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Abstract: This paper presents a rectilinear distance multi-commodity multi-facility Weber problem 

with capacity constraints and finds the location of facilities and assigns the amount of each commodity 

to each customer at minimum cost. Although this problem is NP-hard and has neither convex nor 

concave objective function, considering probabilistic customer points make the problem more difficult. 

An exact and an approximated expected distance function is applied in order to solve the problem. An 

alternate location–allocation heuristic method which divides the problem into multi-commodity 

transportation subproblem and pure allocation subproblem is implemented until no improvement is 

observed. A typical example is illustrated and results are then reported.   
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1. Introduction 

Given the locations of J customers and their demands, the Multi-facility Weber 

Problem (MWP) is concerned with locating I uncapacitated facilities and allocating 
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them to the given J customers in order to satisfy their demand at a minimum total cost. 

The problem known as uncapacitated multi-Weber problem can be formulated as: 

min∑∑𝑤𝑗𝑑(𝐱𝑖 , 𝐚𝑗)𝑦𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 
  

s.t.   

∑𝑦𝑖𝑗

𝐼

𝑖=1

= 1 𝑗 = 1,… , 𝐽 
 

𝑦𝑖𝑗 ∈ *0,1+ 𝑖 = 1,… , 𝐼  , 𝑗 = 1,… , 𝐽  

𝑥𝑖 ∈ ℝ
2 𝑖 = 1,… , 𝐼  

where the objective is to minimize the sum of weighted traveled distances 

𝑤𝑖𝑑(𝑥𝑖 , 𝑎𝑗) between I new facilities 𝑥1, 𝑥2, … , 𝑥𝐼 ∈ ℝ
2  and J existing customers 

𝒜 = {𝑎1, 𝑎2, … , 𝑎𝐽} ⊂ ℝ
2. The demand or importance of j-th customer is denoted by 

positive values 𝑤𝑗 ∈ ℝ
2. The distance 𝑑(𝐱𝑖 , 𝐚𝑗) is the rectilinear distance between an 

established facility 𝑥𝑖 and customer 𝑎𝑗.  

The MWP, firstly introduced by Cooper [1], indicates that the objective function is 

neither convex nor concave, which makes it difficult to solve exactly. However, it was 

shown to be NP-hard by Sherali et al. [2]. The MWP becomes the so-called 

(single-facility) Weber problem when I = 1; i.e., one single facility is to be located. 

Then, Cooper [3] solved the location-allocation problems with some heuristic 

methods. The MWP with capacity constraints gives rise to the Capacitated 

Multifacility Weber Problem (CMWP). The Euclidean distance CMWP is initially 

proposed by Cooper [4] and then solved by Selim [5] based on a biconvex cutting 

plane procedure. For the same problem, Sherali et al. [6] proposed branch-and-bound 

algorithms based on an allocation-space-partitioning procedure. The NP-hardness of 

CMWP was proved by Sherali and Nordai [7]. For the rectilinear distance CMWP, 

Sherali et al. [8] developed an algorithm based on the Reformulation-Linearization 

Technique (RLT) stated in [9] to find optimal solutions. Aras et al. [10] and [11] 

extended the discrete approximation strategy based on the Alternate 

Location-Allocation (ALA) heuristic of Cooper [3] and the p-median heuristic for the 
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(uncapacitated) MWP by Hansen et al. [12]. Zainuddin and Salhi [13] and Luis et al. 

[14] introduced ALA-based heuristics for the CMWP. Brandeau and Chiu [15] 

considered the Cooper’s ALA heuristic for creating a random sample for to 

statistically estimate confidence intervals for the optimal objective function value 

(OFV) of the MWP. Akÿuz et al. [16] focused on the statistically estimate 

confidence intervals for OFV of the Multi-commodity Capacitated Multi-facility 

Weber Problem (MCMWP) based on the works of [10] and [14]. Akÿuz et al. [17] 

developed three approximate solution methods for MCMWP based on the Lagrangean 

relaxation and discrete approximation methods. 

