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Abstract. An integer distance graph is a graph G(Z,D) with the set of integers as vertex set and an

edge joining two vertices u and v if and only if | u− v |∈ D where D is a subset of the positive integers.

It is known that χ(G(Z,P )) = 4 where P is a set of prime numbers. In this paper we have identified the

class three sets when the distance set D is not only a subset of primes P but also a special class of primes

like Markov primes, Bell primes, Dihedral primes, Mills primes, Ramanujan primes, Quartan primes,

Isolated primes and Thabit Number primes. We also indicate the existence of an alternative formulation

for a prime distance graph and raise certain open problems.
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1. Introduction

The graphs considered in this paper are simple and undirected. A k-coloring of a graph

G is an assignment of k different colors to the vertices of G such that adjacent vertices

receive different colors. The minimum cardinality k for which G has a k-coloring is called

the chromatic number of G and is denoted by χ(G).

∗Corresponding author

Received March 22, 2012

1257



1258 V.YEGNANARAYANAN∗ AND A.PARTHIBAN

We begin with the plane coloring problem. What is the least number of colors needed

to color all the points of the Euclidean plane such that no two points of distance one

have the same color? The corresponding problem for the real line is easy. χ(G(R,D =

{1})) = 2. To see this, partition the vertex set of G into two non empty disjoint sets

such that their union is R. That is, V (R) = V1 ∪ V2, where V1 =
∞⋃

n=−∞
[2n, 2n + 1) and

V2 =
∞⋃

n=−∞
[2n+ 1, 2n+ 2). Now color all the vertices of V1 with color 1 and the vertices of

V2 with color 2. As Vi, i = 1, 2 are independent and G(R,D = {1}) is bipartite the result

follows. Clearly G(R2, {1}) is an infinite graph. The problem of finding the chromatic

number of G(R2, {1}) is enormously difficult. Paul Erdos has mentioned this problem

as one of his favorite problems. Although he could not solve this problem he has made

a significant progress towards the solution of this problem with a vital result given as

follows: First let us state the famous Rado’s Lemma[13].

Lemma 1.1. Let M and M1 be arbitrary sets. Assume that to any v ∈ M1 there

corresponds a finite subset Av of M . Assume that to any finite subset N ⊂ M1, a

choice function xN(v) is given, which attaches an element of Av to each element v of

N :xN(v) ∈ Av. Then there exists a choice function x(v) defined for all v ∈M1 (x(v) ∈ Av

if v ∈ M1) with the following property. If K is any finite subset of M1, then there exists

a finite subset N(K ⊂ N ⊂ M1), such that, as far as K is concerned, the function x(v)

coincides with xN(v) : x(v) = xN(v)(v ∈ K).

Theorem 1.1. Let k be a positive integer, and let the graph G have the property that

any finite subgraph is k-colorable. Then G is k-colorable itself[5].

2. Preliminaries

A prime distance graph is a graph G(Z, P ) with the set of integers as vertex set and

with an edge joining two vertices u and v if and only if | u− v |∈ P where P is the set of

all prime numbers.
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By a chromatic subgraph of a graph G we mean a minimal subgraph of G with the same

chromatic number as G.What class of graphs will include a chromatic subgraph of G(Z,D)

for D ⊆ Z ?.

A graph G is color critical if its only chromatic subgraph is G itself. For any positive

integer m,n, let G(m,n) be the graph comprising (m + 1) distinct vertices u0, u1, ..., um

and m distinct subgraphs H1, ..., Hm each of which is a copy of Kn, (Where Kn is the

complete graph on n vertices)such that u0 is adjacent to um and each vertex of Hi is

adjacent to ui−1 and ui, for 1 ≤ i ≤ m. G(m, 1) ∼= C2m+1, G(1, n) ∼= Kn+2, where C2m+1

is the cycle on 2m+1 vertices.

The following results are known.[6]

Lemma 2.1. For any positive integers m,n the graph G(m,n) is color critical with

χ(G(m,n)) = n+ 2.

Theorem 2.1. χ(G(Z, {2, 3, 5})) = 4 and hence χ(G(Z, P )) = 4.

