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Abstract. This paper presents a method for solving nonlinear system of equations via double direction approach.

We consider the first direction to be steepest descent direction while the other direction is the proposed CG di-

rection. Derivative-free line search is used to obtain the step length αk. The global convergence of the proposed

algorithm is established under suitable conditions. Numerical results show that the proposed method is efficient

for large scale problems.
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1. Introduction

Consider the following nonlinear system of equations:

(1) F(x) = 0,
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where F : Rn→ Rn is a nonlinear, continuous mapping and is assumed to satisfy the following

assumptions:

Assumption 1

(A1) There exists x∗ ∈ Rn such that F(x∗) = 0.

(A2) F is continuously differentiable mapping.

(A3) The Jacobian, F
′
(xk) is symmetric.

Solving nonlinear system of equations is very important part in Mathematics and has a wide

range of applications in various aspect of applied sciences, technology and industry. Many

examples from all of these branches have been considered in recent years [1, 2, 3].

One of the most attractive factor of each numerical algorithm for solving system of nonlinear

equations is how the procedure deals with large scale problem. The effectiveness or otherwise

of the methods depends solely on step length, αk, and search direction dk. There are several

procedure for the choice of the search direction (see[4, 5, 33]). Likewise, αk can be computed

either exact or inexact. The most frequently used line search in practice is inexact line search

[5, 10, 24] which is chosen in such a way that the function values along the ray xk+αkdk, αk > 0

decreases ie.,

(2) ||F(xk +αkdk)||< ||F(xk)||.

In this work, we adopt a derivative-free line search described in [6] which is based on Li and

Fukushima[8] to obtained the optimal step length. Large number of efficient solver for large

scale symmetric nonlinear system of equations have been proposed in the last decades, the most

popular ones are due to Li and Fukushima [8] in which a Gauss-Newton based BFGS method

is developed, the global and superlinear convergence were established. It’s performance is im-

proved by Gu et.al [9], were a norm decent BFGS method is designed. Since then, norm descent

type BFGS method especially with trust region approaches are presented in the literature and

have shown the efficiency experimentally [11, 12]. However, all these methods require matrix

storage location, solving nxn linear system and hence not suitable for large scale system.



608 H. ABDULLAH, M. Y. WAZIRI AND M. K. DAUDA

The emergence of conjugate gradient method for solving symmetric nonlinear system of equa-

tions is a welcome development. Nonlinear conjugate gradient came into existence in the year

1964 [13], since then the work on CG became prominent in the literature. Different CG param-

eter βk, corresponds to different CG direction. We refer to survey paper [13] for a summary

of the derivative free Quasi-Newton methods for solving nonlinear system of equations. In

2006, [14] presented a CG method for solving unconstrained optimization problems which was

modified in 2011 see [15] to solve symmetric nonlinear system of equations. Further-more, in

2015, [7] presented a CG method for solving symmetric system of nonlinear equations without

computing Jacobian via special structure of the underlying function.

It’s important to mention here that double direction iteration for unconstrained optimization has

been presented in the literature by many authors [16, 17, 18] and has the iterative procedure

given by:

(3) xk+1 = xk +αkck +α
2
k dk,

where xk+1 represents a new iterative point, xk is the previous iterative point, αk is the step

length, while ck and dk are the search directions respectively.

However, double direction methods for solving system of nonlinear equations are very scanty,

that is what motivated us to have this paper. We assume the first direction ie., ck, to be the

steepest descent direction and the other direction ie, dk to be a hybrid CG direction.