In all of works mentioned above it is assumed that customers have predetermined 

locations. Whereas, in real world customers need to be assumed to have random 

locations. For example, police stations may be assumed to have random locations, 

because the crime cannot be known deterministically. Probabilistic WPs was initially 

introduced in [18]. Katz and Cooper [19] minimized the total expected cost of the 

Euclidian distance of customers which are distributed bivariate normally 

independently. Katz and Cooper [20] considered the same problem focusing on the 

bivariate exponential and bivariate symmetric exponential distributions for customer 

locations. Weslowsky [21] extended the same problem using the bivariate normal and 

bivariate uniform and bivariate symmetric exponential distribution functions for 

customer locations in the rectilinear space. Cooper [22] generated a mathematical 

programming model for the transportation-location problem and solved proposed an 

exact and a heuristic solution algorithm. Özkısacık et al. [23] proposed the 

probabilistic MWP (PMWP) and generated a heuristic solution method based on the 

principle of vector quantization. Durmaz et al. [24] proposed the probabilistic 

capacitated MWP (PCMWP) which customers have independent bivariate normal 

distributions coordinates and introduced three discrete approximation heuristics for 

the problem. Altınel et al. [25] considered the CMWP where customer locations 

follow the bivariate random distribution function for four distance functions, 

Euclidian, Squared Euclidian, rectilinear and weighted norm.  

In this paper, Probabilistic Multi-commodity Capacitated Multi-facility Weber 
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Problem (PMCMWP) in the rectilinear space is proposed. Based on our knowledge, 

there is no work published in this field. Since computing the probabilistic distance is 

impossible, we applied the expected value of the distance function. Two procedures, 

exact and approximation, to calculate the probabilistic distance function and an 

alternative location allocation heuristic algorithm are presented in this paper.    

The rest of this article is organized as follows. The probabilistic programming and 

expected distance computing are given in Section 2. An alternative location allocation 

heuristic algorithm is presented in Section 3. In section 4 a typical numerical example 

is introduced. A conclusion and future research schemes are presented in Section5. 

 

2. The PMCMWP 

2.1. The probabilistic programming 

Let K be the number of commodities that each facility can distribute to the 

customers and respectively 𝐚𝑗 = (𝑎𝑗1, 𝑎𝑗2)
𝑇

 and 𝐱𝑖 = (𝑥𝑖1, 𝑥𝑖2)
𝑇  represent the 

coordinates of customer j and facility i. It is supposed that the coordinates of the 

customer follow the bivariate normal distributions function and the coordinates of the 

facility is unknown. Then distance between customer j and facility i is denoted by 

𝑑(𝐱𝑖 , 𝐚𝑗) considered as rectilinear distance, namely:  

𝑑(𝐱𝑖 , 𝐚𝑗) = |𝑥𝑖1 − 𝑎𝑗1| + |𝑥𝑖2 − 𝑎𝑗2|.  

The capacity of facility i and demand of customer j for commodity k are given by 

𝑠𝑖𝑘 and 𝑞𝑗𝑘, respectively. Note that in this problem the balance condition (i.e., the 

equality of total demand and total supply for each commodity) namely ∑ 𝑠𝑖𝑘
𝐼
𝑖=1 =

∑ 𝑞𝑗𝑘
𝐽
𝑗=1  for 𝑘 = 1,… , 𝐾  is met. Additionally, a capacity limitation on every 

connection (𝑖, 𝑗) is predetermined by 𝑢𝑖𝑗. 𝑤𝑖𝑗𝑘 is the unknown amount of commodity 

k transported from facility i to customer j with the unit transportation cost 𝑐𝑖𝑗𝑘 per 

unit distance. The mathematical formulation of the PMCMWP can be stated as: 

min𝑍 =∑∑∑𝑤𝑖𝑗𝑘

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

𝑐𝑖𝑗𝑘 𝑑(𝐱𝑖 , 𝐚𝑗) 
 

(1) 
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s.t. ∑𝑤𝑖𝑗𝑘

𝐽

𝑗=1

= 𝑠𝑖𝑘 , 𝑖 = 1, … , 𝐼; 𝑘 = 1,… , 𝐾 (2) 

 
∑𝑤𝑖𝑗𝑘

𝐼

𝑖=1

=  𝑞𝑗𝑘, 𝑗 = 1,… , 𝐽; 𝑘 = 1,… , 𝐾 (3) 

 
∑𝑤𝑖𝑗𝑘

𝐾

𝑘=1

≤ 𝑢𝑖𝑗 , 𝑖 = 1,… , 𝐼; 𝑗 = 1,… , 𝐽 (4) 