In view of Theorem 2.1,we can allocate the subsets D of P to four classes, according as

G(Z,D) has chromatic number 1,2,3 or 4. Obviously empty set is the only member of

class 1 and every singleton subset is in class 2.

Theorem 2.2. χ(G(Z,D = {r, s})) = 2 if r, s are both odd and are coprime.

Theorem 2.3. Let D ⊆ P, with | D |≥ 2. Then D may be classified as follows:

(a) D is in class 2 if 2 6∈ D; otherwise D is in class 3 or 4.

(b) If 2 ∈ D and 3 6∈ D, then D is in class 3.

(c) If {2, 3} ⊆ D ⊆ {p ∈ P : p ≡ ±2(mod 5)}, then D is in class 3.

(d) If {2, 3} ⊆ D ⊆ {p ∈ P : p ≡ ±2,±3, 7(mod 14)}, then D is in class 3.

Proof of (a). By Theorem 2.2, If D is a subset of the odd primes then it is in class 2.

If D contains 2 and any odd prime p, then G(Z,D) contains a cycle v0v1...vpwv0 where

vi = 2i for 0 ≤ i ≤ p, and w = p. This cycle has order p + 2, which is odd, so has

chromatic number 3. Hence with Theorem 2.1, D is in class 3 or 4.
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Proof of (b). Here a proper coloring of G(Z,D) is obtained by assigning the integer x

to color class i precisely when x ≡ i(mod 3), for 0 ≤ i < 3. In view of (a), D is in class 3.

Proof of (c). Assign an integer x to color class i precisely when x ≡ 2i or 2i + 1(mod

5), for 0 ≤ i ≤ 1 and assign x to color class 2 if x ≡4(mod 5). The difference between

any two integers in the same color class is congruent to 0 or ±1(mod 5), no such pair is

adjacent in G(Z,D), if D = {p ∈ P : p ≡ ±2(mod 5)}. So with (a), if 2 ∈ D it follows

that D is in class 3.

Proof of (d). Assign each integer x to color class i, where i = 0 when x ≡0,1,5,6 or

10(mod 14); i = 1 when x =2,3,7,11 or 12(mod 14); i = 2 when x =4,8,9 or 13(mod

14). The difference between any two integers in the same color class is congruent to

0,±1,±4,±5,±6(mod 14), so no such pair is adjacent in G(Z,D) if D ⊆ {p ∈ P : p ≡

±2,±3, 7(mod 14)}. With (a), if 2 ∈ D, then D is in class 3.

Theorem 2.4. For any prime p > 5, {2, 3, p} is in class 3.

Proof. In view of Theorem 2.3, it is enough to demonstrate a proper 3-coloring for

G(Z, {2, 3, p}). First suppose p = 6k + 1, for some k > 0. Assign each integer x to color

class i, where 0 ≤ i ≤ 2 as follows: x ≡ a(mod 6k+ 4) with −4 ≤ a <6= 6k. If a ≥ 0 then

x → i when a = 2i or 2i + 1(mod 6). Also x → 0 if a = −4; x → 1 if a = −3 or −2,

x→ 2 if a = −1. No two integers in the same color class differ by ±2 or ±3 (mod 6k+4).

So this is a proper coloring. If p = 6k − 1, for some k ≥ 2. This time, for any integer x

let x ≡ a(mod 6k + 2), with −14 ≤ a < 6k − 12. If a ≥ 0 then x → i when a = 2i or

2i + 1(mod 6) with 0 ≤ i ≤ 2. As in the proof of Theorem 2.3(d), when a < 0 we assign

x → 0 if a ∈ {−14,−13,−9,−8,−4}, x → 1 if a ∈ {−12,−11,−7,−3,−2} and x → 2 if

a ∈ {−11,−6,−5,−1}. No two integers in the same color class differ by ±2 or ±3(mod

6k + 2). So this is a proper coloring and covers all the cases.

3. Some Special Class of Primes
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In this section we introduce certain interesting set of prime numbers. Each such set of

primes have certain unique properties that make them special and are found to be useful

from both theoretical and practical point of view.