Problem (1) can be converted to the following global optimization problem

(4) min f (x), x ∈ Rn,

with function f defined by

(5) f (x) =
1
2
||F(x)||2,

where f : Rn→ R

Motivated by [18], we propose our scheme for solving system of nonlinear equations with two

directions vectors. We organized the rest of the paper as follows. In the next section, we

present the proposed method. Section 3 presents convergence results. Numerical experiments

are presented in section 4, and finally conclusion is given in section 5.
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2. Derivation of the Method

In this section we present a new CG parameter βk. This made possible by combining the direc-

tion presented in [19] with classical Newton direction. However, the direction proposed in [19]

is defined as:

(6) dk =


−F(xk) i f k = 0

−F(xk)+β PRP
k dk−1− vkyk i f k ≥ 1

where β PRP
k =

FT (xk)y(xk−1)
||F(xk−1)||2

, vk =
FT (xk)dk−1
||F(xk−1)||2

, yk = F(xk)−F(xk−1).

The Newton’s direction, dk, given by:

(7) dk =−J(xk)
−1F(xk),

where J(xk) is the Jacobian matrix of F(xk). By combining (6) and (7), we have the following

expression for dk:

(8) −J−1(xk)F(xk) =−F(xk)+βkdk−1− vkyk,

multiplying both sides of (8) by J(xk) leads to

(9) −J(xk)J−1(xk)F(xk) =−J(xk)F(xk)+ J(xk)βkdk−1− vkJ(xk)yk,

(10) −F(xk) =−J(xk)F(xk)+ J(xk)βkdk−1− vkJ(xk)yk.

To ensure good approximation, we multiply both sides of (10) by sT
k to obtain:

(11) −sT
k F(xk) =−sT

k J(xk)F(xk)+ sT
k J(xk)βkdk−1− vksT

k J(xk)yk.

From the secant condition we have,

(12) J(xk)sk = yk,

(13) sT
k JT (xk) = yT

k ,
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(14) sT
k J(xk) = yT

k

by assuming that J(xk) is symmetric. Substituting (14) into (11), we obtain

(15) −sT
k F(xk) =−yT

k F(xk)+ yT
k βkdk−1− vkyT

k yk.

After little linear algebra, we presents the new CG parameter as:

(16) β
∗
k =

(yk− sk)
T F(xk)+ vk||yk||2

yT dk−1
.

Having derived the CG parameter β ∗k , in (16) then using (6), we presents our proposed direc-

tion dk, as

(17) dk =


−F(xk) i f k = 0,

−F(xk)+β ∗k dk−1− vkyk i f k ≥ 1,

where β ∗k is defined in (16).

We use a derivative-free line search described in [6] to compute the step length αk > 0

Let ω1, ω2 > 0, r ∈ (0,1) be a constant and let ηk be a given positive sequence such that

(18)
∞

∑
k=0

ηk < η < ∞,

and

(19) ‖F(xk−αkF(k)+α
2
k dk)‖2−‖F(xk)‖2 ≤−ω1‖αkF(xk)‖2−ω2‖αkdk‖2 +ηk.

Let ik be the smallest nonnegative integer i such that (19) holds for α = ri. Let αk = rik .

Now we present the algorithm of the proposed method as follows:

Algorithm 1(DDLS)

STEP 1: Given xo, ε = 10−4, set d0 =−F(x0) and k = 0.

STEP 2: Compute F(xk).

STEP 3: If ‖F(xk)‖ ≤ ε , then stop, else go to STEP 4.

STEP 4: Compute step length αk (by (19)).

STEP 5: Set xk+1 = xk−αkF(k)+α2
k dk.

STEP 6: Compute F(xk+1).
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STEP 7: Compute β ∗k (using (16)).

STEP 8: Update dk+1 (using (6)).

STEP 9: Set k = k+1, and go to STEP 3.

