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Abstract. Nonlinear conjugate gradient method is a popular approach for solving large-scale unconstrained op-

timization problems due to its simplest iterative form and low storage requirement. In this article, we proposed

a derivative free alternative conjugate gradient approach for solving symmetric nonlinear equations. We show

that the proposed method has global convergence properties under appropriate conditions. We also report some

numerical results to show its efficiency.

Keywords: backtracking line search; secant equation; symmetric nonlinear equations; conjugate gradient method.

2010 AMS Subject Classification: 65H11,65K05,65H12, 65H18.

1. Introduction

Let us consider the systems of nonlinear equations

(1) F(x) = 0,

where F : Rn→ Rn is a nonlinear mapping. Often, the mapping, F is assumed to satisfying the

following assumptions:
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Received January 29, 2016

855



856 MOHAMMED YUSUF WAZIRI, JAMILU SABI’U

A1. There exists an x∗ ∈ Rn s.t F(x∗) = 0

A2. F is a continuously differentiable mapping in a neighborhood of x∗

A3. F ′(x∗) is invertible

A4. The Jacobian F
′
(x) is symmetric.

The prominent method for finding the solution of (1), is the classical Newton’s method which

generates a sequence of iterates {xk} from a given initial point x0 via

(2) xk+1 = xk− (F ′(xk))
−1F(xk),

where k = 0,1,2 . . ..

The attractive features of this method are; rapid convergence and easy to implement. Nev-

ertheless, Newton’s method requires the computation of the Jacobian matrix, which require the

first-order derivative of the systems. In practice, computations of some functions derivatives

are quite costly and sometime they are not available or could not be done precisely. In this case

Newton’s method cannot be applied directly [6, 7, 11, 14, 20, 23]..

In this work, we are interested in handling large-scale problems for which the Jacobian is

either not available or requires a low amount storage, the best method is CG approach. It

is vital to mention that, the conjugate gradient methods are among the popular used methods

for unconstrained optimization problems. They are particularly efficient for handling large-

scale problems due to their convergence properties, simply to implement and low storage [17].

Not withstanding, the study of conjugate gradient methods for large-scale symmetric nonlinear

systems of equations is scanty, this is what motivated us to have this paper.

2. Preliminaries

In general, conjugate gradient methods for solving nonlinear systems of equations generates

an iterative points {xk} from initial given point x0 using

(3) xk+1 = xk +αkdk,
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where αk > 0 ia attained via line search, and direction dk are obtained using

(4) dk =


−F(xk) i f k = 0

−F(xk)+βkdk i f k ≥ 1

βk is term as conjugate gradient parameter.

This problems under study, may arise from an unconstrained optimization problem, a saddle

point problem, Karush-Kuhn-Tucker (KKT) of equality constrained optimization problem, the

discritized two-point boundary value problem, the discritized elliptic boundary value problem,

and etc.

Equation (1) is the first-order necessary condition for the unconstrained optimization problem

when F is the gradient mapping of some function f : Rn −→ R,

(5) min f (x), xεRn.

For the equality constrained problem

(6) min f (x),

s.t h(z) = 0,

where h is a vector-valued function, the KKT conditions can be represented as the system (1)

with x = (z,v), and

(7) F(z,v) = (∇F(z)+∇h(z)v,h(z)),

where v is the vector of Lagrange multipliers. Notice that the Jacobian ∇F(z,v) is symmetric

for all (z,v) (see, e.g., [22]).

Problem (1) can be converted to the following global optimization problem(5) with our function

f defined by

(8) f (x) =
1
2
||F(x)||2.

A large number of efficient solvers for large-scale symmetric nonlinear equations have been

proposed, analyzed, and tested in the last decade. Among them, the most classic one entirely

due to Li and fukushima[5], in which a Gauss-Newton-based BFGS method is developed, and

the global and superlinear convergence are also established. subsequently, it performance is
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further improved by Gu et al. [3], where a norm descent BFGS methods are designed. Since

then, norm descent type BFGS methods especially coorporating with trust regions strategy are

presented in the literature and showed their moderate effectiveness experimentally [16]. Still

the matrix storage and solving of n-linear system are required in the BFGS type methods pre-

sented in the literature. The recent designed nonmonotone spectral gradient algorithm [2] falls

within the frame work of matrix-free.