3.1.Markov Primes

Markov numbers are defined to be the integers occurring as solutions of the Diophantine

equation: x2 + y2 + z2 − 3xyz = 0...(1). When talking about a triplet satisfying the

equation (1), say, (x0, y0, z0) we will always assume that x0 ≤ y0 ≤ z0...(2). The only

triplets satisfying (1) in which an equality occurs in (2) are (1, 1, 1) and (1, 1, 2). To see

this, assume that x0 = y0. This leads to the equation in z : 2x2+z2−3x2z = 0. Solving for

z, we get z = 1
2
(3x2± x

√
9x2 − 8). This requires that 9x2− 8 to be a perfect square, say,

t2. Hence 9x2−8 = t2 or 9x2−t2 = 8 = 1.8 = 2.4. That is (3x−t)(3x+t) = 8 = 1.8 = 2.4.

This leads to two possibilities: 3x − t = 1 and 3x + t = 8 which implies 6x = 9 so no

integer solution and 3x − t = 2 and 3x + t = 4 implies x = 1. To solve for z, we plug

x = y = 1. Then (1) becomes z2 − 3z + 2 = 0 giving z = 1 or z = 2. Next assume that

y0 = z0. This leads to the equation in z : 2y2 + z2− 3y2z = 0 which is identical with with

the above case except that y replaces x. So the only solution in this case are also (1,1,1)

and (1,1,2).

Assume that (x, y, z) in a solution of (1) with x ≤ y ≤ z. If we keep two of the vari-

ables fixed; this produces a quadratic equation in the third variable, with two solutions.

Since the equation is monic with integer coefficients , the other solution is also an inte-

ger, call it x
′
, y
′
, z
′
, whichever is the case. If t2 + bt + c=0 is a quadratic equation in t

with roots r1, r2, then r1,2 = 1
2
(−b ±

√
b2 − 4c), r1 + r2 = −b, r1r2 = c. Thus we have

the following formulas: x
′

= 3yz − x = (y2+z2)
x

= 1
2
(3yz ±

√
9y2z2 − 4(y2 + z2))...(3).

y
′

= 3xz − y = x2+z2

y
= 1

2
(3xz ±

√
9x2z2 − 4(x2 + z2))...(4), z

′
= 3xy − z = x2+y2

z
=

1
2
(3xy ±

√
9x2y2 − 4(x2 + y2))...(5). For example, the triplet of solutions (1,2,5) leads to

three new solutions: (2,5,29) where x
′

= 29, (1,5,13) where y
′

= 13 and (1,1,2) where

z
′
= 1. We can actually figure out the signs in the formulas (3),(4) and (5).

Suppose 1 ≤ t < z and 1 ≤ x < y are integers. Then clearly 1
2
(3tz+

√
9t2z2 − 4(t2 + z2)) >

3tz
2
> z and 1

2
(3xy−

√
9x2y2 − 4(x2 + y2)) < y. To see the second inequality, let ψ(x, y) =
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1
2
(3xy −

√
9x2y2 − 4(x2 + y2)). Then ψ(x, y) = 1

2
3xy(1 −

√
1− 4

9
( 1
x2 + 1

y2
)) and a little

more computation yields ψ(x, y) = 1

1+
√

1− 4
9
( 1
x2

+ 1
y2

)
.1
2
.3xy.4

9
( 1
x2 + 1

y2
). Now , the first frac-

tion, the one with the square root in the denominator, assumes maximum when x = 1

and y = 1, because of the hypothesis on x and y. Hence ψ(x, y) ≤ 3
5
.1
2
.3.4

9
.( y

x
+ x

y
) ≤

2
5
(y + 1) < y. So in view of this observation, if x < y < z then in the formula (3),(4) the

sign is positive and in the formulas (5) the sign is negative. To note this if negative sign

holds in (3) or (4) then x or y = 1
2
(3tz +

√
9t2z2 − 4(t2 + z2)) where t = y or x, which

would imply that x > z or y > z, contrary to hypothesis. If positive sign holds in (5)

then z = 1
2
(3xy −

√
9x2y2 − 4(x2 + y2)) < y again contradicting the hypothesis.

