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Abstract. This paper mainly studies the singularities of Gauss map of inversion hypersurface in Rn+1. The

geometry of inversion hypersurface in Rn+1 and its Gauss map are given. Using the lagrangian and Legendrian

singularity theory, the singularities of Gauss map of inversion hypersurface are classified and plotted.
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1. Geometry of inversion hypersurfaces in Euclidean space

In this section we review the classical theory of differential geometry on hypersurfaces in

Euclidean space Rn+1 [1, 13].

Let X : U → Rn+1 be an embedding open subset of the Euclidian space Rn. Identify M and U

through the embedding X , i.e., M = X(U), in this case M is called hypersurface in Rn+1. The
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tangent space of M at p = X(u), u ∈U is

(1.1) TpM = 〈X1(u),X2(u), ...,Xn(u)〉. ,Xi =
∂X
∂ui

,

and the unit normal vector field along X : U → Rn+1 is given by:

(1.2) N(u) =
X1(u)×X2(u)× ...×Xn(u)
‖X1(u)×X2(u)× ...×Xn(u)‖

,

where

X1×X2× ...×Xn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · en+1

X1
1 X1

2 · · · X1
n+1

X2
1 X2

2 · · · X2
n+1

...
... . . . ...

Xn
1 Xn

2 · · · Xn
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where {e1, . . . ,en+1} is the canonical basis of the Euclidian space Rn+1 and

Xi = (X1
i ,X

2
i , . . . ,X

n+1
i ) ∈ TpM ⊂ Rn+1.

A map G : U → Sn+1 defined by G(u) = N(u) is called the Gauss map of M = X(U), and the

derivative of the Gauss map dG(u) : TpM→ TpM can be interpreted as a liner transformation on

the tangent space TpM .The linear transformation Sp =−dG(u) is called the shape operator (or

Weingarten map) of the hypersurface M = X(U) . The eigenvalues of Sp are called the principal

curvatures, and the eigenvectors of Sp are called the principal directions on M. By definition,

kp is a principal curvature if and only if det(Sp− kpI) = 0. The Gauss-Kronecker curvature

of M = X(U) at p = X(u) is defined to be K(u) = detSp. Since the set {Xi|(i = 1, ...,n)} is

linearly independent, the Riemannian metric (first fundamental form) on M = X(U) is given by

ds2 =∑
n
i=1 gi jduidu j, where gi j = 〈Xi(u),X j(u)〉 are first fundamental coefficients for any u∈U .

The second fundamental coefficients li j are given by li j = 〈−Ni(u),X j(u)〉= 〈N(u),Xi j(u)〉, for

any u ∈U . Recall the following Weingarten formula [13]:
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(1.3) Ni(u) =−l j
i (u)X j(u),

where l j
i (u) = lik(u)gk j(u), gk j(u) = (gk j(u))−1 and gik(u)gk j(u) = δ

j
i .

By the Weingarten formula, the Gauss-Kronecker curvature is given by

(1.4) K(u) =
det(li j)

det(gαβ )
.

The point p = X(u) ∈M is a parabolic point if K(u) = 0.

The inversion hypersurface of M = X(U) with respect to a point q ∈ Rn with inversion radius

ρ is the map [2]:

X̄ : U → Rn+1, X̄(u) = q+
ρ2(X(u)−q)
‖X(u)−q‖2 ,

where M̄ = X̄(U). The tangent space of M̄ at p = X̄(u) is

Tp(M̄) =
ρ2

‖X(u)−q‖2 (〈X1(u)−
2〈X1(u),X(u)−q〉(X(u)−q)

‖X(u)−q‖2 ,

X2(u)−
2〈X2(u),X(u)−q〉(X(u)−q)

‖X(u)−q‖2 ,

· · · ,

Xn(u)−
2〈Xn(u),X(u)−q〉(X(u)−q)

‖X(u)−q‖2 〉).

(1.5)

The unit normal vector field along X̄ : U → Rn+1 is given by :

(1.6) N̄(u) =−N(u)+
2〈X(u)−q,N(u)〉(X(u)−q)

‖X(u)−q‖2 .