3. Convergence Analysis

In this section we present the global convergence of our proposed method (DDLS). To begin

with, let Ω be the level set define by

(20) Ω = {x|‖F(x)‖ ≤
√
‖F(x0)‖2 +η , where,

η is a positive constant such that (18) is satisfied. Here, we can see that the level set Ω is

bounded. In order to analyze the global convergence of (DDLS) algorithm, we need the follow-

ing assumptions:

Assumption 2

(i)In some neighborhood N of Ω the nonlinear function F is Lipschitz continuous ie., there ex-

ists a positive constant L > 0, such that

(21) ‖F(x)−F(y)‖ ≤ L‖x− y‖,

for all x,y ∈ N. From the level set, there exists a positive constant M1 > 0, such that

(22) ‖F(x)‖ ≤M1,

for all x ∈Ω

Lemma 3.1: Let {xn} be a sequence generated by (DDLS) algorithm. Then {xn} ⊂Ω.
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proof: From (19) we have for all k,

‖F(xk−αkF(k)+α
2
k dk)‖2 ≤ ‖F(xk)‖2 +ηk

�

�

�

≤ ‖F(x0)‖+
k

∑
i=0

ηi ≤ η < ∞

Thus we have,

(23) ‖F(xk+1)‖ ≤
√
‖F(x0)‖2 +η .

Then we can see that from (23)

{xn} ⊂Ω.

Lemma3.2: Suppose that the above assumption holds and {xk} is generated by DDLS algo-

rithm, then we have

(24) lim
k→∞
‖αkdk‖2 = 0

and

(25) lim
k→∞
‖αkF(xk)‖2 = 0

proof: By (19) we have for all k > 0

ω2‖αkdk‖2 ≤ ω1‖αKF(xk)‖2 +ω2‖αkdk‖2

≤ ‖F(xk)‖2−‖F(xk+1)‖2‖+ηk

(26)
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by summing the above k inequality, we obtain

ω2

k

∑
i=0
‖αidi‖2 ≤

k

∑
i=0

(
‖F(xi)‖2−‖F(xi+1)‖2)+ k

∑
i=0

ηi

≤ ‖F(x0)‖2−‖F(xk+1)‖2 +
k

∑
i=0

ηi

≤ ‖F(x0)‖2 +
k

∑
i=0

ηi ≤ ‖F(x0)‖2 +
∞

∑
i=0

η .

(27)

So from (22) and fact that {ηk} satisfies (18) the series ∑
∞
i=0 ‖αidi‖2 is convergent. This implies

(24).

By similar way we can prove (24) holds. The following lemma shows that the search direction

dk is bounded when the current point xk is bounded away from solution (1)

Lemma 3.3; Suppose that assumption 2 holds, and let {xk} is generated by DDLS algorithm,

suppose there is a constant ε > 0 such that for all k,

(28) ‖F(xk)‖ ≥ ε

then there exist a constant M > 0 such that for all k,

(29) ‖dk‖ ≤M.

Proof: using (21), (24), and (25) we have

‖yk‖= ‖F(xk)−F(xk−1)‖ ≤ L‖xk+1− xk‖= L‖α2
k dk−αkF(xk)‖

≤ L(‖α2
k dk‖+‖αkF(xk)‖)→ 0.

(30)

And furthermore,

(31) ‖(yk− sk)
T F(xk)‖= ‖yk− sk‖‖F(xk)‖ ≤M1(‖(yk‖+‖sk‖),

which goes to zero by (22) and (30).

Hence

(32) |β ∗k | ≤
‖yk− sk‖‖F(xk)‖+ |vk|‖yk‖2

|yT dk−1|
→ 0,
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by (30) and (31).

This implies that there exist a constant ρ ∈ (0,1) such that for sufficiently large k,

(33) |β ∗k | ≤ ρ.

By using

(34) ‖dk‖ ≤ ‖F(xk)‖+ |β ∗k |‖dk−1‖− |vk|‖yk‖,

and setting

(35) M3 = max{‖d1‖,‖d2‖, ...,‖d(k0)‖,
M1

1− ε0
},

we can deduce that for all k, (29) holds, ie., ‖dk‖ is uniformly bounded.

Now we are going to establish the following global convergence theorem to show that under

some suitable conditions, there exists an accumulation point of {xk} which is the solution of the

problem (1).