Let (x, y, z) be a solution of (1) satisfying (2). Define X(x, y, z) = (y, z, x
′
), Y (x, y, z) =

(x, z, y
′
), Z(x, y, z) = (x, z

′
, y) or (z

′
, x, y) where x

′
, y
′
, z
′

are given by the formulas (3),

(4) and (5). If x < y < z then z < y
′
< x

′
and z

′
< y. From the above observation z < y

′

and z
′
< y are immediate. Now x

′ − y′ = (3yz − x) − (3xz − y) = (3z + 1)(y − x) > 0.

So y
′
< x

′
. Every solution of (1) can be obtained by starting with the triple (1,1,1)

and repeatedly obtaining new solutions by one of the transformations X and/or Y [12].

There is a conjecture due to Frobenius[10]. Given a Markov number z, the sequence of

transformations of X ′s and Y ′s leading from (1,1,1) to (x, y, z) is unique. It is known that

this is true when z is a power of a prime[1, 2, 3, 4].

Markov primes are those primes p for which there exist integers x and y such that

x2 + y2 + p2 = 3xyp. The first few such prime numbers are 2, 5, 13, 29, 89, 233,

433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229, 1686049,

2922509, 3276509, 94418953,321534781, 433494437, 780291637, 1405695061, 2971215073,

19577194573, 25209506681...

3.2.Bell Primes

The nth Bell number, named after Eric Temple Bell, is the number of partitions of a

set with n members, or equivalently, the number of equivalence relations on it. Starting

with B0 = B1 = 1, the first few Bell numbers are:1, 1, 2, 5, 15, 52, 203, 877, 4140,

21147, 115975,... In general, Bn is the number of partitions of a set of size n. A partition
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of a set S is defined as a set of nonempty, pairwise disjoint subsets of S whose union

is S. For example, B3 = 5 because the 3-element set {a, b, c} can be partitioned in 5

distinct ways:{{a}, {b}, {c}}, {{a}, {b, c}}, {{b}, {a, c}},{{c}, {a, b}}, {{a, b, c}}. B0 is 1

because there is exactly one partition of the empty set. Every member of the empty set

is a nonempty set (that is vacuously true), and their union is the empty set. Therefore,

the empty set is the only partition of itself. Note that, as suggested by the set notation

above, we consider neither the order of the partitions nor the order of elements within each

partition. This means the following partitioning are all considered identical:{{b}, {a, c}},

{{a, c}, {b}}, {{b}, {c, a}}, {{c, a}, {b}}. The Bell numbers can easily be calculated by cre-

ating the so-called Bell triangle, also called Aitken’s array or the Peirce triangle. 1.Start

with the number one. Put this on a row by itself. 2.Start a new row with the right-

most element from the previous row as the leftmost number, 3. Determine the numbers

not on the left column by taking the sum of the number to the left and the number

above the number to the left (the number diagonally up and left of the number we are

calculating), 4.Repeat step three until there is a new row with one more number than

the previous row, 5. The number on the left hand side of a given row is the Bell num-

ber for that row. The first few Bell numbers that are primes are: 2, 5, 877, 27644437,

35742549198872617291353508656626642567,...

3.3.Dihedral Primes

A dihedral prime or dihedral calculator prime is a prime number that still reads like

itself or another prime number when read in a seven-segment display, regardless of orienta-

tion (normally or upside down), and surface (actual display or reflection on a mirror). The

first few decimal dihedral primes are 2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881,

118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081... The

smallest dihedral prime that reads differently with each orientation and surface combi-

nation is 120121 which becomes 121021 (upside down), 151051 (mirrored), and 150151

(both upside down and mirrored). The digits 0, 1 and 8 remain the same regardless of

orientation or surface (the fact that 1 moves from the right to the left of the seven-segment

cell when reversed is ignored). 2 and 5 remain the same when viewed upside down, and
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turn into each other when reflected in a mirror. In the display of a calculator that can

handle hexadecimal, 3 would become E reflected, but E being an even digit, the 3 can’t be

used as the first digit because the reflected number will be even. Though 6 and 9 become

each other upside down, they are not valid digits when reflected, at least not in any of

the numeral systems pocket calculators usually operate in. Strobogrammatic primes that

don’t use 6 or 9 are dihedral primes. This includes repunit primes and all other palin-

dromic primes which only contain digits 0, 1 and 8 (in binary, all palindromic primes are

dihedral). It appears to be unknown whether there exist infinitely many dihedral primes,

but this would follow from the conjecture that there are infinitely many repunit primes.