Since the set {X̄i|(i = 1, ...,n)} is linearly independent, the Riemannian metric (first funda-

mental form) on M̄ = X̄(U) is defined as:
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ds2 =
n

∑
i=1

ḡi jduidu j =

(
ρ

‖X(u)−q‖

)4 n

∑
i=1

gi jduidu j,

where ḡi j = 〈X̄ui(u), X̄u j(u)〉 =
(

ρ

‖X(u)−q‖

)4
gi j are the first fundamental coefficients for in-

version hypersurface, and ḡ on inversion Hypersurface is given by the relation:

(1.7) ḡ =

(
ρ

‖X(u)−q‖

)4n

g, g = det(gi j).

The second fundamental invariants are given by

l̄i j =

(
ρ2li j

‖X(u)−q‖2 +
2ρ2〈X(u)−q,N(u)〉gi j

‖X(u)−q‖4

)
, ∀ u ∈U,

for any u ∈U . We have the following Weingarten formula:

(1.8) N̄i(u) =−l̄ j
i (u)X̄ j(u) =

1
ρ2

(
‖X(u)−q‖2l j

i +2〈X(u)−q,N(u)〉δi j

)
X̄u j(u),

where l̄ j
i (u) = l̄ik(u)ḡk j(u) and ḡk j(u) = (ḡk j(u))−1. By the Weingarten formula, the Gauss-

Kronecker curvature is given by:

(1.9) K̄(u) =
det(l̄i j)

det(ḡαβ )
.

From equation (1.8) it is easy to see that the Gauss-Kronecker curvature can be written as:

(1.10) K̄(u) =
1

ρ2

n

∏
i=1

(
‖X(u)−q‖2l j

i +2〈X(u)−q,N(u)〉δi j

)
,

and the mean curveture is given by

(1.11) H̄(u) =
1

ρ2

(
‖X(U)−q‖2H(u)+2〈X(u)−q,N(u)〉

)
.
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For an inversion hypersurface X̄ : U → Rn+1 the point q = X̄(u) ∈ M̄ is a parabolic point if

K̄(u) = 0 [13].

Proposition 1. Let X̄ : U → Rn+1 is the inversion hypersurface to M, q = 0, and the support

function S(u) = 〈X(u),N(u)〉 to original hypersurfaces is zero then we have:

1) N̄(u) =−N(u).

2) the support function of M̄ is zero.

Proof. 1) From equation (1.6) by putting q = 0 we fined

N̄(u) =−N(u)+
2〈X(u),N(u)〉(X(u))

‖X(u)‖2 =−N(u)+
2S(u)X(u)
‖X(u)‖2 ,

and let S(u) = 〈X(u),N(u)〉= 0. so we fined

N̄(u) =−N(u).

2) From above we fined :

N̄(u) =−N(u),

and from the definition of the inversion hypersurface by putting q = 0 we fined:

X̄(u) =
ρ2X(u)
‖X(u)‖2 .

so

S̄(u) = 〈X̄(u), N̄(u)〉= 〈 ρ2X(u)
‖X(u)‖2 ,−N(u)〉= −ρ2S(u)

‖X(u)‖2 = 0.

Proposition 2. [13]: Suppose that M̄ = X̄(U) is totally umbilic, then k̄p is constant k̄. Under

this condition, we have the following classification:

1) If k̄ 6= 0, then M̄ is a part of a hypersphere.

2) If k̄ = 0, then M̄ is a part of a hyperplane.

Proposition 3. [13]: Let M̄ = X̄(U) be a hypersurface in Rn+1.Then following are equivalent:

(1) M̄ is totally umbilic with K̄ = 0.

(2) The Gauss map is a constant map.

(3)M̄ is a part of a hyperplane.
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2. Height functions on inversion Hypersurface

In this section we discuss the properties of important family of function on the inversion

hypersurface.

The Height function h̄ is define as the following [12, 14]:

h̄(u,v) : U×Sn→ R

by h̄(u,v) = 〈X̄(u),v〉= h̄v on M̄ = X̄(u), ∀u ∈U ⊂ Rn,v ∈ Sn.

These families of functions are introduced by Thom [3, 4, 7] for the study of parabolic points

and umbilical points.

Proposition 4. : Let X̄ : U → Rn+1 be an inversion hypersurface. Then

(1) h̄(u,v) = 0 if and only if v =±
(

N̄(u)− S̄(u)X̄i(u)
〈X̄(u),X̄i(u)〉

)
where S̄(u) = 〈X̄(u), N̄(u)〉 is the sup-

port function of inversion hypersurface.