Theorem 3.4: Suppose that assumption 1 holds, {xk} is generated by DDLS algorithm. Assume

further that for all k > 0,

(36) αk ≥ c
|FT (xk)dk|
‖dk‖2 ,

where c is some positive constant. Then

(37) lim
k→∞
‖F(xk)‖= 0.

Proof: Suppose that the condition does not hold. Then there exists a constant ε > 0 such

that for all k (28) holds. Moreover, from lemma 3.3, we have (29) holds. Therefore by (24) and

the boundedness of {‖dk‖},

we have

(38) lim
k→∞

αk‖dk‖2 = 0,
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which combine with (36) to yields

(39) lim
k→∞
|FT

k dk|= 0.

On the other hand from (17), we have

FT (xk)dk =−‖F(xk)‖+β ∗k FT (xk)dk−1−FT (xk)vkyk−1

which can be written as

(40) ‖F(xk)‖ ≤ |FT (xk)dk|+ |β ∗k |‖F(xk)‖‖dk−1‖+‖F(xk)‖‖vk‖‖yk−1‖

So that by equation (22), (29), (30), (33) and taking the limit of the above inequality, we have

(41) lim
k→∞
‖F(xk)‖= 0,

which contradicts equation (28) and hence the proof is completed

4. Numerical Results

In this section, we compare the performance of our method ie., Double Direction Method for

solving large system of nonlinear equations (DDLS) with that of Inexact PRP conjugate gradi-

ent method for solving symmetric nonlinear equations (IPRP) [20].

’

Throughout this paper ;

DDLS stands for our method (Double Direction Method for solving large system of nonlinear

equations) and IPRP stands for Inexact PRP conjugate gradient method for solving symmetric

nonlinear equations. And we set the following parameters for DDLS and IPRP respectively:

ω1 = ω2 = 10−4, r = 0.3 and ηk =
1

(k+1)3 .

ω1 = ω2 = 10−4 , α0 = 0.01, r = 0.3 and ηk =
1

(k+1)3 .

The codes were written in Matlab (R2013a) and run on a personal computer 2.10 GHZ CPU

processor and 2.00 GB RAM memory. We stopped the iteration if the total number of iterations
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exceeds 1000 or ‖F(xk)‖ ≤ 10−4. We tested the two methods on ten test problems from differ-

ent sources with dimension between 1000 and 100,000 with different initial points which is not

restricted to a point that is too close to the solution as suggested by Hillstrom [29]. We believe

that this approach, will add to the complexity of the computer programming, which would lead

to high CPU time. These initial points will also allow us to test the global convergence proper-

ties and the robustness of our method at the same time.

Further more, in table 2 we also report the behavior of the DDLS algorithm for problems 1, 2

and 5 with some different initial points, to illustrate the global convergence. For these problems,

the solution vector is x∗ = (1, ...,1)T . The chosen initial points are x0 = (−9× 10−7, ...,−9×

10−7)T , x1 = (0, ...,0)T , x2 = −x0 and x3 = (10, ...,10)T which are wider enough to test the

global convergence.

Problem 1 [23] :

Fi(x) = xixi+1−1,

Fi(x) = xnxi−1,

i = 1,2, ...,n.

x0 = (0.1,0.1, ...,0.1)T .

Problem 2 [24] :

Fi(x) = x2
i −1,

i = 2,3, ...,n,

x0 = (−0.1,−0.1, ...,−0.1)T .

Problem 3 [23] :

Fi(x) = cos(xi−1)+ xi−1,

i = 2,3, ...,n,

x0 = (5,5, ...,5)T .
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Problem 4 [25] :
Fi(x) = x(i)

2− cos(xi−1),

i = 1,2, ...,n,

x0 = (10,10, ...,10)T .

Problem 5 [25] :
Fi(x) = cos(x2

i −1)−1,

i = 1,2, ...,n,

x0 = (−0.001,−0.001, ...,−0.001)T .