The conjugate gradient methods for symmetric nonlinear equations has received a good at-

tension and take an appropriate progress. However, Li and Wang [8] proposed a modified

Flectcher-Reeves conjugate gradient method which is based on the work of Zhang et al. [4],

and the results illustrate that their proposed conjugate gradient method is promising. In line with

this development, further studies on conjugate gradient are inspired for solving large-scale sym-

metric nonlinear equations. Zhou and Shen [12] extended the descent three-term polak-Rebiere-

Polyak of Zhang et al [18] for solving (1) by combining with the work of Li and Fukushima [5].

Meanwhile the classic polak-Rebiere-Polyak is successfully used to solve symmetric equation

(1) by Zhou and Shen [17].

Subsequentely Yunhai et al. [15] proposed a method based on weel-known conjugate gradient

of Hager and Zhang [13], the proposed method converges globally. More recently, we proposed

a derivative free conjugate gradient method and its global convergence for solving symmetric

nonlinear equations [22]. Extensive numerical experiments showed that each over mentioned

method performs quite well.In this paper, we proposed to present a new enhenced CG parameter

βk which is matrix and derivative free respectively. This is made possible by combining classical

conjugate gradient (CG) direction with classical Newton direction with the viitue of modified

secant equation proposed in [9].

3. Main results

In this setion we present a new CG parameter βk, as a result of combining classical Conjugate

Gradient direction with classical Newton direction. Recall the Classical CG direction is defined

by
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(9) dk =


−∇ f (xk) i f k = 0

−∇ f (xk)+βkdk i f k ≥ 1

In [22] we used the term

(10) gk =
F(xk +αkFk)−Fk

αk
.

to approximate the gradient ∇ f (xk), which avoids computing exact gradient. It is clear that,

when ||Fk|| is small, then gk ≈ ∇ f (xk).

Recall, from Newton’s direction

(11) dk+1 =−J−1
∇ f (xk+1)

Combining (9) and (11), we have

(12) −J(xk)
−1

∇ f (xk+1) =−∇ f (xk+1)+βkdk

By multiplying both side of (12) by J(xk), lead to

(13) −J(xk)J(xk)
−1

∇ f (xk+1) =−J(xk)∇ f (xk+1)+ J(xk)βkdk

After little linear algebra, (13) can be transform to

(14) −∇ f (xk+1) =−J(xk)∇ f (xk+1)+βkJ(xk)dk

We multiply both side of (14) by sT
k to obtained:

(15) −sT
k ∇ f (xk+1) =−sT

k J(xk)∇ f (xk+1)+ sT
k βkJ(xk)dk, sk = xk+1− xk

Equation (15), can be rewritten as

(16) −sT
k ∇ f (xk+1) =−sT

k J(xk)∇ f (xk+1)+βksT
k J(xk)dk

From Spectral secant condition in [9]; we have

(17) J(xk)sk = θkyk and sk = J(xk)
−1

θkyk
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And

(18) sT
k J(xk)

T = θkyT
k and sT

k = sT
k J(xk)

−1

It is vital to note that, for this work, we claim that J(xk) is symmetric matrix ∀k. Hence, (18)

can also be written as

(19) sT
k J(xk) = θkyT

k

Substituting (19) into (16), yields

(20) −sT
k ∇ f (xk+1) =−θkyT

k ∇ f (xk+1)+βkθkyT
k dk

After, little algebra, we obtained our CG parameter (βk) as

(21) βk =
θkyT

k ∇ f (xk+1)− sT
k ∇ f (xk+1)

θkyT
k dk

Further simplification on (21) gives:

(22) βk =
(θkyk− sk)

T

θkyT
k dk

∇ f (xk+1)

motivated by the ideas of [8, 17] and replacing the term ∇ f (xk+1) by(10), we derive our CG

parameter

(23) βk =
(θkyk− sk)

T

θkyT
k dk

gk+1, yk = gk+1 +gk

Having derived the CG parameter (βk) in (23) and by using (9), we then present our direction as

(24) d0 =−g(x0) dk+1 =−gk+1 +
(θkyk− sk)

T gk+1

θkyT
k dk

dk k = 1,2 . . . ,

and

(25) θk =
sT

k sk

sT
k yk

Finally, we present our scheme as

(26) xk+1 = xk +αkdk.