(2) ∂ h̄v
∂ui

= 0, (i = 1,2, . . . ,n) if and only if v =±N̄(u)

Proof. (1) since {N̄(u), X̄i(u)}, i = 1,2, ...,n is a basis of the vector space T̄pRn+1 where p =

X̄(u) then, there exist a real numbers α,αi, i = 1,2, ...,n such that v can be written as linear

combination of the base as the following:

v = αN̄(u)+αiX̄i,

and since h̄(u,v) = 0 then:

〈X̄(u),v〉= 〈X̄(u),αN̄(u)+αiX̄i〉= 0.

Thus we have:

αi =−α

(
〈X̄(u),N̄(u)〉
〈X̄(u),X̄i(u)〉

)
=−α

(
S̄(u)

〈X̄(u),X̄i(u)〉

)
v = α

(
N̄(u)− S̄(u)X̄i(u)

〈X̄(u),X̄i(u)〉

)
=±

(
N̄(u)− S̄(u)X̄i(u)

〈X̄(u),X̄i(u)〉

)
(2) since ∂ h̄v

∂ui
= 0 and v = αN̄(u)+α jX̄ j then:

〈X̄ui(u),v〉= 〈X̄i(u),αN̄(u)+α jX̄ j〉= 0

α〈X̄i(u), N̄(u)〉+α j〈X̄i(u), X̄ j〉= 0
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α jgi j = 0 ⇒ α j = 0 So

v = αN̄(u) =±N̄(u).

Proposition 5. : Let X̄ : U ×Rn+1 be an inversion hypersurface, and h̄(u,v) : U × Sn→ R be

the hight function on inversion hypersurface, suppose h̄(u,v) = 0, Then we have :

(1) v =±
(

N̄(u)− S̄(u)X̄i(u)
〈X̄(u),X̄i(u)〉

)
for S(u) 6= 0 on M.

(2) v =±N̄(u) for S(u) = 0 on M.

Proof. From proposition (4), as section 1.

We assume that the support function is not zero, From Proposition 4, the catastrophe set C(h̄)

of h̄ is given as follows: [18, 19]

C(h̄) = {(u,v) ∈U×Sn|v =±N̄(u)}.

For v =±N̄(u)} we have:

∂ 2

∂ui∂u j
h̄(u,v) =∓l̄i j(u).

Therefore, for any v = N̄(u), det(H (h̄v)(u)) = det( ∂ 2

∂ui∂u j
h̄(u,v))(u,v)) = 0 if and only if

K̄(p) = 0 (i.e;p = X̄(u) is a parabolic point).

Proposition 6. For any p = X̄(u) we have the following assertions, let v = N̄(u) then:

(1) p is a parabolic point if and only if detH ((h̄v)(u)) = 0.

(2) p is flat point if rank H (h̄v(u)) = 0.

Corollary 7. Let h̄(u,v) : U ×Sn→ R be the hight function on an inversion hypersurface M̄ =

X̄(u) and Ḡ(u) is the Gauss map, p = X̄(u) and let v = ±N̄(u) = ±Ḡ(u) then the following

statements are equivalent:

(1) p ∈ M̄ is a degenerate singular point of h̄v(u).

(2) p ∈ M̄ is a singular point of ±Ḡ(u).

(3) K̄(u) = 0.

Also the family of functions [12, 14]

h̃ : U× (Sn×R)→ R, h̃(u,v,r) = 〈X̄(u),v〉− r
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is called the extended hight function of M̄ = X̄(u).

The catastrophe map of h̄(u,v) is define by:

πC(h̄)(u,±N̄(u)) =±N̄(u) =±Ḡ(u).

So we can identify the Gauss map of M̄ = X̄(u) with the plus component of the catastrophe map

πC(H).

3. Gauss Map of inversion hypersurface as Lagrangian and Legendrian

maps

In this section the singularities of Gauss map of inversion hypersurface using hight function

(extended hight function) using the theory of Lagrangian (Legendrian) singularities as a caus-

tics (a wave front) in the framework of symplectic (contact) geometry are obtained [11].

For the height function h̄ of the inversion hypersurface X̄ : U→ Rn+1, We have the following:

Proposition 8. The hight function h̄ : U×Sn→ R of M̄ = X̄(u) is Morse families of function.