The palindromic prime 10180054 + 8× (1058567−1)
9

×1060744 + 1, discovered in 2009 by Darren

Bedwell, is 180055 digits long and may be the largest known dihedral prime as of 2009.

3.4.Mills Primes

Mills’ constant is defined as the smallest positive real number A such that the floor of

the double exponential function bA3nc is a prime number, for all positive integers n. This

constant is named after William H. Mills who proved in 1947 the existence of A based on

results of Guido Hoheisel and Albert Ingham on the prime gaps. Its value is unknown, but

if the Riemann hypothesis is true it is approximately 1.3063778838630806904686144926...

The primes generated by Mills’ constant are known as Mills primes; if the Riemann

hypothesis is true, the sequence begins 2, 11, 1361, 2521008887... If a(i) denotes the

ith prime in this sequence, then a(i) can be calculated as the smallest prime number

larger than a(i − 1)3. In order to ensure that rounding A3n , for n=1,2,3,... produces

this sequence of primes, it must be the case that a(i) < (a(i − 1) + 1)3. The Hoheisel-

Ingham results guarantee that there exists a prime between any two sufficiently large

cubic numbers, which is sufficient to prove this inequality if we start from a sufficiently

large first prime a(1). The Riemann hypothesis implies that there exists a prime between

any two consecutive cubes, allowing the sufficiently large condition to be removed, and

allowing the sequence of Mills’ primes to begin at a(1) = 2. Currently, the largest known

Mills prime (under the Riemann hypothesis) is (((((((((23+3)3+6)3+80)3+12)3+450)3+

894)3 + 3636)3 + 70756)3 + 97220, which is 20,562 digits long.
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3.5.Ramanujan Primes

Ramanujan prime is a prime number that satisfies a result proven by Srinivasa Ra-

manujan relating to the prime-counting function. In 1919, Ramanujan published a new

proof of Bertrand’s postulate which, as he notes, was first proved by Chebyshev [14]. At

the end of the two-page published paper, Ramanujan derived a generalized result, and

that is: π(x) − π(x/2) ≥ 1, 2, 3, 4, 5, ... for all x ≥ 2, 11, 17, 29, 41, ...respectively,

where π(x) is the prime-counting function, equal to the number of primes less than or

equal to x. The converse of this result is the definition of Ramanujan primes: The nth

Ramanujan prime is the least integer Rn for which π(x) − π(x/2) ≥n, for all x ≥ Rn.

The first five Ramanujan primes are thus 2, 11, 17, 29, and 41. Equivalently, Ramanujan

primes are the least integers Rn for which there are at least n primes between x and x/2

for all x ≥ Rn. Note that the integer Rn is necessarily a prime number: π(x) − π(x/2)

and, hence,π(x) must increase by obtaining another prime at x = Rn. Since π(x)−π(x/2)

can increase by at most 1, π(Rn)− π(Rn/2) = n.

3.6.Quartan Primes

A quartan prime is a prime number of the form x4 + y4, where x > 0, y > 0. The odd

quartan primes are of the form 16n + 1. For example, 17 is the smallest odd quartan

prime: 17 = 14 + 24. The first few quartan primes are 2, 17, 97, 257, 337, 641, 881,...

3.7.Isolated Primes

An isolated prime is a prime number p such that neither p − 2 nor p + 2 is prime. In

other words, p is not part of a twin prime pair. For example, 23 is an isolated prime since

21 and 25 are both composite. The first few isolated primes are 2, 23, 37, 47, 53, 67, 79,

83, 89, 97,...