Moreover, the direction dk given by (24) may not be a descent direction of (8), then the standard

wolfe and Armijo line searches can not be used to compute the stepsize directly. Therefore, we
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use the nonmonotone line search proposed by Li and Fukushima in [5] to compute our stepsize

αk. Let ω1 > 0, ω2 > 0, r ∈ (0,1) be constants and {ηk} be a given positive sequence such that

(27)
∞

∑
k=0

ηk < ∞.

Let αk = max
{

1,rk} that satisfy

(28) f (xk +αkdk)− f (xk)≤−ω1||αkF(xk)||2−ω2||αkdk||2 +ηk f (xk).

Now, we can describe the algorithm for our proposed method as follows:

ACGA Algorithm

Step 1 : Given x0 ,α > 0 , ω ∈ (0,1), r ∈ (0,1) and a positive sequence ηk satisfying (27),

then compute d0 =−g0 and set k = 0 .

Step 2 : Test a stopping criterion. If yes, then stop; otherwise continue with Step 3.

Step 3 : Compute αk by the line search (28).

Step 4 : Compute xk+1 = xk +αkdk.

Step 5 : Compute the search direction as dk+1 =−gk+1 +
(θkyk−sk)

T gk+1
θkyT

k dk
dk.

Step 6 : Consider k = k+1 and go to step 2.

Convergence results

To analyze the convergence of our method, we will make the following assumptions on non-

linear systems (1)

(i) F is differentiable in an open convex set Ω in Rn.
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(ii) There exists x∗ ∈Ω such that F(x∗) = 0 , F ′(x) is continuous for all x .

(iii) In some neighborhood N of Ω, the Jacobian is Lipschitz continous i.e there exists a positive

constant L such that

(29) ‖F ′(x)−F ′(y)‖ ≤ L‖x− y‖,

for all x,y ∈ N .

Properties (i) and (ii) implies that there exists positive constants M1, M2 and L1 such that

(30) ||F(x)|| ≤M1, ||J(x)|| ≤M2, ∀xεN,

(31) ||∇ f (x)−∇ f (y)|| ≤ L1||x− y||, ||J(x)|| ≤M2, ∀x,y ∈ N.

Lemma 1.1.[22] Let the sequence {xk} be generated by the algorithms above. Then the se-

quence {||Fk||} converges and xk ∈ E for all k ≥ 0.

Lemma 1.2. Let the properties of (1) above hold. Then we have

(32) lim
k→∞
||αkdk||= lim

k→∞
||sk||= 0,

(33) lim
k→∞
||αkFk||= 0

Proof. by (27) and (28) we have for all k > 0,

(34) ω2||αkdk||2 ≤ ω1||αkF(xk)||2 +ω2||αkdk||2 ≤ ||Fk||2−||Fk+1||2 +ηk||Fk||2

by summing the above k inequality, then we obtain:

(35) ω2

k

∑
i=0
||αkdk||2 ≤ ||Fk||2

{
k

∑
i=0

(1−ηi)

}
−||Fk+1||2

so, from (30) and the fact that {ηk} satisfies (27) the series ∑
k
i=0 ||αkdk||2 is convergent. This

implies (32). By a similar way, we can prove that(33) holds.

The following result shows that An Alternative CG method algorithm is globally convergent.

Theorem 1.1. Let the properties of (1) above hold. Then the sequence {xk} be generated ACGA

algorithm converges globally, that is,

(36) liminf
k→∞

||∇ f (xk)||= 0.
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Proof. We prove this theorem by contradiction. Suppose that (36) is not true, then there exists

a positive constant τ such that

(37) ||∇ f (xk)|| ≥ τ, ∀k ≥ 0.

Since ∇ f (xk) = JkFk, (37) implies that there exists a positive constant τ1 satisfying

(38) ||Fk|| ≥ τ1, ∀k ≥ 0.

Case (i): limsupk→∞ αk > 0. then by (33), we have liminfk→∞ ||Fk||= 0. This and Lemma

1 show that limk→∞ ||Fk||= 0, which contradicts with (37).

Case (ii): limsupk→∞ αk = 0. Since αk ≥ 0,this case implies that

(39) lim
k→∞

αk = 0.

by definition of gk in (10) and the symmetry of the Jacobian, we have

||gk−∇ f (xk)||= ||
F(xk +αk−1Fk)−Fk

αk−1
− JT

k Fk||

= ||
∫ 1

0
J(xk + tαk−1Fk)− Jk)dtFk||

(40) ≤ LM2
1αk−1,

where we use (30) and (31) in the last inequality. (27), (28) and (37) show that there exists a

constant τ2 > 0 such that

(41) ||gk|| ≥ τ2, ∀k ≥ 0.