Proof. for any v = (v1,v2, ...,vn+1) ∈ Sn we have v2
1 + v2

2 + ...+ v2
n+1 = 1 let vn+1 > 0 then we

have vn+1 =
√

1− (v2
1 + v2

2 + ...+ v2
n) so the hight function becomes

h̄(u,v) = x1(u)v1 + x2(u)v2 + ...+ xn(u)vn + xn+1(u)
√

1− (v2
1 + v2

2 + ...+ v2
n)

now should be prove the mapping

4h̄ =
(

∂ h̄
∂u1

, ∂ h̄
∂u2

, ..., ∂ h̄
∂un

)
is non singular at any point.

The jacobian matrix of4h̄ is given as follows:

J(4h̄) = D(4h̄) =
∂

(
∂ h̄
∂u1

, ∂ h̄
∂u2

, ..., ∂ h̄
∂un

)
∂ (u1,u2, ...,un,v1,v2, ...,vn)

=
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〈X̄11,v〉 · · · 〈X̄1n,v〉 x1,1− xn+1,1

v1
vn+1

· · · xn,1− xn+1,1
vn

vn+1
...

...
...

...
...

...

〈X̄n1,v〉 · · · 〈X̄nn,v〉 x1,n− xn+1,n
v1

vn+1
· · · xn,n− xn+1,n

vn
vn+1

 ,

where xi,α = ∂xi
∂uα

will shown the rank of below matrix is n at (u,v) ∈C(h̄)

A =


x1,1− xn+1,1

v1
vn+1

· · · xn,1− xn+1,1
vn

vn+1
...

...
...

x1,n− xn+1,n
v1

vn+1
· · · xn,n− xn+1,n

vn
vn+1

 .

let Ci =


xi,1

xi,2
...

xi,n

, i = 1,2, ...,n+1

i.e., it should be prove that the rank of matrix

Ã =

(
C1−Cn+1

v1

vn+1
,C2−Cn+1

v2

vn+1
, ...,Cn−Cn+1

vn

vn+1

)
is n at (u,v) ∈C(h̄) so

det(Ã) =

∣∣∣∣∣∣∣∣∣
x1,1− xn+1,1

v1
vn+1

· · · xn,1− xn+1,1
vn

vn+1
...

...
...

x1,n− xn+1,n
v1

vn+1
· · · xn,n− xn+1,n

vn
vn+1

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1,1 · · · xn,1 xn+1,1
...

...
...

...

x1,n · · · xn,n xn+1,1

v1
vn+1

· · · vn
vn+1

vn+1
vn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(−1)n

vn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1,1 · · · xn,1 xn+1,1
...

...
...

...

x1,n · · · xn,n xn+1,1

v1 · · · vn vn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(−1)n

vn+1
〈v, X̄1× X̄2× ...× X̄n〉
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=
(−1)n

vn+1
〈±N̄(u), N̄(u)

√
ḡ〉= ±

√
ḡ

vn+1
6= 0

For (u,v) = (u, N̄(u)) ∈C(h̄). This completes the proof of the proposition.

We can define a Lagrangian immersion germ whose generating family is the height function

of M̄ = X̄(U) as follows [13, 18]:

For the n− sphere Sn, we consider the local coordinate Ui = v = (v1,v2, ...,vn+1) ∈ Sn|vi 6= 0.

Since T ∗Sn|Ui is a trivial bundle, we define a map

Li(h̄) : C(h̄)→ T ∗Sn|Ui(i = 1,2, ...,n)

by

Li(h̄)(u,v) = (v,x1(u)− xi(u)
v1

vi
, ...,

̂
xi(u)− xi(u)

vi

vi
, ...,xn(u)− xi(u)

vn

vi
),

where (v1,v2, ...,vn+1)∈ Sn we denote (x1, ...,xi, ...,xn+1) as a point in the n- dimensional space

such that the i-th component xi is removed.

By definition, and by analogous to the results in [12, 13, 14, 18] we have the following

corollary of the above proposition:

Corollary 9. Under the above notations, L(h̄)is a Lagrangian immersion such that the height

function h̄ : U×Sn→ R of M̄ = X̄(U) is a generating family L(h̄).

Therefore, the plus component of the Lagrangian map π ◦ L(h̄) can be identified with the

Gauss map of M̄ = X̄(U) . We also call L(h̄) the Lagrangian lift of the Gauss map G : U → Sn

of M̄ = X̄(U).