3.8.Thabit Number Primes

A Thabit number, Th?bit ibn Kurrah number, or 321 number is an integer of the form

3?2n − 1 for a non-negative integer n. The first few Thabit numbers are: 2, 5, 11, 23, 47,

95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431,
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1572863,... The first few Thabit numbers that are prime (also known as 321 primes): 2,

5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, ... As of April 2008,

the known n values which give prime Thabit numbers are: 0, 1, 2, 3, 4, 6, 7, 11, 18, 34,

38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306, 324, 391, 458, 470, 827, 1274, 3276, 4204,

5134, 7559, 12676, 14898, 18123, 18819, 25690, 26459, 41628, 51387, 71783, 80330, 85687,

88171, 97063, 123630, 155930, 164987, 234760, 414840, 584995, 702038, 727699, 992700,

1201046, 1232255, 2312734, 3136255, 4235414.

4. χ of special Prime Distance Graphs

Here we compute the chromatic number of the distance graph: G(Z,D), when D is a

set/subset of any of the above listed primes.

Theorem 4.1. χ(G(Z,D))=3, when D is a finite/infinite set/subset as the case may

be of 1)Bell primes, 2)Dihedral primes, 3)Mills primes, 4)Ramanujan primes, 5)Quartan

primes, 6)Isolated primes, 7)Markov primes, 8)Thabit Number primes.

Proof. First note that all of the above listed primes have the only even prime integer 2

as one of its element but at the same time the odd prime integer 3 is not appearing in the

list of any of the above mentioned special primes. So using Theorem 2.3(b) we deduce

that χ(G(Z,D))=3.

5. Alternative Formulations of Prime Distance Graphs

Prime distance graphs were introduced by Eggleton, Erdos and Skilton in 1985[6].

Research in prime distance graphs has since focused on the chromatic number of G(Z,D)

where D is a non-empty proper subset of P [8, 9, 15, 16, 17, 18]. Note that all these

graphs are infinite(non-induced) subgraphs of G(Z,D).

Alternatively a Prime Distance Graph can be defined as one for which there exists a

one-to-one labeling f : V (G) → Z such that for any two adjacent vertices u and v, the

integer | f(u) − f(v) | is prime. We call f a prime distance labeling of G. So G is a

Prime Distance Graphs if and only if there exists a prime distance labeling of G. Note

that in a prime distance labeling, the labels on the vertices of G must be distinct, but
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the labels on the edges need not be. For example, the path Pn = u1u2...un+1 is a prime

distance graph with prime distance labeling f : V (Pn)→ Z defined by f(ui) = 3i− 3 for

1 ≤ i ≤ n + 1. Similarly every bipartite graph is a prime distance graph. To see this, it

is enough to exhibit a prime distance labeling of complete bipartite graph Km,n as every

subgraph of a prime distance graph is a prime distance graph. By the famous Green-

Tao’s Theorem(”For every positive integer k, there exists a prime arithmetic progression

of length k”) there is an arithmetic sequence of m + n − 1 primes p − (m − 1)k, p −

(m − 2)k, ..., p − k, p, p + k, ..., p + (n − 2)k, p + (n − 1)k. Let U and V be the partite

sets of G = Km,n with | U |= m and | V |= n. Allot to the vertices of V the labels

p, p + k, ..., p + (n − 1)k, and to the vertices of U the labels 0, k, 2k, ..., (m − 1)k. Then

differences between the labels of vertices of U and the labels of vertices of V are all of the

form p+ tk with t ∈ {−(m−1),−(m−2), ...,−1, 0, 1, ..., n−2, n−1} and each such p+ tk

is a prime. In other words, every 2-chromatic graph is a prime distance graph. But note

that not every 3-chromatic graph is a prime distance graph as the complete equitripartite

graph with three vertices on each part is not a prime distance graph.

5.1. Open Problems

In the alternative definition of prime distance graph we infer that f(uv) may still be

prime if uv is not an edge of G. It would be interesting to investigate by having another

formulation for prime distance graph to be one where we define f(uv) to be prime if and

only if uv is an edge of G. As all prime distance graphs have chromatic number at most

4, are all planar graphs prime distance graphs?
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