 𝑤𝑖𝑗𝑘 ≥ 0 𝑖 = 1,… , 𝐼; 𝑗 = 1,… , 𝐽; 𝑘 = 1,… , 𝐾 (5) 

Observe that when the allocation 𝑤𝑖𝑗𝑘 is given, the MCMWP reduces to the pure 

location problem which can be separable to I WPs. On the other side, when the 

locations of the facilities are known, the MCMWP becomes the ordinary 

multi-commodity transportation problem. Note that when 𝐾 = 1 we deal with a 

CMWP. Sherali and Nordai [7] proved that CMWP is NP-hard even if all customers 

are located on a straight line. Consequently, MCMWP should be expected to be 

difficult and PMCMWP even more difficult which resulted in the researchers’ 

promotion for accurate and efficient heuristics. In this paper we would like to consider 

the independent random variables with known probability distributions. Then, the 

PMCMWP we wish to solve consists of finding the facility locations that minimize 

the expected cost. 

𝐸,𝑍- =∑∑∑𝑤𝑖𝑗𝑘

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

𝑐𝑖𝑗𝑘 𝐸[𝑑(𝐱𝑖 , 𝐚𝑗)]  (6) 

subject to constraints (2) to (5). 

2.2. Exact method for expected distance computing  

Generally, the expected distance for given facility coordinate values 

𝐸[𝑑(𝐱𝑖 , 𝐚𝑗)] = ∫ ∫ 𝑑(𝐱𝑖 , 𝐚𝑗)𝑓𝑗(𝐚𝑗)𝑑𝑎𝑗1𝑑𝑎𝑗2

∞

−∞

∞

−∞

 (7) 

where 𝐚𝑗 = (a𝑗1, a𝑗2)  is a random variable with a𝑗1  and a𝑗2 being independent 

normal random variables having means 𝜇𝑗1 and 𝜇𝑗2 and the standard deviations 

𝜎𝑗1 = 𝜎𝑗2 = 𝜎𝑗 with respect to 𝐚𝑗 around 𝝁 = (𝜇𝑗1, 𝜇𝑗2). So, expression (7) can be 

written equivalently as 
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𝐸[𝑑(𝐱𝑖 , 𝐚𝑗)] = ∑∫ |𝑥𝑖𝑝 − 𝑎𝑗𝑝|
∞

−∞

2

𝑝=1

𝑓𝑗𝑝(𝑎𝑗𝑝)𝑑𝑎𝑗𝑝

=∑(∫ (𝑥𝑖𝑝 − 𝑎𝑗𝑝)𝑓𝑗𝑝(𝑎𝑗𝑝)𝑑𝑎𝑗𝑝

𝑥𝑖𝑝

−∞

2

𝑝=1

+∫ (𝑎𝑗𝑝 − 𝑥𝑖𝑝)𝑓𝑗𝑝(𝑎𝑗𝑝)𝑑𝑎𝑗𝑝

∞

𝑥𝑖𝑝

) 

(8) 

 Applying integration by parts we have 

𝐸[𝑑(𝐱𝑖 , 𝐚𝑗)] = ∑(2∫ 𝐹𝑗𝑝(𝑎𝑗𝑝)𝑑𝑎𝑗𝑝

𝑥𝑖𝑝

−∞

+ 𝜇𝑗𝑝 − 𝑥𝑖𝑝)

2

𝑝=1

 (9) 

where 𝐹𝑗𝑝(𝑎𝑗𝑝) = Pr(𝑋𝑗𝑝 ≤ 𝑥𝑗𝑝). Wesolowsky [21] considered rectilinear distance 

probabilistic Weber problem for bivariate normal, exponential and uniform location 

distributions. Altınel et al. [25] motivated the work of [21] and proved the convexity 

of the obtained expected distance. Suppose random variable 𝑎𝑗𝑝  is distributed 

uniformly within (𝛼𝑗𝑝, 𝛽𝑗𝑝) with distribution function 

𝐹𝑗𝑝(𝑎𝑗𝑝) =

{
 
 