On the other hand, we consider the extended height function h̃ : U × (Sn×R)→ R of M̄ =

X̄(U), We have the following proposition.

Proposition 10. : The extended hight function h̃ : U × (Sn×R)→ R of M̄ = X̄(u) is Morse

families of function.

Proof. The proof is the similar calculation as the case for the height function.

for any v = (v1,v2, ...,vn+1) ∈ Sn we have v2
1+v2

2+ ...+v2
n+1 = 1 let vn+1 > 0 then the extended

hight function takes the form:
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h̃(u,v,r) = x1(u)v1 + x2(u)v2 + ...+ xn(u)vn + xn+1(u)
√

1− (v2
1 + v2

2 + ...+ v2
n)− r

From Legendrian singularities then, one can prove that mapping

4∗h̃ =
(

h̃, ∂ h̃
∂u1

, ∂ h̃
∂u2

, ..., ∂ h̃
∂un

)
is non-singular at any point in ∑∗(h̃) =4∗h̃(0). The Jacobian matrix of4∗h̃ is given as follows:

〈X̄1,v〉 · · · 〈X̄n,v〉 x1− xn+1
v1

vn+1
· · · xn− xn+1

vn
vn+1

−1

〈X̄11,v〉 · · · 〈X̄1n,v〉 x1,1− xn+1,1
v1

vn+1
· · · xn,1− xn+1,1

vn
vn+1

0
...

...
...

...
...

...
...

〈X̄n1,v〉 · · · 〈X̄nn,v〉 x1,n− xn+1,n
v1

vn+1
· · · xn,n− xn+1,n

vn
vn+1

0

 .

Using the some terminology used in proposition (8) it is easy to show that the rank of the matrix:

A =


x1,1− xn+1,1

v1
vn+1

· · · xn,1− xn+1,1
vn

vn+1
...

...
...

x1,n− xn+1,n
v1

vn+1
· · · xn,n− xn+1,n

vn
vn+1


equal n at (u,v,r) ∈ ∑∗(h̃). thus, we have the proof.

We can also define a Legendrian immersion germ whose generating family is the extended

height function of M̄ = X̄(U) as follows (see [13, 18]). For the n− sphere Sn, we we consider

the local coordinate Ui = v = (v1,v2, ...,vn+1) ∈ Sn|vi 6= 0. Since PT ∗(Sn× R)|(Ui× R) is a

trivial bundle, we define a map

`i(h̃) : ∑∗(h̃)|U× (Ui×R)→ PT ∗(Sn×R)|(Ui×R)(i = 1,2, ...,n)

by

`i(h̃)(u,v,r)(v,r, [x1(u)− xi(u)
v1

vi
: ... :

̂
xi(u)− xi(u)

vi

vi
: ... : xn(u)− xi(u)

vn

vi
) :−1]),

where (v1,v2, ...,vn+1) ∈ Sn we denote (x1, ...,xi, ...,xn+1) as a point in the n- dimensional

space such that the i-th component xi is removed.

Therefore we can define a global Legendrian immersion, `i(h̃) : ∑∗(h̃)→ PT ∗(Sn×R).

By definition, and by analogous to the results in [12, 13, 14, 18] we have the following

corollary of the above proposition:
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Corollary 11. Under the above notations, L(h̃)is a Legendrian immersion such that the ex-

tended height function h̃ : U× (Sn×R)→ R of M̄ = X̄(U) is a generating family `(h̃).

Therefore, we have the Legendrian immersion `(h̃) whose wave front is the cylindrical pedal

of M̄ = X̄(U) We call `(h̃) the Legendrian lift of the cylindrical pedal CPeM̄ of M̄ = X̄(U).

4. Contact with hypersurfaces

We start to review the theory of contact due to Montaldi [5, 6].

Let Xi, Yi ,(i = 1,2) be submanifolds of Rn with dimX1 = dimX2 and dimY1 = dimY2. We say

that the contact of X1 and Y1 at y1 is of the same type as the contact of X2 and Y2 at y2 if there

is a diffeomorphism germ φ : (Rn,y1)→ (Rn,y2) such that φ(X1) = X2 and φ(Y1) = Y2. In this

case we write K(X1,Y1;y1) = K(X2,Y2;y2). It is clear that in the definition Rn could be replaced

by any manifold.