Problem 6 [25] :
Fi(x) = (sin(xi)cos(xi))

2xi− (cos(xi)− xi−1)xi,

i = 1,2, ...,n,

x0 = (5,5, ...,5)T .

Problem 7 [25] :
Fi(x) = cos(xi)−1,

i = 1,2, ...,n,

x0 = (−1.5,−1.5, ...,−1.5)T .

Problem 8 [26] :
Fi(x) = sin((xi)

2 sin(xi))− (xi)
4 + sin((xi)

2),

i = 1,2, ...,n,

x0 = (−0.5,−0.5, ...,−0.5)T .

Problem 9 [27] :
Fi(x) = exp(x2

i −1)− cos(1− xi),

i = 1,2, ...,n,

x0 = (2.5,2.5, ...,2.5)T .
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Problem 10 [26]:

F1(x) = (sin(x1− x2)−4exp(2− x2)+2x1,

Fi(x) = sin(2− xi)−4exp(xi−2)+2xi + cos(2− xi)− exp(2− xi),

i = 1,2, ...,n,

x0 = (−0.55,−0.55, ...,−0.55)T .

Figures(1-2) show the performance of our method relative to the number of iterations and CPU

time, which were evaluated using the profiles of Dolan and More [22]. That is, for each method,

we plot the fraction P(τ) of the problems for which the method is within a factor τ of the best

time. The top curve is the method that solved the most problems in a time that was within a

factor τ of the best time.

The numerical results of the two(2) methods are reported in tables 1, where ”NI” and ”Time”

stand for the total number of iterations and the CPU time in seconds, respectively, while ‖F(xk)‖

is the norm of the residual at the stopping point. We claim that the method fails, and use the

symbol ”-” when some of the following hold :

(a) the number of iterations is greater than or equal to 1000; or

(b) the number of backtracking at some line search is greater than or equal to 20.

From tables 1, we can easily see that all the two methods attempted to solve the large scale

system of nonlinear equations. In particular, the DDSL method considerably out performs

the IPRP method because it solved all the tested problems while the IPRP method fails to

solve some problems(ie., problems 3,5,6,7). In addition, DDLS method has the least number of

iterations as well as the CPU time as both figure(1-2) and table 1 indicated, this is due to the

contribution of the added direction in each iteration which help in better approximation at the

iterate point.
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TABLE 1. Numerical result for DDLS and IPRP methods Problems 1-10

