i

   

1 2

1 0.7 0.5

2 0.9 0.6

3 0.6 0.8

j

i

 

 

For 3k   

'kij s       'kij s  

1 2

1 0.7 0.6

2 0.4 0.7

3 0.6 0.5

j

i

   

1 2

1 0.9 0.5

2 0.9 0.7

3 0.3 0.8

j

i

 

 

Also given that, 1 2 32, 7, 1b b b    and 1 2 30.01, 0.05, 0.1p p p   . 

 

5.2.1: Solution of the above problem 
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Using (3.10) – (3.12), the reduced implicative deterministic form of the given problem 

(5.7) – (5.9) can be written as follows: 

To find 
1 2 3, ,x x x so as to  

Minimize 2 2 2

1 2 3z x x x           (5.10)   

subject to the constraints,  

1 1 2 3 1 2 111 112 121 122 131 132

2

12*3*2
1

,

2 1 2 3 1 2 211

3*2*(ln ln(3*2)) 2*(ln ln ln ) 3*(ln ln ) (ln( ) ln( ) ln( ) ln( ) ln( ) ln( ))

1
(1 )

2max{ }

3*2*(ln ln(3*2)) 2*(ln ln ln ) 3*(ln ln ) (ln( ) ln(

     







           

 

       

ij
i j

b x x x x x

p

b x x x x x 212 221 222 231 232

2

22*3*2
2

,

3 1 2 3 1 2 311 312 321 322 331 332

2

2*3*2
3

,

) ln( ) ln( ) ln( ) ln( ))

1
(1 )

2max{ }

3*2*(ln ln(3*2)) 2*(ln ln ln ) 3*(ln ln ) (ln( ) ln( ) ln( ) ln( ) ln( ) ln( ))

1
(

2max{ }

    



     







   

 

           



ij
i j

ij
i j

p

b x x x x x

31 ) p

 

(5.11) 

0, 1,2,3ix i  .            (5.12) 

Thus entering all data, the problem becomes: 

To find 1 2 3, ,x x x so as to  

Minimize 2 2 2

1 2 3z x x x           (5.13)   

subject to the constraints,  

2

1 2 3 1 2
12

1 2 3 1 2

1
6*(ln 2 ln(6)) 2*(ln ln ln ) 3*(ln ln ) (ln(0.4) ln(0.3) ln(0.3) ln(0.3) ln(0.2) ln(0.8)) (0.99)

2*0.8

6*(ln 7 ln(6)) 2*(ln ln ln ) 3*(ln ln ) (ln(0.7) ln(0.5) ln(0.9) ln(0.6) ln(0.6)

x x x x x

x x x x x

            

          
2

12

2

1 2 3 1 2 12

1
ln(0.8)) (0.95)

2*0.9

1
6*(ln1 ln(6)) 2*(ln ln ln ) 3*(ln ln ) (ln(0.9) ln(0.5) ln(0.9) ln(0.7) ln(0.3) ln(0.8)) (0.90)

2*0.7
x x x x x





 

            

 

(5.14) 

0, 1,2,3ix i  .          (5.15) 

Also from the statistical table, we have 

 2 2 2

12 12 12(0.99) 3.571, (0.95) 5.226, (0.90) 6.304.      

Now using generic package LINGO 10.0 to solve (5.13) – (5.15), we get the following 

solution: 
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15 8 7

8

1 2

3

0.5988150 , ,x 10 0.7406154 x 10 0.23240 ,47x 10

0.1960735x 10

  



 



 x

x

z x
. 

After getting the above solution, using MATLAB 7.6, we verified that, these solutions 

satisfy the given probabilistic constraints of the original problem (5.7) – (5.9) and thus may be 

considered as optimal solutions for the original probabilistic problem. 

 

6: Conclusion 

In this paper, we have transformed the probabilistic constraints to deterministic 

constraints for our convenience, which results in the change in the solution space. So one of the 

following cases may arise: 

 modified solution space contains all the points of the original solution space 

 modified solution space contains no points of the original solution space 

 modified solution space contains some points of the original solution space and some 

other points 

For this reason, we have verified that, whether the optimal solution obtained for the 

transformed problem, is an optimal solution for the given probabilistic model.  

It can be noted that, there may be some other better optimal solutions, than what we have 

obtained because the solution region is changed at the time of deterministic reduction of the 

probabilistic constraints and some points, which are in original solution space, may not be in the 

reduced solution space. Moreover for CCP, exact optimal solution may not exist and the solution 

obtained is a compromised optimal solution. 
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