Two function germs g1;g2 : (Rn;ai)→ (R;0)(i = 1;2) are K-equivalent if there are a diffeo-

morphism germ φ : (Rn;a1)→ (Rn;a2), and a function germ ?β : (Rn;a1)→ R with β (a1) 6= 0

such that g1 = β .(g2 ◦φ).

In [5] Montaldi has shown the following theorem.

Theorem 12. Let Xi, Yi, (i = 1,2) be submanifolds of Rn with dimX1 = dimX2 and dimY1 =

dimY2. Let gi : (Xi,xi)→ (Rn,yi) be immersion germs and fi : (Rn,yi)→ (Rp,0) be submersion

germs with (Yi,yi) = ( f−1
i (0),yi). Then K(X1,Y1;y1) = K(X2,Y2;y2) if and only if f1 ◦ g1 and

f2 ◦g2 are K-equivalent.

On the other hand, we define the following functions:

H : Rn+1×Sn→ R; H (x,v) = 〈x,v〉,

H̃ : Rn+1× (Sn×R)→ R; H̃ (x,v,r) = 〈x,v〉− r.

Now consider the contact of hypersurfaces with hyperplane. For any v ∈ Sn we denote that

hv(x) = H (x,v) and we have a hyperplane h−1
v (r). We denote it as h̄(v,r). For any u ∈U , we
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consider the unit normal vector v = N̄(u) and r = 〈X̄(u), N̄(u)〉, then we have

hv ◦ X̄(u) = H ◦ (X̄× idSn)(u,v) = h̄(u, N̄(u)) = r.

We have the relation
∂hv ◦ X̄(u)

∂ui
=

∂ h̄
∂ui

(u, N̄(u)) = 0,

for i = 1,2, ...,n. This means that the hyperplane h−1
v (x) = H (x,v) is tangent to M̄ = X̄(U)

at p = X̄(u). so, h̄(v,r) is the tangent hyperplane of M̄ = X̄(U) at p = X̄(u) (or, u), which we

write h̄(X̄(U),u). Let v1,v2 be unit vectors. If v1,v2 are linearly dependent, then corresponding

hyperplanes h̄(v1,r1), h̄(v2,r2) are parallel. Then we have the following lemma:

Lemma 13. Let X̄ : U → Rn+1 be an inversion hypersurface. Consider two points u1,u2 ∈U.

Then

(1) CPeM̄(u1) =CPeM̄(u2) if and only if h̄(X̄(U),u1) = h̄(X̄(U),u2).

(2) Ḡ(u1) = Ḡ(u2) if and only if h̄(X̄(U),u1), h̄(X̄(U),u2) are parallel.

we call (X̄−1(h̄(X̄(U),u)),u) the tangent indicatrix germ of M̄ = X̄(U) at u (or p).we can

borrow some basic invariants from the singularity theory on function germs [8]. We can denote

that:

T −ord(X̄(U),u0) = dim
C∞

u0
(U)

〈〈X̄(u), N̄(u0)〉− r0,〈X̄i(u), N̄(u0)〉〉C∞
u0

,

where r0 = 〈X̄(u0), N̄(u0)〉. T −ord(X̄(U),u0) is called the K-codimension of h̃(v0,r0). How-

ever, we call it the order of contact with the tangent hyperplane at X̄(u0). We also have the

notion of corank of function germs.

T − corank(X̄(U),u0) = n− rankHess(h̄v0(u0)),

where v0 = N̄(u0).

By Proposition 7, X̄(u0) is a parabolic point if and only if T − corank(X̄(U),u0)≥ 1. More-

over X̄(u0) is a flat point if and only if T − corank(X̄(U),u0) = n.

On the other hand, a function germ f : (Rn,a) → R has the Ak − type singularity if and

only if f is K-equivalent to the germ xk+1
1 ± x2

2± ·· · ± x2
n. If T − corank(X̄(U),u0) = n− 1,

the height function hv0 has the Ak − type singularity at u0 in generic. In this case we have
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T −ord(X̄(U),u0) = k. This number is equal to the order of contact in the classical sense (cf.,

[9]). This is the reason why we call T − ord(X̄(U),u0) the order of contact with the tangent

hyperplane at X̄(u0).

5. Inversion hypersurfaces in four space E4

The classification of the singularities depends on the following theorem:

Theorem 14. If the support function of the main hypersurface is not defined then the Gauss

map of the main and the Inversion hypersurface has the same singular pint.