DDLS IPRP

Problems Dimensions NI Time ‖F(xk)‖ NI Time ‖F(xk)‖

1000 16 0.05585 6.34E-05 19 0.01125 3.10E-04

1 10000 17 0.10615 8.61E-05 19 0.09086 9.81E-04

100000 19 1.04116 5.03E-05 21 1.57928 6.20E-04

1000 13 0.03558 5.30E-05 15 0.00689 6.49E-04

2 10000 11 0.03536 8.08E-05 17 0.06407 4.11E-04

100000 13 0.46454 4.72E-05 19 0.91622 2.60E-04

1000 33 0.07841 7.75E-05 - - -

3 10000 34 0.15752 8.60E-05 - - -

100000 36 2.04949 8.00E-05 - - -

1000 11 0.0078 7.33E-05 15 0.00978 2.69E-04

4 10000 12 0.0612 9.02E-05 15 0.08671 8.51E-04

100000 14 0.82151 5.40E-05 17 1.10984 9.62E-05

1000 81 0.03345 9.85E-05 512 0.23933 9.98E-04

5 10000 93 0.29034 9.31E-05 - - -

100000 104 4.08782 9.79E-05 - - -

1000 87 0.15636 9.86E-05 - - -

6 10000 99 0.89807 9.37E-05 - - -

100000 110 11.6707 9.87E-05 - - -

1000 87 0.08012 9.71E-05 - - -

7 10000 99 0.30255 9.25E-05 - - -

100000 110 4.32452 9.77E-05 - - -

1000 25 0.10782 7.13E-05 53 0.10721 9.74E-04

8 10000 27 0.39058 9.43E-05 59 0.83149 9.07E-04

100000 30 4.50478 8.07E-05 65 9.55386 8.44E-04

1000 14 0.01109 9.03E-05 13 0.02364 2.37E-04

9 10000 16 0.10521 5.27E-05 13 0.17952 7.48E-04

100000 17 1.25541 7.15E-05 15 2.1842 4.73E-04

1000 23 0.02933 6.14E-05 22 0.02688 8.54E-04

10 10000 23 0.26057 8.03E-05 19 0.20725 9.34E-04

100000 24 3.06528 7.22E-05 18 2.20971 9.29E-04
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TABLE 2. DDLS Algorithm for problems 1, 2 and 5 for different initial points

DDLS

Problems Dimensions Initial point NI Time ‖F(xk)‖

1000 x0 16 0.006913 5.69E-05

1 10000 x0 17 0.059945 7.73E-05

100000 x0 19 0.9285 4.51E-05

1000 x1 16 0.006795 5.69E-05

1 10000 x1 17 0.064209 7.73E-05

100000 x1 19 0.904196 4.51E-05

1000 x2 16 0.006763 5.69E-05

1 10000 x2 17 0.059095 7.73E-05

100000 x2 19 0.932831 4.51E-05

1000 x3 13 0.006344 8.32E-05

1 10000 x3 15 0.069158 4.85E-05

100000 x3 16 0.839786 6.59E-05

1000 x0 16 0.005609 5.69E-05

2 10000 x0 17 0.047292 7.73E-05

100000 x0 19 0.645581 4.51E-05

1000 x1 16 0.005246 5.69E-05

2 10000 x1 17 0.041803 7.73E-05

100000 x1 19 0.65083 4.51E-05

1000 x2 16 0.005231 5.69E-05

2 10000 x2 17 0.048022 7.73E-05

100000 x2 19 0.633379 4.51E-05

1000 x3 13 0.004807 8.32E-05

2 10000 x3 15 0.04832 4.85E-05

100000 x3 16 0.696073 6.59E-05

1000 x0 81 0.035934 9.87E-05

5 10000 x0 93 0.29387 9.33E-05

100000 x0 104 4.109458 9.82E-05

1000 x1 81 0.032387 9.88E-05

5 10000 x1 93 0.296111 9.33E-05

100000 x1 104 4.125491 9.82E-05

1000 x2 81 0.032562 9.88E-05

5 10000 x2 93 0.287072 9.33E-05

100000 x2 104 4.162607 9.82E-05

1000 x3 38 0.019406 9.91E-05

5 10000 x3 49 0.223457 9.09E-05

100000 x3 59 2.755678 9.88E-05
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FIGURE 1. Performance profile of DDLS and IPRP methods with respect to the

number of iteration for the problems 1-10
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FIGURE 2. Performance profile of DDLS and IPRP methods with respect to the

CPU time (in second) for the problems 1-10
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5. Conclusion

In this paper we present a double direction iterative scheme for solving large-scale system of

nonlinear equations and compare its performance with that of Inexact PRP (IPRP) method for

symmetric nonlinear equations [20]. We observe, from Table 1, that the DDLS algorithm is a

robust option to solve large-scale system nonlinear system of equations. We also observe from

Table 2 the global behavior of the DDLS algorithm for a typical problems, although it requires

more iterations when the initial guess is further a way from the solution. In addition, we proved

the global convergence of our proposed method using a non derivative-free type line search

described in [6]. We choose initial points far away from the solution to see the robustness and

global convergence of our method. The numerical result shows that double direction iterations

has significant influence towards the convergence of system of nonlinear equations especially

large scale system.
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