 
 0 if 𝑎𝑗𝑝 < 𝛼𝑗𝑝
𝑎𝑗𝑝 − 𝛼𝑗𝑝
𝛽𝑗𝑝 − 𝛼𝑗𝑝

if 𝛼𝑗𝑝 ≤ 𝑎𝑗𝑝 ≤ 𝛽𝑗𝑝

1 if 𝑎𝑗𝑝 > 𝛽𝑗𝑝

 (10) 

Then 

𝐸[𝑑(𝐱𝑖 , 𝐚𝑗)] = ∑(2∫ 𝐹𝑗𝑝(𝑎𝑗𝑝)𝑑𝑎𝑗𝑝

𝑥𝑖𝑝

−∞

+ 𝜇𝑗𝑝 − 𝑥𝑖𝑝)

2

𝑝=1

=

{
 
 
 
 

 
 
 
 ∑(

𝛼𝑗𝑝 + 𝛽𝑗𝑝
2

− 𝑥𝑖𝑝)

2

𝑝=1

if 𝑥𝑖𝑝 < 𝛼𝑗𝑝

∑(
(𝑥𝑖𝑝 − 𝛼𝑗𝑝)

2

𝛽𝑗𝑝 − 𝛼𝑗𝑝
+
𝛼𝑗𝑝 + 𝛽𝑗𝑝

2
− 𝑥𝑖𝑝)

2

𝑝=1

if 𝛼𝑗𝑝 ≤ 𝑥𝑖𝑝 ≤ 𝛽𝑗𝑝

∑(𝑥𝑖𝑝 −
𝛼𝑗𝑝 + 𝛽𝑗𝑝

2
)

2

𝑝=1

if 𝑥𝑖𝑝 > 𝛽𝑗𝑝

 

(11) 

for 𝑖 = 1, … , 𝐼; 𝑗 = 1,… , 𝐽; 𝑝 = 1,2. Whereas the expected distance in each region is 

convex individually, the whole expected distance function in nonconvex.  

2.3. Approximation method for expected distance computing 
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Since customers are distributed uniformly in the specific ranges, we generate a large 

enough random numbers for customer j by 𝐚̃𝑗
𝑟 = (𝑎̃𝑗1

𝑟 , 𝑎̃𝑗2
𝑟 )

𝑇
, 𝑟 = 1,… , 𝑅 where 𝑅 is 

the number of produced random numbers. Note that 𝑎̃𝑗𝑝
𝑟 ∈ [𝛼𝑗𝑝, 𝛽𝑗𝑝], 𝑟 = 1,… , 𝑅 

and 𝑝 = 1,2. Then approximated customer points can be calculated by the average 

value of coordinates of the generated random points 𝐚̅𝑗 = (𝑎̅𝑗1, 𝑎̅𝑗2)
𝑇

 where 

𝑎̅𝑗𝑝 =
1

𝑅
∑ 𝑎̃𝑗𝑝

𝑟𝑅
𝑟=1  for 𝑝 = 1,2. Next, the rectilinear distance between point 𝐱𝑖 and 

𝐚̅𝑗 is computed by 

𝐸[𝑑(𝐱𝑖 , 𝐚𝑗)] ≅ |𝑥𝑖1 − 𝑎̅𝑗1| + |𝑥𝑖2 − 𝑎̅𝑗2| (12) 

Generally the PMCMWP is formulated by 

min𝐸,𝑍- =∑∑∑𝑤𝑖𝑗𝑘

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

𝑐𝑖𝑗𝑘 𝐸[𝑑(𝐱𝑖 , 𝐚𝑗)] 
 

 

subject to constraints (2) – (5).   

 

3. Alternate location–allocation (ALA) heuristic 

Location-allocation problems (LAPs) optimally site a set of facilities and allocate the 

customer demands to the facilities in order to meet the capacity and demand 

restrictions at minimum total cost. Therefore, any LAP becomes a pure multi-facility 

location problem when an allocation scheme is predetermined. Conversely, when 

facility locations are given, it becomes a pure allocation problem. Starting at an initial 

set of facility locations, Cooper [3] applied firstly ALA for the MWP, which simply 

consists of the solution of the location and allocation problems alternately, until no 

further improvement is possible. ALA terminates with a local optimum solution which 

is no better locations can be found concerning the current allocations, and no better 

allocations can be found given the current locations. The capacitated version (CALA) 

of CMWP is then presented in [4]. However, in the allocation phase each customer is 

assigned to the nearest facility in case of the MWP, which becomes the solution of an 

ordinary transportation problem for the CMWP and the solution of the expected 

distance multi-commodity transportation problem (EMTP): 
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min𝑍 =∑∑∑𝑐𝑖̅𝑗𝑘𝑤𝑖𝑗𝑘