By (10) and (30), we get

(42) ||gk||=
∫ 1

0
J(xk + tαk−1Fk)Fkdt|| ≤M1M2, ∀k ≥ 0.

From (42) and (31), we obtain

||yk||= ||gk−gk+1||

≤ ||gk−∇ f (xk)||+ ||gk−1−∇ f (xk−1)||+ ||∇ f (xk)−∇ f (xk−1)||

(43) ≤ LM2
1(αk−1 +αk−2)+L1||sk−1||.



864 MOHAMMED YUSUF WAZIRI, JAMILU SABI’U

This together with (39) and (33) shows that limk→∞ ||yk|| = 0.Hence from (22), (43) and (41),

we have

(44) |θk| ≤
||sT

k ||||sk||
||sT

k ||||yk||
−→ 0

meaning there exists a constant λε(0,1) such that for sufficiently large k

(45) |θk| ≤ λ .

Again from the definition of our βk we obtain

(46) |βk| ≤
||θkyk− sk||||gk+1||
||θkyT

k ||||sk||
≤M1M2

||yk− sk||
||yT

k ||||sk||
−→ 0

which implies there exists a constant ρ ∈ (0,1) such that for sufficiently large k

(47) |βk| ≤ ρ.

Without lost of generality, we assume that the above inequalities holds for all k ≥ 0. Then we

get

(48) ||dk+1|| ≤ ||θkgk+1||+ |βk|||dk|| ≤ λM1M2 +ρ||dk||

which shows that the sequence {dk+1} is bounded. Since limk→∞ αk = 0, then α
′
k =

αk
r does

not satisfy (28), namely

(49) f (xk +α
′
kdk)> f (xk)−ω1||α

′
kF(xk)||2−ω2||α

′
kdk||2 +ηk f (xk),

which implies that

(50)
f (xk +α

′
kdk)− f (xk)

α
′
k

>−ω1||α
′
kF(xk)||2−ω2||α

′
kdk||2.

By the mean-value theorem, there exists δk ∈ (0,1) such that

(51)
f (xk +α

′
kdk)− f (xk)

α
′
k

= ∇ f (xk +δkα
′
kdk)

T dk.

Since {xk} ⊂Ω is bounded, without loss of generality, we assume xk −→ x∗. By (10) and (24),

we have

(52) lim
k→∞

dk+1 =− lim
k→∞

θk+1gk+1 + lim
k→∞

β
∗
k dk ≤− lim

k→∞
gk+1 + lim

k→∞
β
∗
k dk =−∇ f (x∗),
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where we use (46), (28) and the fact that the sequence {dk+1} is bounded.

On the other hand, we have

(53) lim
k→∞

∇ f (xk +δkα
′
kdk) = ∇ f (x∗).

Hence, from (50)-(53), we obtain −∇ f (x∗)T ∇ f (x∗) ≥ 0, which means ||∇ f (x∗)|| = 0. This

contradicts with (37). The proof is completed.

Numerical Experiment

We compared the performance of our method for solving nonlinear equation (1) with an

inexact prp conjugate gradient method for symmetric nonlinear equations [17].

• An alternative CG method (ACGA): We set ω1 = ω2 = 10−4, α0 = 0.01, r = 0.1 and

ηk =
1

(k+1)2 .

• For an inexact prp (IPRP) conjugate gradient method for symmetric nonlinear equations.

We set ω1 = ω2 = 10−4, α0 = 0.01, r = 0.1 and ηk =
1

(k+1)2 ..

The code for both ACGA and IPRP methods were written in Matlab 7.4 R2010a and run on a

personal computer 1.8 GHz CPU processor and 4 GB RAM memory. We stopped the iteration

if the toatal number of iterations exceeds 1000 or ||Fk|| ≤ 10−3. We use ”-” to represent failure

due one of the following:

(i) Memory requirement

(ii) Number of iteration exceed 1000

(ii) If ||Fk|| is not a number

We tested the methods on eight test problems with different initial points and values. Problem

1-3 are from[12, 17] while problem 6-8 are from [21]

Problem 1

F1(x) = x1(x2
1 + x2

2)−1

Fi(x) = xi(x2
i−1 +2x2

i + x2
i+1)−1 ;1,2, . . . ,n−1

Fn(x) = xn(xn−1 + x2
n).
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Problem 2: For i = 1,2, ,n/3,

F3i−2(x) = x3i−2x3i−1− x2
3i−1,

F3i−1(x) = x3i−2x3i−1x3i− x2
3i−2 + x2

3i−1−2,

F3i(x) = e−x3i−2− e−x3i−1.