Proof. From proposition 1 we have N̄(u) =−N(u) .

We assume that the support function of the main hypersurface is defined,Using the classi-

fication singularities on stable Legendrian mappings which introduced by Thoms Elementary

Catastrophes theorem:

Let Ḡ : (U,u0)→ (R4,v0) be the Gauss map of an inversion hypersurface X̄ and hv0 : (U,u0)→

R be the height function germ at v0 = Ḡ(u0) = N̄(u0). Then we have the following theorems:

Theorem 15. u0 is a parabolic point of X̄ if and only if T −corank(X̄(U),u0)≥ 1 (i.e.,u0 is not

a flat point of X̄).

If u0 is a parabolic point of X̄ , then h̃(v0,r0) has the Ak-type singularity for k = 2, 3, 4 or D±4

singularity where h̃(v0,r0)(u) = hv0(u)− r0.

Theorem 16. Assume u0 is a parabolic point of X̄ . Then the following statements are equiva-

lent:

(a) The cylindrical pedal CPeM̄ has a cuspidaledge at u0.

(b) h̃(v0,r0)(u) has A2-type singularity.

(c) T −ord(X̄(U),u0) = 2.

(d) Tangent indicatrix (X̄−1(h̄(X(U),u0),u0) is a surface ⊂ R3, and it is diffeomorphic to the

surface given by {(u,v,w) : u3± v2±w2 = 0}.

(e) For each ε > 0, there exist two distinct points u1,u2 ⊂ U such that |u0− ui| < ε for i =
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1, 2, both of u1,u2 are not parabolic points and the tangent planes to M̄ = X̄(U) at u1,u2 are

parallel.

(f) The Gauss map Ḡ is the fold at u0.

Theorem 17. Assume u0 is a parabolic point of X̄ . Then the following statements are equiva-

lent:

(a) The cylindrical pedal CPeM̄ has a swallowtail. at u0.

(b) h̃(v0,r0)(u) has A3-type singularity.

(c) T −ord(X̄(U),u0) = 3.

(d) Tangent indicatrix (X̄−1(h̄(X(U),u0),u0) is a surface ⊂ R3, and it is diffeomorphic to the

surface given by {(u,v,w) : u4± v2±w2 = 0}.

(e) For each ε > 0, there exist two distinct points u1,u2,u3 ⊂U such that |u0−ui|< ε for i = 1,

2, 3 both of u1,u2,u3 are not parabolic points and the tangent planes to M̄ = X̄(U) at u1,u2,u3

are parallel.

(f) The Gauss map Ḡ is the cuspidaledgeat u0.

Theorem 18. Assume u0 is a parabolic point of X̄ . Then the following statements are equiva-

lent:

(a) The cylindrical pedal CPeM̄ is a butterfly at u0.

(b) h̃(v0,r0)(u) has A4-type singularity.

(c) T −ord(X̄(U),u0) = 4.

(d) Tangent indicatrix (X̄−1(h̄(X(U),u0),u0) is a surface ⊂ R3, and it is diffeomorphic to the

surface given by {(u,v,w) : u5± v2±w2 = 0}.

(e) For each ε > 0, there exist two distinct points u1,u2,u3,u4 ⊂U such that |u0−ui|< ε for i

= 1, 2, 3, 4 both of u1,u2,u3,u4 are not parabolic points and the tangent planes to M̄ = X̄(U)

at u1,u2,u3,u4 are parallel.

(f) The Gauss map Ḡ is the swallowtail at u0.

Theorem 19. Assume u0 is a parabolic point of X̄ . Then the following statements are equiva-

lent:

(a) The cylindrical pedal CPeM̄ is a ell/hyp umbilic at u0.
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(b) h̃(v0,r0)(u) has D±4-type singularity.

(c) T −ord(X̄(U),u0) = 4.

(d) Tangent indicatrix (X̄−1(h̄(X(U),u0),u0) is a surface ⊂ R3, and it is diffeomorphic to the

surface given by {(u,v,w) :±u3 + v2v±w2 = 0}.

(e) For each ε > 0, there exist two distinct points u1,u2,u3,u4 ⊂U such that |u0−ui|< ε for i

= 1, 2, 3, 4 both of u1,u2,u3,u4 are not parabolic points and the tangent planes to M̄ = X̄(U)

at u1,u2,u3,u4 are parallel.