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

  
 

(13) 

s.t. ∑𝑤𝑖𝑗𝑘

𝐽

𝑗=1

= 𝑠𝑖𝑘 , 𝑖 = 1,… , 𝐼; 𝑘 = 1,… , 𝐾 (14) 

 
∑𝑤𝑖𝑗𝑘

𝐼

𝑖=1

=  𝑞𝑗𝑘, 𝑗 = 1,… , 𝐽; 𝑘 = 1,… , 𝐾 (15) 

 
∑𝑤𝑖𝑗𝑘

𝐾

𝑘=1

≤ 𝑢𝑖𝑗 , 𝑖 = 1,… , 𝐼; 𝑗 = 1,… , 𝐽 (16) 

 𝑤𝑖𝑗𝑘 ≥ 0 𝑖 = 1,… , 𝐼; 𝑗 = 1,… , 𝐽; 𝑘 = 1,… , 𝐾 (17) 

The unit expected transportation cost is specified as 𝑐𝑖̅𝑗𝑘 = 𝑐𝑖𝑗𝑘 𝐸[𝑑(𝐱𝑖 , 𝐚𝑗)] where 

𝐱𝑖 was the generated randomly initial facility locations. Here the allocation values for 

the generated facility locations are enhanced. As stated above, when the allocation 

𝑤𝑖𝑗𝑘 is available, the MCMWP reduces to the pure location problem which can be 

separable to I WPs. So, we deal with I probabilistic Weber problems (PWP) by 

min𝑍𝑖 =min∑𝑐𝑖̿𝑗  𝐸[𝑑(𝐱𝑖 , 𝐚𝑗)]

𝐽

𝑗=1

,      𝑖 = 1,… , 𝐼 (18) 

where 𝑐𝑖̿𝑗 = ∑ 𝑤𝑖𝑗𝑘𝑐𝑖𝑗𝑘
𝐾
𝑘=1 . Akÿuz et al. [16] and [17] extended Cooper’s ALA 

heuristic [3] for the multi-commodity version (MCALA) heuristic. Here, we propose a 

probabilistic version of MCALA (PMCALA) sequentially which consists of the 

alternate solutions of the I PWPs (18) and EMTP (13)–(17). At the first, facility 

locations are generated randomly. Then, in each iteration the allocation clusters for 

each generated facility are determined form EMTP (13)–(17). Next, the facility 

locations are obtained from I probabilistic Weber problems with expected distance 

function. The steps of this algorithm are specified in Algorithm 1. The algorithm stops 

when in the allocation step, the assignment clusters set in two successive iterations 

remains to be the same or in the location step, the facility points remain unchanged. 

Actually with these conditions, a local minimum is achieved. Since the algorithm 

starts with the initial solutions of facility locations, we select the mean coordinates of 

I customers arbitrarily among J existing demand points as the initial facility locations 
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(i.e. 𝐱𝑖 = (𝜇𝑖1, 𝜇𝑖2), 𝑖 ∈ *1, … , 𝐽+). In fact there are (𝐽
𝐼
) number of possibilities for  

initial solution sets. 

Algorithm 1 

 

4. Numerical example 

For a better understanding of the proposed model and showing the effectiveness of 

the proposed solution approaches, we explain an example consists of locating 3 new 

facilities to assign 2 commodities among 8 customers whom their location follows the 

independent bivariate normal distribution function in the rectilinear space. We applied 

the LINGO optimization software to solve subproblems, i.e., (13)-(17) and (18), and 

implemented the heuristic algorithm in Visual basic 6.0 to find the results of the 

proposed MCALA algorithm. The programs were executed on a desktop computer 

equipped with a 2.20 GH Intel Pentium Dual processor and 2 GB RAM.  

  

Step 1: Initialization 

Select randomly I points from the J demand points as the initial facility 

locations: 

 𝐱1, 𝐱2, … , 𝐱𝐼.  