Problem 3: For i = 1,2, ,n

Fi(x) = 2(n+ i(1− cosxi)− sinxi−∑
n
j=1 cosx j)(2sinxi− cosxi)

Problem 4:

F(x) =



2 −1

−1 2 −1
. . . . . . . . .

. . . . . . −1

−1 2


x+(ex

1−1, . . . ,ex
n−1)T

Problem 5:

F(x) =



2 −1

0 2 −1
. . . . . . . . .

. . . . . . −1

0 2


x+(sinx1−1, . . . ,sinxn−1)T

Problem 6:

Fi(x) = 0.05(xi−1)+2sin(∑n
j=1(x j−1)+∑

n
j=1(x j−1)2(1+2(xi−1))+2sin(∑n

j=1(x j−1))

Problem 7:
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F1(x) = 4(x1− x2
2)

Fi(x) = 8xi(x2
i − xi−1)−2(1− xi)+4(xi− x2

i+1) i = 2,3, . . . ,n−1

Fn(x) = 8xn(xn− xn−1)−2(1− xn)

Problem 8:

F1(x) = (3−0.5x1)x1−2x2 +1

Fi(x)(3−0.5xi)xi− xn−1−2xi+1 +1

Fn(x) = (3−0.5xn)xn− xn−1 +1

Test results for the two methods, where e =ones(n,1)
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Table 1 ACGA IPRP

Problem (P) x0 n Iter Time(s) ||Fk|| Iter Time(s) ||Fk||

p1 e 10 42 0.752608 9.85E-04 196 0.240149 9.74E-04

50 44 0.050456 9.21E-04 170 0.182533 9.89E-04

100 36 0.047633 8.58E-04 204 0.20819 9.92E-04

500 49 0.095838 8.72E-04 210 0.360981 9.74E-04

1000 44 0.136491 7.85E-04 187 0.503445 9.50E-04

5000 52 0.521437 8.89E-04 188 1.970965 9.76E-04

10000 34 0.63899 9.73E-04 240 4.58276 9.60E-04

20000 44 1.585452 8.63E-04 241 9.41398 9.97E-04

50000 48 4.282012 8.68E-04 246 22.844312 9.40E-04

0.1e 100 35 0.052414 9.66E-04 215 0.212664 9.71E-04

500 42 0.082621 9.59E-04 218 0.352023 9.91E-04

1000 39 0.100708 9.90E-04 223 0.561376 9.76E-04

2000 30 0.130572 9.10E-04 222 0.927342 9.98E-04

10000 45 0.802444 9.48E-04 231 4.37962 9.84E-04

20000 53 1.988779 9.58E-04 225 9.06472 9.97E-04

50000 40 3.602575 9.82E-04 228 20.774155 9.91E-04

0.01e 2000 38 0.16429 9.83E-04 217 0.897524 9.93E-04

10000 35 0.684191 8.85E-04 219 3.872882 9.76E-04

100000 44 10.153122 8.16E-04 223 47.827076 9.63E-04
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Table 1 continue ACGA IPRP

Problem (P) x0 n Iter Time(s) ||Fk|| Iter Time(s) ||Fk||

p2 e 50 7 0.033037 6.71E-04 13 0.023542 5.70E-04

100 7 0.015066 9.64E-04 13 0.024732 8.19E-04

1000 8 0.0433 6.13E-04 15 0.058468 5.77E-04

10000 9 0.267192 3.88E-04 17 0.445501 4.03E-04

50000 9 1.084196 8.67E-04 17 1.743164 9.02E-04

0.1e 50 98 0.127368 5.06E-04 - - -

100 98 0.144261 7.27E-04 - - -

500 109 0.244072 9.85E-04 - - -

1000 115 0.355587 4.33E-04 - - -

5000 115 1.294865 9.68E-04 - - -

10000 125 2.742368 9.39E-04 - - -

20000 131 5.800331 4.09E-04 - - -

p2 -0.1e 10 125 0.164449 9.45E-04 - - -

50 140 0.196023 9.62E-04 - - -

200 155 0.25351 9.29E-04 - - -

500 170 0.377719 6.74E-04 - - -

1000 170 0.537462 9.55E-04 - - -

10000 200 4.600113 6.49E-04 - - -

p3 e 10 12 0.020635 9.02E-04 15 0.028958 3.64E-04

50 27 0.073073 8.50E-04 12 0.029466 5.10E-04

100 9 0.025248 6.67E-04 17 0.042195 8.00E-04

500 8 0.179431 2.27E-06 - - -

1000 14 0.232427 9.67E-04 - - -

2000 18 0.542088 3.52E-04 - - -
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Table 1 continue ACGA IPRP