(f) The Gauss map Ḡ at u0 is diffeomorphic to the functions:{
−vu+ v

√
3
√

4v2 +3u2,
1
2

(
−4v2−u

(
3u+

√
3
√

4v2 +3u2
))

,u
}

{
−vu+ v

√
3
√

4v2 +3u2,
1
2

u
(

3u+
√

3
√

4v2 +3u2
)
,u
}

corresponding to D+4,D−4 respectively.

Proof. We have shown in section that u0 is a parabolic point if and only if T−corank(X̄(U),u0)≥

1. Since n = 4, we have T − corank(X̄(U),u0) ≤ 3. Since the extended height function germ

h̃ : U × (Sn×R)→ R can be considered as a generating family of the Legendrian immersion

germ `(h̃),h̃(v0,r0) has the Ak-type singularity for k = 1, 2, 3, 4 or D±4 singularity.I.e the corank

of the Hessian matrix of the extend height function at (u0,v0)(parabolic point)equal to one.

For theorem 16 using the above same way we find; If the rank of the Hessian matrix of the

extend height function is equal to two then h̃(v0,r0) have A2-singularity and using the theory of

Legendrian singularities we find CPeM̄ has a cuspidaledge and so the T − ord(X̄(U),u0) = 2

conditions (a),(b),(c) hold (respectively, theorem 17; (a),(b),(c), theorem 18; (a),(b),(c), theorem

19; (a),(b),(c)).

If h̃(v0,r0) has A2-singularity,then it is K-equivalent to the germ u3± v2±w2, Since the K-

equivalence preserves the zero level sets, the tangent indicatrix is diffeomorphic to the surface

given by u3± v2±w2 = 0.

Form for the A3-singularity is given by u4± v2±w2 , so the tangent indicatrix is diffeomor-

phic to the surface given by u4± v2±w2 = 0.

Form for the A4-singularity is given by u5± v2±w2 , so the tangent indicatrix is diffeomor-

phic to the surface given by u5± v2±w2 = 0.
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Form for the D±4-singularity is given by ±u3 + v2u±w2 , so the tangent indicatrix is diffeo-

morphic to the surface given by ±u3 + v2u±w2 = 0.

This means that the condition (d)in theorem 16 (respectively,theorems 17, 18, 19; (d)) is also

equivalent to the other conditions.

The parabolic sets for this case are given as A2, A3, A4, D+4 and D−4 which are equivalent to

:

u = 0 (plane), 6u2+v = 0 (fold), 10u3+3uv+w = 0 (cusp), 3u2+w2+uv = 0 and 3u2−w2+

uv = 0 respectively as shown in the last four figure in [12,13].

According to the classification results on stable Legendrian mappings, we have also can give

the classification of the singularities sets for the map germ f : (R3,0)→ (R4,0) are given by:

A2, A3, A4, D+4 and D−4 which are given analytically through the sets:

{u,v,w,0},
{

2u3,3u2,v,w
}

,
{

3u4 +u2v,4u3 +uv,v,w
}

,{
4u5 +2u3v+wu2,5u4 +3u2v+2uw,v,w

}
,
{

2u3 +2uv2 + v2w,2uv+2vw,3u2 + v2,w
}

and
{

2u3−2uv2− v2w,2uv+2vw,3u2− v2,w
}

respectively.

Remark 20. The geometrical interpretation of theorems 16, 17, 18 and 20 are given though

figures [1,2,3,4,5,6,7,8,9, 10,11]
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FIGURE 1. Tangent indicatrix for theorem 16

FIGURE 2. cuspidaledge and fold (theorem 16)
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FIGURE 3. Tangent indicatrix for theorem 17

FIGURE 4. swallowtail and cuspidaledge (theorem 17)

FIGURE 5. Tangent indicatrix for theorem 18

FIGURE 6. projection of butterfly on some hyperplane (theorem 18)
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FIGURE 7. Tangent indicatrix for theorem 19

FIGURE 8. projection of D+4 on some hyperplane (theorem 19)

FIGURE 9. the shape of Gauss map (D+4) (theorem 19)

FIGURE 10. projection of D−4 on some hyperplane (theorem 19)
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FIGURE 11. the shape of Gauss map (D+4) (theorem 19)

FIGURE 12. the shape of parabolic set in case A3, A4

FIGURE 13. the shape of parabolic set in case D+4, D−4