Step 2: Computing expected distance 

Compute 𝐸[𝑑(𝐱𝑖 , 𝐚𝑗)]   

REPEAT 

Step 3: Allocation  

Compute 𝑐𝑖̅𝑗𝑘 

Solve the EMTP, (13)–(17) 

Determine 𝑤𝑖𝑗𝑘 

Step 4: Location 

For 𝑖 = 1,… , 𝐼 do 

Compute 𝑐𝑖̿𝑗 

Solve the Weber location problem i, (18) using determined 𝑤𝑖𝑗𝑘  

Determine 𝐱𝑖 = (𝑥𝑖1, 𝑥𝑖2)
𝑇 

End for 

UNTIL a stopping condition is satisfied. 
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Table 1. Data for the sample problem. 

 qjk uij sik 

 [(µj1,µj2);σj] (𝛼𝑗1, 𝛼𝑗2) (𝛽𝑗1, 𝛽𝑗2) k=1 k=2 i=1 i=2 i=3  k=1 k=2 

j=1 [(7,8);0.3] (6,8) (7,9) 10 18 25 20 25 i=1 35 41 

j=2 [(3,2);0.25] (2,4) (1,3) 12 17 25 25 30 i=2 35 45 

j=3 [(5,2);0.28] (4,6) (1,3) 15 18 20 25 30 i=3 32 50 

j=4 [(2,10);0.4] (1,3) (9,11) 8 21 10 30 10    

j=5 [(9,1);0.6] (8,10) (0,2) 13 18 10 25 15    

j=6 [(3,7);0.6] (2,4) (6,8) 15 12 25 25 30    

j=7 [(6,3);0.55] (5,7) (2,4) 19 19 20 20 15    

j=8 [(9,4);0.5] (8,10) (3,5) 10 13 15 20 20   

 

Table 2. Unit shipment cost for the sample problem. 

  

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 

i=1 
k=1 57 41 48 58 41 52 46 48 

k=2 45 42 58 57 53 49 56 49 

i=2 
k=1 53 43 54 47 44 45 51 45 

k=2 56 44 57 43 48 46 55 40 

i=3 
k=1 43 42 43 55 55 43 56 40 

k=2 55 45 43 51 46 55 58 58 

The mean coordinates 𝜇𝑗𝑝  and standard deviations 𝜎𝑗  of customer locations, 

uniform distribution parameters for each coordinate of customers 𝛼𝑗𝑝  and 𝛽𝑗p , 

capacity of facilities 𝑞𝑗𝑘, demand of customers 𝑢𝑖𝑗 and facility-customer connection 

restrictions 𝑠𝑖𝑘 are given in Table 1. The unit shipment cost of commodity k from 

facility i to customer j is presented in Table 2. These data are randomly generated in 

the predetermined ranges.  Solving the sample problem via presented procedure, the 

location of the new facilities as well as the amount of different commodities should be 

shipped to the customers is enhanced. The results are presented in Figure 1 and are 

reported in Table 3. The obtained objective function value is 34879.  
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i xi yi 

1 3.153153 7.966601 

2 6.90401 2.989082 

3 5.189666 2.087433 

Coordinates of new 

facilities 

Figure 1. Customer and new facility points 

 

Table 3. Amount of commodities shipped to customers 

 i=1 i=2 i=3 

 k=1 k=2 k=1 k=2 k=1 k=2 

j=1 3 12 7 6 0 0 

j=2 0 0 0.115611 1.884389 11.88439 15.11561 

j=3 0 0 10.74001 2.259989 4.259989 15.74001 

j=4 8 17 0 4 0 0 

j=5 6 0 7 3 0 15 

j=6 15 12 0 0 0 0 

j=7 3 0 0.144379 14.85562 15.85562 4.144379 

j=8 0 0 10 13 0 0 

 

5. Conclusion 

In this paper a mathematical programming model for the probabilistic Weber 

location problem have been considered. Two expected distance function and a 
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heuristic solution method which divides the problem into two subproblems have been 

presented. Results showed that using the approximation expected distance the given 

algorithm leads us to a local optimum solution. Applying a procedure to start the LAL 

algorithm efficiently in order to improve the solution quality can be an extension for 

this work. Other heuristic methods can also be examined for this problem. Different 

distance functions and different distribution functions can lead the problem to the real 

world problems. 
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