0.5e 10 10 0.016647 9.59E-04 14 0.013692 9.33E-04

50 12 0.020676 8.86E-04 4 0.009348 2.46E-04

100 11 0.036904 5.13E-04 25 0.078017 6.12E-04

500 10 0.071195 4.25E-05 13 0.108413 9.06E-04

1000 9 0.13924 1.25E-04 16 0.263713 2.27E-04

4000 16 0.391362 3.35E-04 - - -

5000 21 5.494875 3.79E-04 - - -

10000 20 3.436877 4.80E-04 - - -

p4 e 10 31 0.360259 8.86E-04 56 0.625474 9.60E-04

50 26 0.326918 9.55E-04 101 1.362075 9.77E-04

100 25 0.356038 8.10E-04 107 1.745258 9.77E-04

500 114 3.639123 8.07E-04 480 17.578523 9.00E-04

1000 126 10.108339 9.16E-04 642 63.880333 9.94E-04

2000 114 22.171047 7.91E-04 375 74.620778 9.98E-04

0.1e 10 28 0.31605 8.44E-04 36 0.402393 9.63E-04

50 27 0.333383 8.53E-04 39 0.461376 9.29E-04

100 33 0.582877 9.04E-04 42 0.69488 8.92E-04

500 32 1.068035 8.55E-04 94 3.555216 9.52E-04

1000 31 3.332772 6.09E-04 92 8.187002 9.83E-04

2000 25 5.815651 8.00E-04 115 21.717311 9.58E-04

5000 33 39.496329 9.63E-04 111 149.64502 8.96E-04
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Table 1 continue ACGA IPRP

Problem (P) x0 n Iter Time(s) ||Fk|| Iter Time(s) ||Fk||

p5 e 1000 25 2.11235 8.20E-04 31 2.575008 8.70E-04

2000 26 6.220177 7.92E-04 32 7.644628 9.22E-04

5000 27 28.502911 8.35E-04 34 39.972992 7.68E-04

p6 0.01e 10 4 0.009875 5.18E-04 7 0.016171 5.12E-04

100 8 0.034561 7.12E-04 14 0.052137 6.82E-04

250 5 0.029561 2.57E-04 12 0.054734 1.40E-04

300 19 0.100332 7.02E-04 - - -

500 8 0.072018 2.80E-04 - - -

1000 33 0.234581 9.03E-04 - - -

p7 0.4e 10 519 0.505866 9.36E-04 - - -

20 880 0.850211 9.97E-04 - - -

57 950 1.007061 8.52E-04 - - -

p8 -1e 10 85 0.066362 9.57E-04 102 0.099925 9.85E-04

50 111 0.125444 8.66E-04 152 0.151121 8.97E-04

100 109 0.128249 9.83E-04 159 0.16323 8.80E-04

500 119 0.204833 9.54E-04 158 0.268675 9.67E-04

1000 119 0.305788 9.68E-04 162 0.402651 9.51E-04

2000 135 0.623371 9.75E-04 - - -

3000 133 0.894332 8.91E-04 - - -

In the table 1, we listed numerical results, where ”Iter” and ”Time” stand for the total number

of all iterations and the CPU time in seconds, respectively;||Fk|| is the norm of the residual at

the stopping point.The numerical results indicate that the proposed method ACGA compared
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FIGURE 1. Comparison of the performance of ACGA and IPRP methods (in

term of CPU time)
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FIGURE 2. Comparison of the performance of ACGA and IPRP methods (in

term of number of iterations)

to IPRP has minimum number of iteration and CPU time respectively. Figure (1) and (2) are

performance profile derived by Dolan and more[19] which show that our claim is justified i.e.

Less CPU time and number of iteration for each test problem.

Moreover, in average, our ||F(xk)|| is too small which signifies that, the solution obtained is

true approximation of the exact solution compared to the IPRP.
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